binutils-gdb/gold/output.h
Doug Kwan 131687b4ad 2010-07-13 Doug Kwan <dougkwan@google.com>
* arm.cc (Arm_input_section::Arm_input_section): For a
	SHT_ARM_EXIDX section, always keeps the input sections.
	(Arm_input_section::set_exidx_section_link): New method.
	(Arm_exidx_input_section::Arm_exidx_input_section): Initialize
	has_errors_ to false.
	(Arm_exidx_input_section::has_errors,
	Arm_exidx_input_section::set_has_errors): New methods.
	(Arm_exidx_input_section::has_errors_): New data member.
	(Arm_relobj::get_exidx_shndx_list): New method.
	(Arm_output_section::append_text_sections_to_list): Do not skip
	section without SHF_EXECINSTR.
	(Arm_output_section::fix_exidx_coverage): Skip input sections with
	errors.
 	(Arm_relobj::make_exidx_input_section): Add new parameter for text
	section header.  Make error messages more verbose.  Check for
	a non-executable section linked to an EXIDX section.
	(Arm_relobj::do_read_symbols): Remove error checking, which has been
	moved to Arm_relobj::make_exidx_input_section.  Add an assertion to
	check that there is no deferred EXIDX section if we exit early.
	Instead of not making an EXIDX section in case of an error, make one
	and set the has_errors flag of it.
	(Target_arm::do_finalize_sections): Fix up links of EXIDX sections
	in a relocatable link.
	(Target_arm::do_relax): Look for the EXIDX output section instead of
	assuming that it is called .ARM.exidx.
 	(Target_arm::fix_exidx_coverage): Add a new parameter for input
	section list.  Do not check for SHF_EXECINSTR section flags but
	skip any input section with errors.
	* output.cc (Output_section::Output_section): Initialize
	always_keeps_input_sections_ to false.
	(Output_section::add_input_section): Check for
	always_keeps_input_sections_.
	*  output.h (Output_section::always_keeps_input_sections,
	Output_section::set_always_keeps_input_sections): New methods.
	(Output_section::always_keeps_input_sections): New data member.
2010-07-13 20:07:08 +00:00

4202 lines
125 KiB
C++

// output.h -- manage the output file for gold -*- C++ -*-
// Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
// Written by Ian Lance Taylor <iant@google.com>.
// This file is part of gold.
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.
#ifndef GOLD_OUTPUT_H
#define GOLD_OUTPUT_H
#include <list>
#include <vector>
#include "elfcpp.h"
#include "mapfile.h"
#include "layout.h"
#include "reloc-types.h"
namespace gold
{
class General_options;
class Object;
class Symbol;
class Output_file;
class Output_merge_base;
class Output_section;
class Relocatable_relocs;
class Target;
template<int size, bool big_endian>
class Sized_target;
template<int size, bool big_endian>
class Sized_relobj;
// An abtract class for data which has to go into the output file.
class Output_data
{
public:
explicit Output_data()
: address_(0), data_size_(0), offset_(-1),
is_address_valid_(false), is_data_size_valid_(false),
is_offset_valid_(false), is_data_size_fixed_(false),
dynamic_reloc_count_(0)
{ }
virtual
~Output_data();
// Return the address. For allocated sections, this is only valid
// after Layout::finalize is finished.
uint64_t
address() const
{
gold_assert(this->is_address_valid_);
return this->address_;
}
// Return the size of the data. For allocated sections, this must
// be valid after Layout::finalize calls set_address, but need not
// be valid before then.
off_t
data_size() const
{
gold_assert(this->is_data_size_valid_);
return this->data_size_;
}
// Return true if data size is fixed.
bool
is_data_size_fixed() const
{ return this->is_data_size_fixed_; }
// Return the file offset. This is only valid after
// Layout::finalize is finished. For some non-allocated sections,
// it may not be valid until near the end of the link.
off_t
offset() const
{
gold_assert(this->is_offset_valid_);
return this->offset_;
}
// Reset the address and file offset. This essentially disables the
// sanity testing about duplicate and unknown settings.
void
reset_address_and_file_offset()
{
this->is_address_valid_ = false;
this->is_offset_valid_ = false;
if (!this->is_data_size_fixed_)
this->is_data_size_valid_ = false;
this->do_reset_address_and_file_offset();
}
// Return true if address and file offset already have reset values. In
// other words, calling reset_address_and_file_offset will not change them.
bool
address_and_file_offset_have_reset_values() const
{ return this->do_address_and_file_offset_have_reset_values(); }
// Return the required alignment.
uint64_t
addralign() const
{ return this->do_addralign(); }
// Return whether this has a load address.
bool
has_load_address() const
{ return this->do_has_load_address(); }
// Return the load address.
uint64_t
load_address() const
{ return this->do_load_address(); }
// Return whether this is an Output_section.
bool
is_section() const
{ return this->do_is_section(); }
// Return whether this is an Output_section of the specified type.
bool
is_section_type(elfcpp::Elf_Word stt) const
{ return this->do_is_section_type(stt); }
// Return whether this is an Output_section with the specified flag
// set.
bool
is_section_flag_set(elfcpp::Elf_Xword shf) const
{ return this->do_is_section_flag_set(shf); }
// Return the output section that this goes in, if there is one.
Output_section*
output_section()
{ return this->do_output_section(); }
const Output_section*
output_section() const
{ return this->do_output_section(); }
// Return the output section index, if there is an output section.
unsigned int
out_shndx() const
{ return this->do_out_shndx(); }
// Set the output section index, if this is an output section.
void
set_out_shndx(unsigned int shndx)
{ this->do_set_out_shndx(shndx); }
// Set the address and file offset of this data, and finalize the
// size of the data. This is called during Layout::finalize for
// allocated sections.
void
set_address_and_file_offset(uint64_t addr, off_t off)
{
this->set_address(addr);
this->set_file_offset(off);
this->finalize_data_size();
}
// Set the address.
void
set_address(uint64_t addr)
{
gold_assert(!this->is_address_valid_);
this->address_ = addr;
this->is_address_valid_ = true;
}
// Set the file offset.
void
set_file_offset(off_t off)
{
gold_assert(!this->is_offset_valid_);
this->offset_ = off;
this->is_offset_valid_ = true;
}
// Finalize the data size.
void
finalize_data_size()
{
if (!this->is_data_size_valid_)
{
// Tell the child class to set the data size.
this->set_final_data_size();
gold_assert(this->is_data_size_valid_);
}
}
// Set the TLS offset. Called only for SHT_TLS sections.
void
set_tls_offset(uint64_t tls_base)
{ this->do_set_tls_offset(tls_base); }
// Return the TLS offset, relative to the base of the TLS segment.
// Valid only for SHT_TLS sections.
uint64_t
tls_offset() const
{ return this->do_tls_offset(); }
// Write the data to the output file. This is called after
// Layout::finalize is complete.
void
write(Output_file* file)
{ this->do_write(file); }
// This is called by Layout::finalize to note that the sizes of
// allocated sections must now be fixed.
static void
layout_complete()
{ Output_data::allocated_sizes_are_fixed = true; }
// Used to check that layout has been done.
static bool
is_layout_complete()
{ return Output_data::allocated_sizes_are_fixed; }
// Count the number of dynamic relocations applied to this section.
void
add_dynamic_reloc()
{ ++this->dynamic_reloc_count_; }
// Return the number of dynamic relocations applied to this section.
unsigned int
dynamic_reloc_count() const
{ return this->dynamic_reloc_count_; }
// Whether the address is valid.
bool
is_address_valid() const
{ return this->is_address_valid_; }
// Whether the file offset is valid.
bool
is_offset_valid() const
{ return this->is_offset_valid_; }
// Whether the data size is valid.
bool
is_data_size_valid() const
{ return this->is_data_size_valid_; }
// Print information to the map file.
void
print_to_mapfile(Mapfile* mapfile) const
{ return this->do_print_to_mapfile(mapfile); }
protected:
// Functions that child classes may or in some cases must implement.
// Write the data to the output file.
virtual void
do_write(Output_file*) = 0;
// Return the required alignment.
virtual uint64_t
do_addralign() const = 0;
// Return whether this has a load address.
virtual bool
do_has_load_address() const
{ return false; }
// Return the load address.
virtual uint64_t
do_load_address() const
{ gold_unreachable(); }
// Return whether this is an Output_section.
virtual bool
do_is_section() const
{ return false; }
// Return whether this is an Output_section of the specified type.
// This only needs to be implement by Output_section.
virtual bool
do_is_section_type(elfcpp::Elf_Word) const
{ return false; }
// Return whether this is an Output_section with the specific flag
// set. This only needs to be implemented by Output_section.
virtual bool
do_is_section_flag_set(elfcpp::Elf_Xword) const
{ return false; }
// Return the output section, if there is one.
virtual Output_section*
do_output_section()
{ return NULL; }
virtual const Output_section*
do_output_section() const
{ return NULL; }
// Return the output section index, if there is an output section.
virtual unsigned int
do_out_shndx() const
{ gold_unreachable(); }
// Set the output section index, if this is an output section.
virtual void
do_set_out_shndx(unsigned int)
{ gold_unreachable(); }
// This is a hook for derived classes to set the data size. This is
// called by finalize_data_size, normally called during
// Layout::finalize, when the section address is set.
virtual void
set_final_data_size()
{ gold_unreachable(); }
// A hook for resetting the address and file offset.
virtual void
do_reset_address_and_file_offset()
{ }
// Return true if address and file offset already have reset values. In
// other words, calling reset_address_and_file_offset will not change them.
// A child class overriding do_reset_address_and_file_offset may need to
// also override this.
virtual bool
do_address_and_file_offset_have_reset_values() const
{ return !this->is_address_valid_ && !this->is_offset_valid_; }
// Set the TLS offset. Called only for SHT_TLS sections.
virtual void
do_set_tls_offset(uint64_t)
{ gold_unreachable(); }
// Return the TLS offset, relative to the base of the TLS segment.
// Valid only for SHT_TLS sections.
virtual uint64_t
do_tls_offset() const
{ gold_unreachable(); }
// Print to the map file. This only needs to be implemented by
// classes which may appear in a PT_LOAD segment.
virtual void
do_print_to_mapfile(Mapfile*) const
{ gold_unreachable(); }
// Functions that child classes may call.
// Reset the address. The Output_section class needs this when an
// SHF_ALLOC input section is added to an output section which was
// formerly not SHF_ALLOC.
void
mark_address_invalid()
{ this->is_address_valid_ = false; }
// Set the size of the data.
void
set_data_size(off_t data_size)
{
gold_assert(!this->is_data_size_valid_
&& !this->is_data_size_fixed_);
this->data_size_ = data_size;
this->is_data_size_valid_ = true;
}
// Fix the data size. Once it is fixed, it cannot be changed
// and the data size remains always valid.
void
fix_data_size()
{
gold_assert(this->is_data_size_valid_);
this->is_data_size_fixed_ = true;
}
// Get the current data size--this is for the convenience of
// sections which build up their size over time.
off_t
current_data_size_for_child() const
{ return this->data_size_; }
// Set the current data size--this is for the convenience of
// sections which build up their size over time.
void
set_current_data_size_for_child(off_t data_size)
{
gold_assert(!this->is_data_size_valid_);
this->data_size_ = data_size;
}
// Return default alignment for the target size.
static uint64_t
default_alignment();
// Return default alignment for a specified size--32 or 64.
static uint64_t
default_alignment_for_size(int size);
private:
Output_data(const Output_data&);
Output_data& operator=(const Output_data&);
// This is used for verification, to make sure that we don't try to
// change any sizes of allocated sections after we set the section
// addresses.
static bool allocated_sizes_are_fixed;
// Memory address in output file.
uint64_t address_;
// Size of data in output file.
off_t data_size_;
// File offset of contents in output file.
off_t offset_;
// Whether address_ is valid.
bool is_address_valid_;
// Whether data_size_ is valid.
bool is_data_size_valid_;
// Whether offset_ is valid.
bool is_offset_valid_;
// Whether data size is fixed.
bool is_data_size_fixed_;
// Count of dynamic relocations applied to this section.
unsigned int dynamic_reloc_count_;
};
// Output the section headers.
class Output_section_headers : public Output_data
{
public:
Output_section_headers(const Layout*,
const Layout::Segment_list*,
const Layout::Section_list*,
const Layout::Section_list*,
const Stringpool*,
const Output_section*);
protected:
// Write the data to the file.
void
do_write(Output_file*);
// Return the required alignment.
uint64_t
do_addralign() const
{ return Output_data::default_alignment(); }
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{ mapfile->print_output_data(this, _("** section headers")); }
// Set final data size.
void
set_final_data_size()
{ this->set_data_size(this->do_size()); }
private:
// Write the data to the file with the right size and endianness.
template<int size, bool big_endian>
void
do_sized_write(Output_file*);
// Compute data size.
off_t
do_size() const;
const Layout* layout_;
const Layout::Segment_list* segment_list_;
const Layout::Section_list* section_list_;
const Layout::Section_list* unattached_section_list_;
const Stringpool* secnamepool_;
const Output_section* shstrtab_section_;
};
// Output the segment headers.
class Output_segment_headers : public Output_data
{
public:
Output_segment_headers(const Layout::Segment_list& segment_list);
protected:
// Write the data to the file.
void
do_write(Output_file*);
// Return the required alignment.
uint64_t
do_addralign() const
{ return Output_data::default_alignment(); }
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{ mapfile->print_output_data(this, _("** segment headers")); }
// Set final data size.
void
set_final_data_size()
{ this->set_data_size(this->do_size()); }
private:
// Write the data to the file with the right size and endianness.
template<int size, bool big_endian>
void
do_sized_write(Output_file*);
// Compute the current size.
off_t
do_size() const;
const Layout::Segment_list& segment_list_;
};
// Output the ELF file header.
class Output_file_header : public Output_data
{
public:
Output_file_header(const Target*,
const Symbol_table*,
const Output_segment_headers*,
const char* entry);
// Add information about the section headers. We lay out the ELF
// file header before we create the section headers.
void set_section_info(const Output_section_headers*,
const Output_section* shstrtab);
protected:
// Write the data to the file.
void
do_write(Output_file*);
// Return the required alignment.
uint64_t
do_addralign() const
{ return Output_data::default_alignment(); }
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{ mapfile->print_output_data(this, _("** file header")); }
// Set final data size.
void
set_final_data_size(void)
{ this->set_data_size(this->do_size()); }
private:
// Write the data to the file with the right size and endianness.
template<int size, bool big_endian>
void
do_sized_write(Output_file*);
// Return the value to use for the entry address.
template<int size>
typename elfcpp::Elf_types<size>::Elf_Addr
entry();
// Compute the current data size.
off_t
do_size() const;
const Target* target_;
const Symbol_table* symtab_;
const Output_segment_headers* segment_header_;
const Output_section_headers* section_header_;
const Output_section* shstrtab_;
const char* entry_;
};
// Output sections are mainly comprised of input sections. However,
// there are cases where we have data to write out which is not in an
// input section. Output_section_data is used in such cases. This is
// an abstract base class.
class Output_section_data : public Output_data
{
public:
Output_section_data(off_t data_size, uint64_t addralign,
bool is_data_size_fixed)
: Output_data(), output_section_(NULL), addralign_(addralign)
{
this->set_data_size(data_size);
if (is_data_size_fixed)
this->fix_data_size();
}
Output_section_data(uint64_t addralign)
: Output_data(), output_section_(NULL), addralign_(addralign)
{ }
// Return the output section.
const Output_section*
output_section() const
{ return this->output_section_; }
// Record the output section.
void
set_output_section(Output_section* os);
// Add an input section, for SHF_MERGE sections. This returns true
// if the section was handled.
bool
add_input_section(Relobj* object, unsigned int shndx)
{ return this->do_add_input_section(object, shndx); }
// Given an input OBJECT, an input section index SHNDX within that
// object, and an OFFSET relative to the start of that input
// section, return whether or not the corresponding offset within
// the output section is known. If this function returns true, it
// sets *POUTPUT to the output offset. The value -1 indicates that
// this input offset is being discarded.
bool
output_offset(const Relobj* object, unsigned int shndx,
section_offset_type offset,
section_offset_type *poutput) const
{ return this->do_output_offset(object, shndx, offset, poutput); }
// Return whether this is the merge section for the input section
// SHNDX in OBJECT. This should return true when output_offset
// would return true for some values of OFFSET.
bool
is_merge_section_for(const Relobj* object, unsigned int shndx) const
{ return this->do_is_merge_section_for(object, shndx); }
// Write the contents to a buffer. This is used for sections which
// require postprocessing, such as compression.
void
write_to_buffer(unsigned char* buffer)
{ this->do_write_to_buffer(buffer); }
// Print merge stats to stderr. This should only be called for
// SHF_MERGE sections.
void
print_merge_stats(const char* section_name)
{ this->do_print_merge_stats(section_name); }
protected:
// The child class must implement do_write.
// The child class may implement specific adjustments to the output
// section.
virtual void
do_adjust_output_section(Output_section*)
{ }
// May be implemented by child class. Return true if the section
// was handled.
virtual bool
do_add_input_section(Relobj*, unsigned int)
{ gold_unreachable(); }
// The child class may implement output_offset.
virtual bool
do_output_offset(const Relobj*, unsigned int, section_offset_type,
section_offset_type*) const
{ return false; }
// The child class may implement is_merge_section_for.
virtual bool
do_is_merge_section_for(const Relobj*, unsigned int) const
{ return false; }
// The child class may implement write_to_buffer. Most child
// classes can not appear in a compressed section, and they do not
// implement this.
virtual void
do_write_to_buffer(unsigned char*)
{ gold_unreachable(); }
// Print merge statistics.
virtual void
do_print_merge_stats(const char*)
{ gold_unreachable(); }
// Return the required alignment.
uint64_t
do_addralign() const
{ return this->addralign_; }
// Return the output section.
Output_section*
do_output_section()
{ return this->output_section_; }
const Output_section*
do_output_section() const
{ return this->output_section_; }
// Return the section index of the output section.
unsigned int
do_out_shndx() const;
// Set the alignment.
void
set_addralign(uint64_t addralign);
private:
// The output section for this section.
Output_section* output_section_;
// The required alignment.
uint64_t addralign_;
};
// Some Output_section_data classes build up their data step by step,
// rather than all at once. This class provides an interface for
// them.
class Output_section_data_build : public Output_section_data
{
public:
Output_section_data_build(uint64_t addralign)
: Output_section_data(addralign)
{ }
// Get the current data size.
off_t
current_data_size() const
{ return this->current_data_size_for_child(); }
// Set the current data size.
void
set_current_data_size(off_t data_size)
{ this->set_current_data_size_for_child(data_size); }
protected:
// Set the final data size.
virtual void
set_final_data_size()
{ this->set_data_size(this->current_data_size_for_child()); }
};
// A simple case of Output_data in which we have constant data to
// output.
class Output_data_const : public Output_section_data
{
public:
Output_data_const(const std::string& data, uint64_t addralign)
: Output_section_data(data.size(), addralign, true), data_(data)
{ }
Output_data_const(const char* p, off_t len, uint64_t addralign)
: Output_section_data(len, addralign, true), data_(p, len)
{ }
Output_data_const(const unsigned char* p, off_t len, uint64_t addralign)
: Output_section_data(len, addralign, true),
data_(reinterpret_cast<const char*>(p), len)
{ }
protected:
// Write the data to the output file.
void
do_write(Output_file*);
// Write the data to a buffer.
void
do_write_to_buffer(unsigned char* buffer)
{ memcpy(buffer, this->data_.data(), this->data_.size()); }
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{ mapfile->print_output_data(this, _("** fill")); }
private:
std::string data_;
};
// Another version of Output_data with constant data, in which the
// buffer is allocated by the caller.
class Output_data_const_buffer : public Output_section_data
{
public:
Output_data_const_buffer(const unsigned char* p, off_t len,
uint64_t addralign, const char* map_name)
: Output_section_data(len, addralign, true),
p_(p), map_name_(map_name)
{ }
protected:
// Write the data the output file.
void
do_write(Output_file*);
// Write the data to a buffer.
void
do_write_to_buffer(unsigned char* buffer)
{ memcpy(buffer, this->p_, this->data_size()); }
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{ mapfile->print_output_data(this, _(this->map_name_)); }
private:
// The data to output.
const unsigned char* p_;
// Name to use in a map file. Maps are a rarely used feature, but
// the space usage is minor as aren't very many of these objects.
const char* map_name_;
};
// A place holder for a fixed amount of data written out via some
// other mechanism.
class Output_data_fixed_space : public Output_section_data
{
public:
Output_data_fixed_space(off_t data_size, uint64_t addralign,
const char* map_name)
: Output_section_data(data_size, addralign, true),
map_name_(map_name)
{ }
protected:
// Write out the data--the actual data must be written out
// elsewhere.
void
do_write(Output_file*)
{ }
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{ mapfile->print_output_data(this, _(this->map_name_)); }
private:
// Name to use in a map file. Maps are a rarely used feature, but
// the space usage is minor as aren't very many of these objects.
const char* map_name_;
};
// A place holder for variable sized data written out via some other
// mechanism.
class Output_data_space : public Output_section_data_build
{
public:
explicit Output_data_space(uint64_t addralign, const char* map_name)
: Output_section_data_build(addralign),
map_name_(map_name)
{ }
// Set the alignment.
void
set_space_alignment(uint64_t align)
{ this->set_addralign(align); }
protected:
// Write out the data--the actual data must be written out
// elsewhere.
void
do_write(Output_file*)
{ }
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{ mapfile->print_output_data(this, _(this->map_name_)); }
private:
// Name to use in a map file. Maps are a rarely used feature, but
// the space usage is minor as aren't very many of these objects.
const char* map_name_;
};
// Fill fixed space with zeroes. This is just like
// Output_data_fixed_space, except that the map name is known.
class Output_data_zero_fill : public Output_section_data
{
public:
Output_data_zero_fill(off_t data_size, uint64_t addralign)
: Output_section_data(data_size, addralign, true)
{ }
protected:
// There is no data to write out.
void
do_write(Output_file*)
{ }
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{ mapfile->print_output_data(this, "** zero fill"); }
};
// A string table which goes into an output section.
class Output_data_strtab : public Output_section_data
{
public:
Output_data_strtab(Stringpool* strtab)
: Output_section_data(1), strtab_(strtab)
{ }
protected:
// This is called to set the address and file offset. Here we make
// sure that the Stringpool is finalized.
void
set_final_data_size();
// Write out the data.
void
do_write(Output_file*);
// Write the data to a buffer.
void
do_write_to_buffer(unsigned char* buffer)
{ this->strtab_->write_to_buffer(buffer, this->data_size()); }
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{ mapfile->print_output_data(this, _("** string table")); }
private:
Stringpool* strtab_;
};
// This POD class is used to represent a single reloc in the output
// file. This could be a private class within Output_data_reloc, but
// the templatization is complex enough that I broke it out into a
// separate class. The class is templatized on either elfcpp::SHT_REL
// or elfcpp::SHT_RELA, and also on whether this is a dynamic
// relocation or an ordinary relocation.
// A relocation can be against a global symbol, a local symbol, a
// local section symbol, an output section, or the undefined symbol at
// index 0. We represent the latter by using a NULL global symbol.
template<int sh_type, bool dynamic, int size, bool big_endian>
class Output_reloc;
template<bool dynamic, int size, bool big_endian>
class Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
{
public:
typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
static const Address invalid_address = static_cast<Address>(0) - 1;
// An uninitialized entry. We need this because we want to put
// instances of this class into an STL container.
Output_reloc()
: local_sym_index_(INVALID_CODE)
{ }
// We have a bunch of different constructors. They come in pairs
// depending on how the address of the relocation is specified. It
// can either be an offset in an Output_data or an offset in an
// input section.
// A reloc against a global symbol.
Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
Address address, bool is_relative, bool is_symbolless);
Output_reloc(Symbol* gsym, unsigned int type,
Sized_relobj<size, big_endian>* relobj,
unsigned int shndx, Address address, bool is_relative,
bool is_symbolless);
// A reloc against a local symbol or local section symbol.
Output_reloc(Sized_relobj<size, big_endian>* relobj,
unsigned int local_sym_index, unsigned int type,
Output_data* od, Address address, bool is_relative,
bool is_symbolless, bool is_section_symbol);
Output_reloc(Sized_relobj<size, big_endian>* relobj,
unsigned int local_sym_index, unsigned int type,
unsigned int shndx, Address address, bool is_relative,
bool is_symbolless, bool is_section_symbol);
// A reloc against the STT_SECTION symbol of an output section.
Output_reloc(Output_section* os, unsigned int type, Output_data* od,
Address address);
Output_reloc(Output_section* os, unsigned int type,
Sized_relobj<size, big_endian>* relobj,
unsigned int shndx, Address address);
// An absolute relocation with no symbol.
Output_reloc(unsigned int type, Output_data* od, Address address);
Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
unsigned int shndx, Address address);
// A target specific relocation. The target will be called to get
// the symbol index, passing ARG. The type and offset will be set
// as for other relocation types.
Output_reloc(unsigned int type, void* arg, Output_data* od,
Address address);
Output_reloc(unsigned int type, void* arg,
Sized_relobj<size, big_endian>* relobj,
unsigned int shndx, Address address);
// Return the reloc type.
unsigned int
type() const
{ return this->type_; }
// Return whether this is a RELATIVE relocation.
bool
is_relative() const
{ return this->is_relative_; }
// Return whether this is a relocation which should not use
// a symbol, but which obtains its addend from a symbol.
bool
is_symbolless() const
{ return this->is_symbolless_; }
// Return whether this is against a local section symbol.
bool
is_local_section_symbol() const
{
return (this->local_sym_index_ != GSYM_CODE
&& this->local_sym_index_ != SECTION_CODE
&& this->local_sym_index_ != INVALID_CODE
&& this->local_sym_index_ != TARGET_CODE
&& this->is_section_symbol_);
}
// Return whether this is a target specific relocation.
bool
is_target_specific() const
{ return this->local_sym_index_ == TARGET_CODE; }
// Return the argument to pass to the target for a target specific
// relocation.
void*
target_arg() const
{
gold_assert(this->local_sym_index_ == TARGET_CODE);
return this->u1_.arg;
}
// For a local section symbol, return the offset of the input
// section within the output section. ADDEND is the addend being
// applied to the input section.
Address
local_section_offset(Addend addend) const;
// Get the value of the symbol referred to by a Rel relocation when
// we are adding the given ADDEND.
Address
symbol_value(Addend addend) const;
// Write the reloc entry to an output view.
void
write(unsigned char* pov) const;
// Write the offset and info fields to Write_rel.
template<typename Write_rel>
void write_rel(Write_rel*) const;
// This is used when sorting dynamic relocs. Return -1 to sort this
// reloc before R2, 0 to sort the same as R2, 1 to sort after R2.
int
compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
const;
// Return whether this reloc should be sorted before the argument
// when sorting dynamic relocs.
bool
sort_before(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>&
r2) const
{ return this->compare(r2) < 0; }
private:
// Record that we need a dynamic symbol index.
void
set_needs_dynsym_index();
// Return the symbol index.
unsigned int
get_symbol_index() const;
// Return the output address.
Address
get_address() const;
// Codes for local_sym_index_.
enum
{
// Global symbol.
GSYM_CODE = -1U,
// Output section.
SECTION_CODE = -2U,
// Target specific.
TARGET_CODE = -3U,
// Invalid uninitialized entry.
INVALID_CODE = -4U
};
union
{
// For a local symbol or local section symbol
// (this->local_sym_index_ >= 0), the object. We will never
// generate a relocation against a local symbol in a dynamic
// object; that doesn't make sense. And our callers will always
// be templatized, so we use Sized_relobj here.
Sized_relobj<size, big_endian>* relobj;
// For a global symbol (this->local_sym_index_ == GSYM_CODE, the
// symbol. If this is NULL, it indicates a relocation against the
// undefined 0 symbol.
Symbol* gsym;
// For a relocation against an output section
// (this->local_sym_index_ == SECTION_CODE), the output section.
Output_section* os;
// For a target specific relocation, an argument to pass to the
// target.
void* arg;
} u1_;
union
{
// If this->shndx_ is not INVALID CODE, the object which holds the
// input section being used to specify the reloc address.
Sized_relobj<size, big_endian>* relobj;
// If this->shndx_ is INVALID_CODE, the output data being used to
// specify the reloc address. This may be NULL if the reloc
// address is absolute.
Output_data* od;
} u2_;
// The address offset within the input section or the Output_data.
Address address_;
// This is GSYM_CODE for a global symbol, or SECTION_CODE for a
// relocation against an output section, or TARGET_CODE for a target
// specific relocation, or INVALID_CODE for an uninitialized value.
// Otherwise, for a local symbol (this->is_section_symbol_ is
// false), the local symbol index. For a local section symbol
// (this->is_section_symbol_ is true), the section index in the
// input file.
unsigned int local_sym_index_;
// The reloc type--a processor specific code.
unsigned int type_ : 29;
// True if the relocation is a RELATIVE relocation.
bool is_relative_ : 1;
// True if the relocation is one which should not use
// a symbol, but which obtains its addend from a symbol.
bool is_symbolless_ : 1;
// True if the relocation is against a section symbol.
bool is_section_symbol_ : 1;
// If the reloc address is an input section in an object, the
// section index. This is INVALID_CODE if the reloc address is
// specified in some other way.
unsigned int shndx_;
};
// The SHT_RELA version of Output_reloc<>. This is just derived from
// the SHT_REL version of Output_reloc, but it adds an addend.
template<bool dynamic, int size, bool big_endian>
class Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
{
public:
typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
// An uninitialized entry.
Output_reloc()
: rel_()
{ }
// A reloc against a global symbol.
Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
Address address, Addend addend, bool is_relative,
bool is_symbolless)
: rel_(gsym, type, od, address, is_relative, is_symbolless),
addend_(addend)
{ }
Output_reloc(Symbol* gsym, unsigned int type,
Sized_relobj<size, big_endian>* relobj,
unsigned int shndx, Address address, Addend addend,
bool is_relative, bool is_symbolless)
: rel_(gsym, type, relobj, shndx, address, is_relative,
is_symbolless), addend_(addend)
{ }
// A reloc against a local symbol.
Output_reloc(Sized_relobj<size, big_endian>* relobj,
unsigned int local_sym_index, unsigned int type,
Output_data* od, Address address,
Addend addend, bool is_relative,
bool is_symbolless, bool is_section_symbol)
: rel_(relobj, local_sym_index, type, od, address, is_relative,
is_symbolless, is_section_symbol),
addend_(addend)
{ }
Output_reloc(Sized_relobj<size, big_endian>* relobj,
unsigned int local_sym_index, unsigned int type,
unsigned int shndx, Address address,
Addend addend, bool is_relative,
bool is_symbolless, bool is_section_symbol)
: rel_(relobj, local_sym_index, type, shndx, address, is_relative,
is_symbolless, is_section_symbol),
addend_(addend)
{ }
// A reloc against the STT_SECTION symbol of an output section.
Output_reloc(Output_section* os, unsigned int type, Output_data* od,
Address address, Addend addend)
: rel_(os, type, od, address), addend_(addend)
{ }
Output_reloc(Output_section* os, unsigned int type,
Sized_relobj<size, big_endian>* relobj,
unsigned int shndx, Address address, Addend addend)
: rel_(os, type, relobj, shndx, address), addend_(addend)
{ }
// An absolute relocation with no symbol.
Output_reloc(unsigned int type, Output_data* od, Address address,
Addend addend)
: rel_(type, od, address), addend_(addend)
{ }
Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
unsigned int shndx, Address address, Addend addend)
: rel_(type, relobj, shndx, address), addend_(addend)
{ }
// A target specific relocation. The target will be called to get
// the symbol index and the addend, passing ARG. The type and
// offset will be set as for other relocation types.
Output_reloc(unsigned int type, void* arg, Output_data* od,
Address address, Addend addend)
: rel_(type, arg, od, address), addend_(addend)
{ }
Output_reloc(unsigned int type, void* arg,
Sized_relobj<size, big_endian>* relobj,
unsigned int shndx, Address address, Addend addend)
: rel_(type, arg, relobj, shndx, address), addend_(addend)
{ }
// Return whether this is a RELATIVE relocation.
bool
is_relative() const
{ return this->rel_.is_relative(); }
// Return whether this is a relocation which should not use
// a symbol, but which obtains its addend from a symbol.
bool
is_symbolless() const
{ return this->rel_.is_symbolless(); }
// Write the reloc entry to an output view.
void
write(unsigned char* pov) const;
// Return whether this reloc should be sorted before the argument
// when sorting dynamic relocs.
bool
sort_before(const Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>&
r2) const
{
int i = this->rel_.compare(r2.rel_);
if (i < 0)
return true;
else if (i > 0)
return false;
else
return this->addend_ < r2.addend_;
}
private:
// The basic reloc.
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> rel_;
// The addend.
Addend addend_;
};
// Output_data_reloc_generic is a non-template base class for
// Output_data_reloc_base. This gives the generic code a way to hold
// a pointer to a reloc section.
class Output_data_reloc_generic : public Output_section_data_build
{
public:
Output_data_reloc_generic(int size, bool sort_relocs)
: Output_section_data_build(Output_data::default_alignment_for_size(size)),
relative_reloc_count_(0), sort_relocs_(sort_relocs)
{ }
// Return the number of relative relocs in this section.
size_t
relative_reloc_count() const
{ return this->relative_reloc_count_; }
// Whether we should sort the relocs.
bool
sort_relocs() const
{ return this->sort_relocs_; }
protected:
// Note that we've added another relative reloc.
void
bump_relative_reloc_count()
{ ++this->relative_reloc_count_; }
private:
// The number of relative relocs added to this section. This is to
// support DT_RELCOUNT.
size_t relative_reloc_count_;
// Whether to sort the relocations when writing them out, to make
// the dynamic linker more efficient.
bool sort_relocs_;
};
// Output_data_reloc is used to manage a section containing relocs.
// SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA. DYNAMIC
// indicates whether this is a dynamic relocation or a normal
// relocation. Output_data_reloc_base is a base class.
// Output_data_reloc is the real class, which we specialize based on
// the reloc type.
template<int sh_type, bool dynamic, int size, bool big_endian>
class Output_data_reloc_base : public Output_data_reloc_generic
{
public:
typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
typedef typename Output_reloc_type::Address Address;
static const int reloc_size =
Reloc_types<sh_type, size, big_endian>::reloc_size;
// Construct the section.
Output_data_reloc_base(bool sort_relocs)
: Output_data_reloc_generic(size, sort_relocs)
{ }
protected:
// Write out the data.
void
do_write(Output_file*);
// Set the entry size and the link.
void
do_adjust_output_section(Output_section *os);
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{
mapfile->print_output_data(this,
(dynamic
? _("** dynamic relocs")
: _("** relocs")));
}
// Add a relocation entry.
void
add(Output_data *od, const Output_reloc_type& reloc)
{
this->relocs_.push_back(reloc);
this->set_current_data_size(this->relocs_.size() * reloc_size);
od->add_dynamic_reloc();
if (reloc.is_relative())
this->bump_relative_reloc_count();
}
private:
typedef std::vector<Output_reloc_type> Relocs;
// The class used to sort the relocations.
struct Sort_relocs_comparison
{
bool
operator()(const Output_reloc_type& r1, const Output_reloc_type& r2) const
{ return r1.sort_before(r2); }
};
// The relocations in this section.
Relocs relocs_;
};
// The class which callers actually create.
template<int sh_type, bool dynamic, int size, bool big_endian>
class Output_data_reloc;
// The SHT_REL version of Output_data_reloc.
template<bool dynamic, int size, bool big_endian>
class Output_data_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
: public Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>
{
private:
typedef Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size,
big_endian> Base;
public:
typedef typename Base::Output_reloc_type Output_reloc_type;
typedef typename Output_reloc_type::Address Address;
Output_data_reloc(bool sr)
: Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>(sr)
{ }
// Add a reloc against a global symbol.
void
add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address)
{ this->add(od, Output_reloc_type(gsym, type, od, address, false, false)); }
void
add_global(Symbol* gsym, unsigned int type, Output_data* od,
Sized_relobj<size, big_endian>* relobj,
unsigned int shndx, Address address)
{ this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
false, false)); }
// These are to simplify the Copy_relocs class.
void
add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address,
Address addend)
{
gold_assert(addend == 0);
this->add_global(gsym, type, od, address);
}
void
add_global(Symbol* gsym, unsigned int type, Output_data* od,
Sized_relobj<size, big_endian>* relobj,
unsigned int shndx, Address address, Address addend)
{
gold_assert(addend == 0);
this->add_global(gsym, type, od, relobj, shndx, address);
}
// Add a RELATIVE reloc against a global symbol. The final relocation
// will not reference the symbol.
void
add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
Address address)
{ this->add(od, Output_reloc_type(gsym, type, od, address, true, true)); }
void
add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
Sized_relobj<size, big_endian>* relobj,
unsigned int shndx, Address address)
{
this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
true, true));
}
// Add a global relocation which does not use a symbol for the relocation,
// but which gets its addend from a symbol.
void
add_symbolless_global_addend(Symbol* gsym, unsigned int type,
Output_data* od, Address address)
{ this->add(od, Output_reloc_type(gsym, type, od, address, false, true)); }
void
add_symbolless_global_addend(Symbol* gsym, unsigned int type,
Output_data* od,
Sized_relobj<size, big_endian>* relobj,
unsigned int shndx, Address address)
{
this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
false, true));
}
// Add a reloc against a local symbol.
void
add_local(Sized_relobj<size, big_endian>* relobj,
unsigned int local_sym_index, unsigned int type,
Output_data* od, Address address)
{
this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
address, false, false, false));
}
void
add_local(Sized_relobj<size, big_endian>* relobj,
unsigned int local_sym_index, unsigned int type,
Output_data* od, unsigned int shndx, Address address)
{
this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
address, false, false, false));
}
// Add a RELATIVE reloc against a local symbol.
void
add_local_relative(Sized_relobj<size, big_endian>* relobj,
unsigned int local_sym_index, unsigned int type,
Output_data* od, Address address)
{
this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
address, true, true, false));
}
void
add_local_relative(Sized_relobj<size, big_endian>* relobj,
unsigned int local_sym_index, unsigned int type,
Output_data* od, unsigned int shndx, Address address)
{
this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
address, true, true, false));
}
// Add a local relocation which does not use a symbol for the relocation,
// but which gets its addend from a symbol.
void
add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
unsigned int local_sym_index, unsigned int type,
Output_data* od, Address address)
{
this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
address, false, true, false));
}
void
add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
unsigned int local_sym_index, unsigned int type,
Output_data* od, unsigned int shndx,
Address address)
{
this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
address, false, true, false));
}
// Add a reloc against a local section symbol. This will be
// converted into a reloc against the STT_SECTION symbol of the
// output section.
void
add_local_section(Sized_relobj<size, big_endian>* relobj,
unsigned int input_shndx, unsigned int type,
Output_data* od, Address address)
{
this->add(od, Output_reloc_type(relobj, input_shndx, type, od,
address, false, false, true));
}
void
add_local_section(Sized_relobj<size, big_endian>* relobj,
unsigned int input_shndx, unsigned int type,
Output_data* od, unsigned int shndx, Address address)
{
this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
address, false, false, true));
}
// A reloc against the STT_SECTION symbol of an output section.
// OS is the Output_section that the relocation refers to; OD is
// the Output_data object being relocated.
void
add_output_section(Output_section* os, unsigned int type,
Output_data* od, Address address)
{ this->add(od, Output_reloc_type(os, type, od, address)); }
void
add_output_section(Output_section* os, unsigned int type, Output_data* od,
Sized_relobj<size, big_endian>* relobj,
unsigned int shndx, Address address)
{ this->add(od, Output_reloc_type(os, type, relobj, shndx, address)); }
// Add an absolute relocation.
void
add_absolute(unsigned int type, Output_data* od, Address address)
{ this->add(od, Output_reloc_type(type, od, address)); }
void
add_absolute(unsigned int type, Output_data* od,
Sized_relobj<size, big_endian>* relobj,
unsigned int shndx, Address address)
{ this->add(od, Output_reloc_type(type, relobj, shndx, address)); }
// Add a target specific relocation. A target which calls this must
// define the reloc_symbol_index and reloc_addend virtual functions.
void
add_target_specific(unsigned int type, void* arg, Output_data* od,
Address address)
{ this->add(od, Output_reloc_type(type, arg, od, address)); }
void
add_target_specific(unsigned int type, void* arg, Output_data* od,
Sized_relobj<size, big_endian>* relobj,
unsigned int shndx, Address address)
{ this->add(od, Output_reloc_type(type, arg, relobj, shndx, address)); }
};
// The SHT_RELA version of Output_data_reloc.
template<bool dynamic, int size, bool big_endian>
class Output_data_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
: public Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>
{
private:
typedef Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size,
big_endian> Base;
public:
typedef typename Base::Output_reloc_type Output_reloc_type;
typedef typename Output_reloc_type::Address Address;
typedef typename Output_reloc_type::Addend Addend;
Output_data_reloc(bool sr)
: Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>(sr)
{ }
// Add a reloc against a global symbol.
void
add_global(Symbol* gsym, unsigned int type, Output_data* od,
Address address, Addend addend)
{ this->add(od, Output_reloc_type(gsym, type, od, address, addend,
false, false)); }
void
add_global(Symbol* gsym, unsigned int type, Output_data* od,
Sized_relobj<size, big_endian>* relobj,
unsigned int shndx, Address address,
Addend addend)
{ this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
addend, false, false)); }
// Add a RELATIVE reloc against a global symbol. The final output
// relocation will not reference the symbol, but we must keep the symbol
// information long enough to set the addend of the relocation correctly
// when it is written.
void
add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
Address address, Addend addend)
{ this->add(od, Output_reloc_type(gsym, type, od, address, addend, true,
true)); }
void
add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
Sized_relobj<size, big_endian>* relobj,
unsigned int shndx, Address address, Addend addend)
{ this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
addend, true, true)); }
// Add a global relocation which does not use a symbol for the relocation,
// but which gets its addend from a symbol.
void
add_symbolless_global_addend(Symbol* gsym, unsigned int type, Output_data* od,
Address address, Addend addend)
{ this->add(od, Output_reloc_type(gsym, type, od, address, addend,
false, true)); }
void
add_symbolless_global_addend(Symbol* gsym, unsigned int type,
Output_data* od,
Sized_relobj<size, big_endian>* relobj,
unsigned int shndx, Address address, Addend addend)
{ this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
addend, false, true)); }
// Add a reloc against a local symbol.
void
add_local(Sized_relobj<size, big_endian>* relobj,
unsigned int local_sym_index, unsigned int type,
Output_data* od, Address address, Addend addend)
{
this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
addend, false, false, false));
}
void
add_local(Sized_relobj<size, big_endian>* relobj,
unsigned int local_sym_index, unsigned int type,
Output_data* od, unsigned int shndx, Address address,
Addend addend)
{
this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
address, addend, false, false, false));
}
// Add a RELATIVE reloc against a local symbol.
void
add_local_relative(Sized_relobj<size, big_endian>* relobj,
unsigned int local_sym_index, unsigned int type,
Output_data* od, Address address, Addend addend)
{
this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
addend, true, true, false));
}
void
add_local_relative(Sized_relobj<size, big_endian>* relobj,
unsigned int local_sym_index, unsigned int type,
Output_data* od, unsigned int shndx, Address address,
Addend addend)
{
this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
address, addend, true, true, false));
}
// Add a local relocation which does not use a symbol for the relocation,
// but which gets it's addend from a symbol.
void
add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
unsigned int local_sym_index, unsigned int type,
Output_data* od, Address address, Addend addend)
{
this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
addend, false, true, false));
}
void
add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
unsigned int local_sym_index, unsigned int type,
Output_data* od, unsigned int shndx,
Address address, Addend addend)
{
this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
address, addend, false, true, false));
}
// Add a reloc against a local section symbol. This will be
// converted into a reloc against the STT_SECTION symbol of the
// output section.
void
add_local_section(Sized_relobj<size, big_endian>* relobj,
unsigned int input_shndx, unsigned int type,
Output_data* od, Address address, Addend addend)
{
this->add(od, Output_reloc_type(relobj, input_shndx, type, od, address,
addend, false, false, true));
}
void
add_local_section(Sized_relobj<size, big_endian>* relobj,
unsigned int input_shndx, unsigned int type,
Output_data* od, unsigned int shndx, Address address,
Addend addend)
{
this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
address, addend, false, false, true));
}
// A reloc against the STT_SECTION symbol of an output section.
void
add_output_section(Output_section* os, unsigned int type, Output_data* od,
Address address, Addend addend)
{ this->add(os, Output_reloc_type(os, type, od, address, addend)); }
void
add_output_section(Output_section* os, unsigned int type,
Sized_relobj<size, big_endian>* relobj,
unsigned int shndx, Address address, Addend addend)
{ this->add(os, Output_reloc_type(os, type, relobj, shndx, address,
addend)); }
// Add an absolute relocation.
void
add_absolute(unsigned int type, Output_data* od, Address address,
Addend addend)
{ this->add(od, Output_reloc_type(type, od, address, addend)); }
void
add_absolute(unsigned int type, Output_data* od,
Sized_relobj<size, big_endian>* relobj,
unsigned int shndx, Address address, Addend addend)
{ this->add(od, Output_reloc_type(type, relobj, shndx, address, addend)); }
// Add a target specific relocation. A target which calls this must
// define the reloc_symbol_index and reloc_addend virtual functions.
void
add_target_specific(unsigned int type, void* arg, Output_data* od,
Address address, Addend addend)
{ this->add(od, Output_reloc_type(type, arg, od, address, addend)); }
void
add_target_specific(unsigned int type, void* arg, Output_data* od,
Sized_relobj<size, big_endian>* relobj,
unsigned int shndx, Address address, Addend addend)
{
this->add(od, Output_reloc_type(type, arg, relobj, shndx, address,
addend));
}
};
// Output_relocatable_relocs represents a relocation section in a
// relocatable link. The actual data is written out in the target
// hook relocate_for_relocatable. This just saves space for it.
template<int sh_type, int size, bool big_endian>
class Output_relocatable_relocs : public Output_section_data
{
public:
Output_relocatable_relocs(Relocatable_relocs* rr)
: Output_section_data(Output_data::default_alignment_for_size(size)),
rr_(rr)
{ }
void
set_final_data_size();
// Write out the data. There is nothing to do here.
void
do_write(Output_file*)
{ }
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{ mapfile->print_output_data(this, _("** relocs")); }
private:
// The relocs associated with this input section.
Relocatable_relocs* rr_;
};
// Handle a GROUP section.
template<int size, bool big_endian>
class Output_data_group : public Output_section_data
{
public:
// The constructor clears *INPUT_SHNDXES.
Output_data_group(Sized_relobj<size, big_endian>* relobj,
section_size_type entry_count,
elfcpp::Elf_Word flags,
std::vector<unsigned int>* input_shndxes);
void
do_write(Output_file*);
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{ mapfile->print_output_data(this, _("** group")); }
// Set final data size.
void
set_final_data_size()
{ this->set_data_size((this->input_shndxes_.size() + 1) * 4); }
private:
// The input object.
Sized_relobj<size, big_endian>* relobj_;
// The group flag word.
elfcpp::Elf_Word flags_;
// The section indexes of the input sections in this group.
std::vector<unsigned int> input_shndxes_;
};
// Output_data_got is used to manage a GOT. Each entry in the GOT is
// for one symbol--either a global symbol or a local symbol in an
// object. The target specific code adds entries to the GOT as
// needed.
template<int size, bool big_endian>
class Output_data_got : public Output_section_data_build
{
public:
typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian> Rel_dyn;
typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
Output_data_got()
: Output_section_data_build(Output_data::default_alignment_for_size(size)),
entries_()
{ }
// Add an entry for a global symbol to the GOT. Return true if this
// is a new GOT entry, false if the symbol was already in the GOT.
bool
add_global(Symbol* gsym, unsigned int got_type);
// Add an entry for a global symbol to the GOT, and add a dynamic
// relocation of type R_TYPE for the GOT entry.
void
add_global_with_rel(Symbol* gsym, unsigned int got_type,
Rel_dyn* rel_dyn, unsigned int r_type);
void
add_global_with_rela(Symbol* gsym, unsigned int got_type,
Rela_dyn* rela_dyn, unsigned int r_type);
// Add a pair of entries for a global symbol to the GOT, and add
// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
void
add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
Rel_dyn* rel_dyn, unsigned int r_type_1,
unsigned int r_type_2);
void
add_global_pair_with_rela(Symbol* gsym, unsigned int got_type,
Rela_dyn* rela_dyn, unsigned int r_type_1,
unsigned int r_type_2);
// Add an entry for a local symbol to the GOT. This returns true if
// this is a new GOT entry, false if the symbol already has a GOT
// entry.
bool
add_local(Sized_relobj<size, big_endian>* object, unsigned int sym_index,
unsigned int got_type);
// Add an entry for a local symbol to the GOT, and add a dynamic
// relocation of type R_TYPE for the GOT entry.
void
add_local_with_rel(Sized_relobj<size, big_endian>* object,
unsigned int sym_index, unsigned int got_type,
Rel_dyn* rel_dyn, unsigned int r_type);
void
add_local_with_rela(Sized_relobj<size, big_endian>* object,
unsigned int sym_index, unsigned int got_type,
Rela_dyn* rela_dyn, unsigned int r_type);
// Add a pair of entries for a local symbol to the GOT, and add
// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
void
add_local_pair_with_rel(Sized_relobj<size, big_endian>* object,
unsigned int sym_index, unsigned int shndx,
unsigned int got_type, Rel_dyn* rel_dyn,
unsigned int r_type_1, unsigned int r_type_2);
void
add_local_pair_with_rela(Sized_relobj<size, big_endian>* object,
unsigned int sym_index, unsigned int shndx,
unsigned int got_type, Rela_dyn* rela_dyn,
unsigned int r_type_1, unsigned int r_type_2);
// Add a constant to the GOT. This returns the offset of the new
// entry from the start of the GOT.
unsigned int
add_constant(Valtype constant)
{
this->entries_.push_back(Got_entry(constant));
this->set_got_size();
return this->last_got_offset();
}
protected:
// Write out the GOT table.
void
do_write(Output_file*);
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{ mapfile->print_output_data(this, _("** GOT")); }
private:
// This POD class holds a single GOT entry.
class Got_entry
{
public:
// Create a zero entry.
Got_entry()
: local_sym_index_(CONSTANT_CODE)
{ this->u_.constant = 0; }
// Create a global symbol entry.
explicit Got_entry(Symbol* gsym)
: local_sym_index_(GSYM_CODE)
{ this->u_.gsym = gsym; }
// Create a local symbol entry.
Got_entry(Sized_relobj<size, big_endian>* object,
unsigned int local_sym_index)
: local_sym_index_(local_sym_index)
{
gold_assert(local_sym_index != GSYM_CODE
&& local_sym_index != CONSTANT_CODE);
this->u_.object = object;
}
// Create a constant entry. The constant is a host value--it will
// be swapped, if necessary, when it is written out.
explicit Got_entry(Valtype constant)
: local_sym_index_(CONSTANT_CODE)
{ this->u_.constant = constant; }
// Write the GOT entry to an output view.
void
write(unsigned char* pov) const;
private:
enum
{
GSYM_CODE = -1U,
CONSTANT_CODE = -2U
};
union
{
// For a local symbol, the object.
Sized_relobj<size, big_endian>* object;
// For a global symbol, the symbol.
Symbol* gsym;
// For a constant, the constant.
Valtype constant;
} u_;
// For a local symbol, the local symbol index. This is GSYM_CODE
// for a global symbol, or CONSTANT_CODE for a constant.
unsigned int local_sym_index_;
};
typedef std::vector<Got_entry> Got_entries;
// Return the offset into the GOT of GOT entry I.
unsigned int
got_offset(unsigned int i) const
{ return i * (size / 8); }
// Return the offset into the GOT of the last entry added.
unsigned int
last_got_offset() const
{ return this->got_offset(this->entries_.size() - 1); }
// Set the size of the section.
void
set_got_size()
{ this->set_current_data_size(this->got_offset(this->entries_.size())); }
// The list of GOT entries.
Got_entries entries_;
};
// Output_data_dynamic is used to hold the data in SHT_DYNAMIC
// section.
class Output_data_dynamic : public Output_section_data
{
public:
Output_data_dynamic(Stringpool* pool)
: Output_section_data(Output_data::default_alignment()),
entries_(), pool_(pool)
{ }
// Add a new dynamic entry with a fixed numeric value.
void
add_constant(elfcpp::DT tag, unsigned int val)
{ this->add_entry(Dynamic_entry(tag, val)); }
// Add a new dynamic entry with the address of output data.
void
add_section_address(elfcpp::DT tag, const Output_data* od)
{ this->add_entry(Dynamic_entry(tag, od, false)); }
// Add a new dynamic entry with the address of output data
// plus a constant offset.
void
add_section_plus_offset(elfcpp::DT tag, const Output_data* od,
unsigned int offset)
{ this->add_entry(Dynamic_entry(tag, od, offset)); }
// Add a new dynamic entry with the size of output data.
void
add_section_size(elfcpp::DT tag, const Output_data* od)
{ this->add_entry(Dynamic_entry(tag, od, true)); }
// Add a new dynamic entry with the total size of two output datas.
void
add_section_size(elfcpp::DT tag, const Output_data* od,
const Output_data* od2)
{ this->add_entry(Dynamic_entry(tag, od, od2)); }
// Add a new dynamic entry with the address of a symbol.
void
add_symbol(elfcpp::DT tag, const Symbol* sym)
{ this->add_entry(Dynamic_entry(tag, sym)); }
// Add a new dynamic entry with a string.
void
add_string(elfcpp::DT tag, const char* str)
{ this->add_entry(Dynamic_entry(tag, this->pool_->add(str, true, NULL))); }
void
add_string(elfcpp::DT tag, const std::string& str)
{ this->add_string(tag, str.c_str()); }
protected:
// Adjust the output section to set the entry size.
void
do_adjust_output_section(Output_section*);
// Set the final data size.
void
set_final_data_size();
// Write out the dynamic entries.
void
do_write(Output_file*);
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{ mapfile->print_output_data(this, _("** dynamic")); }
private:
// This POD class holds a single dynamic entry.
class Dynamic_entry
{
public:
// Create an entry with a fixed numeric value.
Dynamic_entry(elfcpp::DT tag, unsigned int val)
: tag_(tag), offset_(DYNAMIC_NUMBER)
{ this->u_.val = val; }
// Create an entry with the size or address of a section.
Dynamic_entry(elfcpp::DT tag, const Output_data* od, bool section_size)
: tag_(tag),
offset_(section_size
? DYNAMIC_SECTION_SIZE
: DYNAMIC_SECTION_ADDRESS)
{
this->u_.od = od;
this->od2 = NULL;
}
// Create an entry with the size of two sections.
Dynamic_entry(elfcpp::DT tag, const Output_data* od, const Output_data* od2)
: tag_(tag),
offset_(DYNAMIC_SECTION_SIZE)
{
this->u_.od = od;
this->od2 = od2;
}
// Create an entry with the address of a section plus a constant offset.
Dynamic_entry(elfcpp::DT tag, const Output_data* od, unsigned int offset)
: tag_(tag),
offset_(offset)
{ this->u_.od = od; }
// Create an entry with the address of a symbol.
Dynamic_entry(elfcpp::DT tag, const Symbol* sym)
: tag_(tag), offset_(DYNAMIC_SYMBOL)
{ this->u_.sym = sym; }
// Create an entry with a string.
Dynamic_entry(elfcpp::DT tag, const char* str)
: tag_(tag), offset_(DYNAMIC_STRING)
{ this->u_.str = str; }
// Return the tag of this entry.
elfcpp::DT
tag() const
{ return this->tag_; }
// Write the dynamic entry to an output view.
template<int size, bool big_endian>
void
write(unsigned char* pov, const Stringpool*) const;
private:
// Classification is encoded in the OFFSET field.
enum Classification
{
// Section address.
DYNAMIC_SECTION_ADDRESS = 0,
// Number.
DYNAMIC_NUMBER = -1U,
// Section size.
DYNAMIC_SECTION_SIZE = -2U,
// Symbol adress.
DYNAMIC_SYMBOL = -3U,
// String.
DYNAMIC_STRING = -4U
// Any other value indicates a section address plus OFFSET.
};
union
{
// For DYNAMIC_NUMBER.
unsigned int val;
// For DYNAMIC_SECTION_SIZE and section address plus OFFSET.
const Output_data* od;
// For DYNAMIC_SYMBOL.
const Symbol* sym;
// For DYNAMIC_STRING.
const char* str;
} u_;
// For DYNAMIC_SYMBOL with two sections.
const Output_data* od2;
// The dynamic tag.
elfcpp::DT tag_;
// The type of entry (Classification) or offset within a section.
unsigned int offset_;
};
// Add an entry to the list.
void
add_entry(const Dynamic_entry& entry)
{ this->entries_.push_back(entry); }
// Sized version of write function.
template<int size, bool big_endian>
void
sized_write(Output_file* of);
// The type of the list of entries.
typedef std::vector<Dynamic_entry> Dynamic_entries;
// The entries.
Dynamic_entries entries_;
// The pool used for strings.
Stringpool* pool_;
};
// Output_symtab_xindex is used to handle SHT_SYMTAB_SHNDX sections,
// which may be required if the object file has more than
// SHN_LORESERVE sections.
class Output_symtab_xindex : public Output_section_data
{
public:
Output_symtab_xindex(size_t symcount)
: Output_section_data(symcount * 4, 4, true),
entries_()
{ }
// Add an entry: symbol number SYMNDX has section SHNDX.
void
add(unsigned int symndx, unsigned int shndx)
{ this->entries_.push_back(std::make_pair(symndx, shndx)); }
protected:
void
do_write(Output_file*);
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{ mapfile->print_output_data(this, _("** symtab xindex")); }
private:
template<bool big_endian>
void
endian_do_write(unsigned char*);
// It is likely that most symbols will not require entries. Rather
// than keep a vector for all symbols, we keep pairs of symbol index
// and section index.
typedef std::vector<std::pair<unsigned int, unsigned int> > Xindex_entries;
// The entries we need.
Xindex_entries entries_;
};
// A relaxed input section.
class Output_relaxed_input_section : public Output_section_data_build
{
public:
// We would like to call relobj->section_addralign(shndx) to get the
// alignment but we do not want the constructor to fail. So callers
// are repsonsible for ensuring that.
Output_relaxed_input_section(Relobj* relobj, unsigned int shndx,
uint64_t addralign)
: Output_section_data_build(addralign), relobj_(relobj), shndx_(shndx)
{ }
// Return the Relobj of this relaxed input section.
Relobj*
relobj() const
{ return this->relobj_; }
// Return the section index of this relaxed input section.
unsigned int
shndx() const
{ return this->shndx_; }
private:
Relobj* relobj_;
unsigned int shndx_;
};
// This class describes properties of merge data sections. It is used
// as a key type for maps.
class Merge_section_properties
{
public:
Merge_section_properties(bool is_string, uint64_t entsize,
uint64_t addralign)
: is_string_(is_string), entsize_(entsize), addralign_(addralign)
{ }
// Whether this equals to another Merge_section_properties MSP.
bool
eq(const Merge_section_properties& msp) const
{
return ((this->is_string_ == msp.is_string_)
&& (this->entsize_ == msp.entsize_)
&& (this->addralign_ == msp.addralign_));
}
// Compute a hash value for this using 64-bit FNV-1a hash.
size_t
hash_value() const
{
uint64_t h = 14695981039346656037ULL; // FNV offset basis.
uint64_t prime = 1099511628211ULL;
h = (h ^ static_cast<uint64_t>(this->is_string_)) * prime;
h = (h ^ static_cast<uint64_t>(this->entsize_)) * prime;
h = (h ^ static_cast<uint64_t>(this->addralign_)) * prime;
return h;
}
// Functors for associative containers.
struct equal_to
{
bool
operator()(const Merge_section_properties& msp1,
const Merge_section_properties& msp2) const
{ return msp1.eq(msp2); }
};
struct hash
{
size_t
operator()(const Merge_section_properties& msp) const
{ return msp.hash_value(); }
};
private:
// Whether this merge data section is for strings.
bool is_string_;
// Entsize of this merge data section.
uint64_t entsize_;
// Address alignment.
uint64_t addralign_;
};
// This class is used to speed up look up of special input sections in an
// Output_section.
class Output_section_lookup_maps
{
public:
Output_section_lookup_maps()
: is_valid_(true), merge_sections_by_properties_(),
merge_sections_by_id_(), relaxed_input_sections_by_id_()
{ }
// Whether the maps are valid.
bool
is_valid() const
{ return this->is_valid_; }
// Invalidate the maps.
void
invalidate()
{ this->is_valid_ = false; }
// Clear the maps.
void
clear()
{
this->merge_sections_by_properties_.clear();
this->merge_sections_by_id_.clear();
this->relaxed_input_sections_by_id_.clear();
// A cleared map is valid.
this->is_valid_ = true;
}
// Find a merge section by merge section properties. Return NULL if none
// is found.
Output_merge_base*
find_merge_section(const Merge_section_properties& msp) const
{
gold_assert(this->is_valid_);
Merge_sections_by_properties::const_iterator p =
this->merge_sections_by_properties_.find(msp);
return p != this->merge_sections_by_properties_.end() ? p->second : NULL;
}
// Find a merge section by section ID of a merge input section. Return NULL
// if none is found.
Output_merge_base*
find_merge_section(const Object* object, unsigned int shndx) const
{
gold_assert(this->is_valid_);
Merge_sections_by_id::const_iterator p =
this->merge_sections_by_id_.find(Const_section_id(object, shndx));
return p != this->merge_sections_by_id_.end() ? p->second : NULL;
}
// Add a merge section pointed by POMB with properties MSP.
void
add_merge_section(const Merge_section_properties& msp,
Output_merge_base* pomb)
{
std::pair<Merge_section_properties, Output_merge_base*> value(msp, pomb);
std::pair<Merge_sections_by_properties::iterator, bool> result =
this->merge_sections_by_properties_.insert(value);
gold_assert(result.second);
}
// Add a mapping from a merged input section in OBJECT with index SHNDX
// to a merge output section pointed by POMB.
void
add_merge_input_section(const Object* object, unsigned int shndx,
Output_merge_base* pomb)
{
Const_section_id csid(object, shndx);
std::pair<Const_section_id, Output_merge_base*> value(csid, pomb);
std::pair<Merge_sections_by_id::iterator, bool> result =
this->merge_sections_by_id_.insert(value);
gold_assert(result.second);
}
// Find a relaxed input section of OBJECT with index SHNDX.
Output_relaxed_input_section*
find_relaxed_input_section(const Object* object, unsigned int shndx) const
{
gold_assert(this->is_valid_);
Relaxed_input_sections_by_id::const_iterator p =
this->relaxed_input_sections_by_id_.find(Const_section_id(object, shndx));
return p != this->relaxed_input_sections_by_id_.end() ? p->second : NULL;
}
// Add a relaxed input section pointed by POMB and whose original input
// section is in OBJECT with index SHNDX.
void
add_relaxed_input_section(const Relobj* relobj, unsigned int shndx,
Output_relaxed_input_section* poris)
{
Const_section_id csid(relobj, shndx);
std::pair<Const_section_id, Output_relaxed_input_section*>
value(csid, poris);
std::pair<Relaxed_input_sections_by_id::iterator, bool> result =
this->relaxed_input_sections_by_id_.insert(value);
gold_assert(result.second);
}
private:
typedef Unordered_map<Const_section_id, Output_merge_base*,
Const_section_id_hash>
Merge_sections_by_id;
typedef Unordered_map<Merge_section_properties, Output_merge_base*,
Merge_section_properties::hash,
Merge_section_properties::equal_to>
Merge_sections_by_properties;
typedef Unordered_map<Const_section_id, Output_relaxed_input_section*,
Const_section_id_hash>
Relaxed_input_sections_by_id;
// Whether this is valid
bool is_valid_;
// Merge sections by merge section properties.
Merge_sections_by_properties merge_sections_by_properties_;
// Merge sections by section IDs.
Merge_sections_by_id merge_sections_by_id_;
// Relaxed sections by section IDs.
Relaxed_input_sections_by_id relaxed_input_sections_by_id_;
};
// An output section. We don't expect to have too many output
// sections, so we don't bother to do a template on the size.
class Output_section : public Output_data
{
public:
// Create an output section, giving the name, type, and flags.
Output_section(const char* name, elfcpp::Elf_Word, elfcpp::Elf_Xword);
virtual ~Output_section();
// Add a new input section SHNDX, named NAME, with header SHDR, from
// object OBJECT. RELOC_SHNDX is the index of a relocation section
// which applies to this section, or 0 if none, or -1 if more than
// one. HAVE_SECTIONS_SCRIPT is true if we have a SECTIONS clause
// in a linker script; in that case we need to keep track of input
// sections associated with an output section. Return the offset
// within the output section.
template<int size, bool big_endian>
off_t
add_input_section(Layout* layout, Sized_relobj<size, big_endian>* object,
unsigned int shndx, const char *name,
const elfcpp::Shdr<size, big_endian>& shdr,
unsigned int reloc_shndx, bool have_sections_script);
// Add generated data POSD to this output section.
void
add_output_section_data(Output_section_data* posd);
// Add a relaxed input section PORIS to this output section.
void
add_relaxed_input_section(Output_relaxed_input_section* poris);
// Return the section name.
const char*
name() const
{ return this->name_; }
// Return the section type.
elfcpp::Elf_Word
type() const
{ return this->type_; }
// Return the section flags.
elfcpp::Elf_Xword
flags() const
{ return this->flags_; }
// Update the output section flags based on input section flags.
void
update_flags_for_input_section(elfcpp::Elf_Xword flags);
// Return the entsize field.
uint64_t
entsize() const
{ return this->entsize_; }
// Set the entsize field.
void
set_entsize(uint64_t v);
// Set the load address.
void
set_load_address(uint64_t load_address)
{
this->load_address_ = load_address;
this->has_load_address_ = true;
}
// Set the link field to the output section index of a section.
void
set_link_section(const Output_data* od)
{
gold_assert(this->link_ == 0
&& !this->should_link_to_symtab_
&& !this->should_link_to_dynsym_);
this->link_section_ = od;
}
// Set the link field to a constant.
void
set_link(unsigned int v)
{
gold_assert(this->link_section_ == NULL
&& !this->should_link_to_symtab_
&& !this->should_link_to_dynsym_);
this->link_ = v;
}
// Record that this section should link to the normal symbol table.
void
set_should_link_to_symtab()
{
gold_assert(this->link_section_ == NULL
&& this->link_ == 0
&& !this->should_link_to_dynsym_);
this->should_link_to_symtab_ = true;
}
// Record that this section should link to the dynamic symbol table.
void
set_should_link_to_dynsym()
{
gold_assert(this->link_section_ == NULL
&& this->link_ == 0
&& !this->should_link_to_symtab_);
this->should_link_to_dynsym_ = true;
}
// Return the info field.
unsigned int
info() const
{
gold_assert(this->info_section_ == NULL
&& this->info_symndx_ == NULL);
return this->info_;
}
// Set the info field to the output section index of a section.
void
set_info_section(const Output_section* os)
{
gold_assert((this->info_section_ == NULL
|| (this->info_section_ == os
&& this->info_uses_section_index_))
&& this->info_symndx_ == NULL
&& this->info_ == 0);
this->info_section_ = os;
this->info_uses_section_index_= true;
}
// Set the info field to the symbol table index of a symbol.
void
set_info_symndx(const Symbol* sym)
{
gold_assert(this->info_section_ == NULL
&& (this->info_symndx_ == NULL
|| this->info_symndx_ == sym)
&& this->info_ == 0);
this->info_symndx_ = sym;
}
// Set the info field to the symbol table index of a section symbol.
void
set_info_section_symndx(const Output_section* os)
{
gold_assert((this->info_section_ == NULL
|| (this->info_section_ == os
&& !this->info_uses_section_index_))
&& this->info_symndx_ == NULL
&& this->info_ == 0);
this->info_section_ = os;
this->info_uses_section_index_ = false;
}
// Set the info field to a constant.
void
set_info(unsigned int v)
{
gold_assert(this->info_section_ == NULL
&& this->info_symndx_ == NULL
&& (this->info_ == 0
|| this->info_ == v));
this->info_ = v;
}
// Set the addralign field.
void
set_addralign(uint64_t v)
{ this->addralign_ = v; }
// Whether the output section index has been set.
bool
has_out_shndx() const
{ return this->out_shndx_ != -1U; }
// Indicate that we need a symtab index.
void
set_needs_symtab_index()
{ this->needs_symtab_index_ = true; }
// Return whether we need a symtab index.
bool
needs_symtab_index() const
{ return this->needs_symtab_index_; }
// Get the symtab index.
unsigned int
symtab_index() const
{
gold_assert(this->symtab_index_ != 0);
return this->symtab_index_;
}
// Set the symtab index.
void
set_symtab_index(unsigned int index)
{
gold_assert(index != 0);
this->symtab_index_ = index;
}
// Indicate that we need a dynsym index.
void
set_needs_dynsym_index()
{ this->needs_dynsym_index_ = true; }
// Return whether we need a dynsym index.
bool
needs_dynsym_index() const
{ return this->needs_dynsym_index_; }
// Get the dynsym index.
unsigned int
dynsym_index() const
{
gold_assert(this->dynsym_index_ != 0);
return this->dynsym_index_;
}
// Set the dynsym index.
void
set_dynsym_index(unsigned int index)
{
gold_assert(index != 0);
this->dynsym_index_ = index;
}
// Return whether the input sections sections attachd to this output
// section may require sorting. This is used to handle constructor
// priorities compatibly with GNU ld.
bool
may_sort_attached_input_sections() const
{ return this->may_sort_attached_input_sections_; }
// Record that the input sections attached to this output section
// may require sorting.
void
set_may_sort_attached_input_sections()
{ this->may_sort_attached_input_sections_ = true; }
// Returns true if input sections must be sorted according to the
// order in which their name appear in the --section-ordering-file.
bool
input_section_order_specified()
{ return this->input_section_order_specified_; }
// Record that input sections must be sorted as some of their names
// match the patterns specified through --section-ordering-file.
void
set_input_section_order_specified()
{ this->input_section_order_specified_ = true; }
// Return whether the input sections attached to this output section
// require sorting. This is used to handle constructor priorities
// compatibly with GNU ld.
bool
must_sort_attached_input_sections() const
{ return this->must_sort_attached_input_sections_; }
// Record that the input sections attached to this output section
// require sorting.
void
set_must_sort_attached_input_sections()
{ this->must_sort_attached_input_sections_ = true; }
// Return whether this section holds relro data--data which has
// dynamic relocations but which may be marked read-only after the
// dynamic relocations have been completed.
bool
is_relro() const
{ return this->is_relro_; }
// Record that this section holds relro data.
void
set_is_relro()
{ this->is_relro_ = true; }
// Record that this section does not hold relro data.
void
clear_is_relro()
{ this->is_relro_ = false; }
// True if this section holds relro local data--relro data for which
// the dynamic relocations are all RELATIVE relocations.
bool
is_relro_local() const
{ return this->is_relro_local_; }
// Record that this section holds relro local data.
void
set_is_relro_local()
{ this->is_relro_local_ = true; }
// True if this must be the last relro section.
bool
is_last_relro() const
{ return this->is_last_relro_; }
// Record that this must be the last relro section.
void
set_is_last_relro()
{
gold_assert(this->is_relro_);
this->is_last_relro_ = true;
}
// True if this must be the first section following the relro sections.
bool
is_first_non_relro() const
{
gold_assert(!this->is_relro_);
return this->is_first_non_relro_;
}
// Record that this must be the first non-relro section.
void
set_is_first_non_relro()
{
gold_assert(!this->is_relro_);
this->is_first_non_relro_ = true;
}
// True if this is a small section: a section which holds small
// variables.
bool
is_small_section() const
{ return this->is_small_section_; }
// Record that this is a small section.
void
set_is_small_section()
{ this->is_small_section_ = true; }
// True if this is a large section: a section which holds large
// variables.
bool
is_large_section() const
{ return this->is_large_section_; }
// Record that this is a large section.
void
set_is_large_section()
{ this->is_large_section_ = true; }
// True if this is a large data (not BSS) section.
bool
is_large_data_section()
{ return this->is_large_section_ && this->type_ != elfcpp::SHT_NOBITS; }
// True if this is the .interp section which goes into the PT_INTERP
// segment.
bool
is_interp() const
{ return this->is_interp_; }
// Record that this is the interp section.
void
set_is_interp()
{ this->is_interp_ = true; }
// True if this is a section used by the dynamic linker.
bool
is_dynamic_linker_section() const
{ return this->is_dynamic_linker_section_; }
// Record that this is a section used by the dynamic linker.
void
set_is_dynamic_linker_section()
{ this->is_dynamic_linker_section_ = true; }
// Return whether this section should be written after all the input
// sections are complete.
bool
after_input_sections() const
{ return this->after_input_sections_; }
// Record that this section should be written after all the input
// sections are complete.
void
set_after_input_sections()
{ this->after_input_sections_ = true; }
// Return whether this section requires postprocessing after all
// relocations have been applied.
bool
requires_postprocessing() const
{ return this->requires_postprocessing_; }
// If a section requires postprocessing, return the buffer to use.
unsigned char*
postprocessing_buffer() const
{
gold_assert(this->postprocessing_buffer_ != NULL);
return this->postprocessing_buffer_;
}
// If a section requires postprocessing, create the buffer to use.
void
create_postprocessing_buffer();
// If a section requires postprocessing, this is the size of the
// buffer to which relocations should be applied.
off_t
postprocessing_buffer_size() const
{ return this->current_data_size_for_child(); }
// Modify the section name. This is only permitted for an
// unallocated section, and only before the size has been finalized.
// Otherwise the name will not get into Layout::namepool_.
void
set_name(const char* newname)
{
gold_assert((this->flags_ & elfcpp::SHF_ALLOC) == 0);
gold_assert(!this->is_data_size_valid());
this->name_ = newname;
}
// Return whether the offset OFFSET in the input section SHNDX in
// object OBJECT is being included in the link.
bool
is_input_address_mapped(const Relobj* object, unsigned int shndx,
off_t offset) const;
// Return the offset within the output section of OFFSET relative to
// the start of input section SHNDX in object OBJECT.
section_offset_type
output_offset(const Relobj* object, unsigned int shndx,
section_offset_type offset) const;
// Return the output virtual address of OFFSET relative to the start
// of input section SHNDX in object OBJECT.
uint64_t
output_address(const Relobj* object, unsigned int shndx,
off_t offset) const;
// Look for the merged section for input section SHNDX in object
// OBJECT. If found, return true, and set *ADDR to the address of
// the start of the merged section. This is not necessary the
// output offset corresponding to input offset 0 in the section,
// since the section may be mapped arbitrarily.
bool
find_starting_output_address(const Relobj* object, unsigned int shndx,
uint64_t* addr) const;
// Record that this output section was found in the SECTIONS clause
// of a linker script.
void
set_found_in_sections_clause()
{ this->found_in_sections_clause_ = true; }
// Return whether this output section was found in the SECTIONS
// clause of a linker script.
bool
found_in_sections_clause() const
{ return this->found_in_sections_clause_; }
// Write the section header into *OPHDR.
template<int size, bool big_endian>
void
write_header(const Layout*, const Stringpool*,
elfcpp::Shdr_write<size, big_endian>*) const;
// The next few calls are for linker script support.
// In some cases we need to keep a list of the input sections
// associated with this output section. We only need the list if we
// might have to change the offsets of the input section within the
// output section after we add the input section. The ordinary
// input sections will be written out when we process the object
// file, and as such we don't need to track them here. We do need
// to track Output_section_data objects here. We store instances of
// this structure in a std::vector, so it must be a POD. There can
// be many instances of this structure, so we use a union to save
// some space.
class Input_section
{
public:
Input_section()
: shndx_(0), p2align_(0)
{
this->u1_.data_size = 0;
this->u2_.object = NULL;
}
// For an ordinary input section.
Input_section(Relobj* object, unsigned int shndx, off_t data_size,
uint64_t addralign)
: shndx_(shndx),
p2align_(ffsll(static_cast<long long>(addralign))),
section_order_index_(0)
{
gold_assert(shndx != OUTPUT_SECTION_CODE
&& shndx != MERGE_DATA_SECTION_CODE
&& shndx != MERGE_STRING_SECTION_CODE
&& shndx != RELAXED_INPUT_SECTION_CODE);
this->u1_.data_size = data_size;
this->u2_.object = object;
}
// For a non-merge output section.
Input_section(Output_section_data* posd)
: shndx_(OUTPUT_SECTION_CODE), p2align_(0),
section_order_index_(0)
{
this->u1_.data_size = 0;
this->u2_.posd = posd;
}
// For a merge section.
Input_section(Output_section_data* posd, bool is_string, uint64_t entsize)
: shndx_(is_string
? MERGE_STRING_SECTION_CODE
: MERGE_DATA_SECTION_CODE),
p2align_(0),
section_order_index_(0)
{
this->u1_.entsize = entsize;
this->u2_.posd = posd;
}
// For a relaxed input section.
Input_section(Output_relaxed_input_section *psection)
: shndx_(RELAXED_INPUT_SECTION_CODE), p2align_(0),
section_order_index_(0)
{
this->u1_.data_size = 0;
this->u2_.poris = psection;
}
unsigned int
section_order_index() const
{
return this->section_order_index_;
}
void
set_section_order_index(unsigned int number)
{
this->section_order_index_ = number;
}
// The required alignment.
uint64_t
addralign() const
{
if (this->p2align_ != 0)
return static_cast<uint64_t>(1) << (this->p2align_ - 1);
else if (!this->is_input_section())
return this->u2_.posd->addralign();
else
return 0;
}
// Set the required alignment, which must be either 0 or a power of 2.
// For input sections that are sub-classes of Output_section_data, a
// alignment of zero means asking the underlying object for alignment.
void
set_addralign(uint64_t addralign)
{
if (addralign == 0)
this->p2align_ = 0;
else
{
gold_assert((addralign & (addralign - 1)) == 0);
this->p2align_ = ffsll(static_cast<long long>(addralign));
}
}
// Return the required size.
off_t
data_size() const;
// Whether this is an input section.
bool
is_input_section() const
{
return (this->shndx_ != OUTPUT_SECTION_CODE
&& this->shndx_ != MERGE_DATA_SECTION_CODE
&& this->shndx_ != MERGE_STRING_SECTION_CODE
&& this->shndx_ != RELAXED_INPUT_SECTION_CODE);
}
// Return whether this is a merge section which matches the
// parameters.
bool
is_merge_section(bool is_string, uint64_t entsize,
uint64_t addralign) const
{
return (this->shndx_ == (is_string
? MERGE_STRING_SECTION_CODE
: MERGE_DATA_SECTION_CODE)
&& this->u1_.entsize == entsize
&& this->addralign() == addralign);
}
// Return whether this is a merge section for some input section.
bool
is_merge_section() const
{
return (this->shndx_ == MERGE_DATA_SECTION_CODE
|| this->shndx_ == MERGE_STRING_SECTION_CODE);
}
// Return whether this is a relaxed input section.
bool
is_relaxed_input_section() const
{ return this->shndx_ == RELAXED_INPUT_SECTION_CODE; }
// Return whether this is a generic Output_section_data.
bool
is_output_section_data() const
{
return this->shndx_ == OUTPUT_SECTION_CODE;
}
// Return the object for an input section.
Relobj*
relobj() const;
// Return the input section index for an input section.
unsigned int
shndx() const;
// For non-input-sections, return the associated Output_section_data
// object.
Output_section_data*
output_section_data() const
{
gold_assert(!this->is_input_section());
return this->u2_.posd;
}
// For a merge section, return the Output_merge_base pointer.
Output_merge_base*
output_merge_base() const
{
gold_assert(this->is_merge_section());
return this->u2_.pomb;
}
// Return the Output_relaxed_input_section object.
Output_relaxed_input_section*
relaxed_input_section() const
{
gold_assert(this->is_relaxed_input_section());
return this->u2_.poris;
}
// Set the output section.
void
set_output_section(Output_section* os)
{
gold_assert(!this->is_input_section());
Output_section_data *posd =
this->is_relaxed_input_section() ? this->u2_.poris : this->u2_.posd;
posd->set_output_section(os);
}
// Set the address and file offset. This is called during
// Layout::finalize. SECTION_FILE_OFFSET is the file offset of
// the enclosing section.
void
set_address_and_file_offset(uint64_t address, off_t file_offset,
off_t section_file_offset);
// Reset the address and file offset.
void
reset_address_and_file_offset();
// Finalize the data size.
void
finalize_data_size();
// Add an input section, for SHF_MERGE sections.
bool
add_input_section(Relobj* object, unsigned int shndx)
{
gold_assert(this->shndx_ == MERGE_DATA_SECTION_CODE
|| this->shndx_ == MERGE_STRING_SECTION_CODE);
return this->u2_.posd->add_input_section(object, shndx);
}
// Given an input OBJECT, an input section index SHNDX within that
// object, and an OFFSET relative to the start of that input
// section, return whether or not the output offset is known. If
// this function returns true, it sets *POUTPUT to the offset in
// the output section, relative to the start of the input section
// in the output section. *POUTPUT may be different from OFFSET
// for a merged section.
bool
output_offset(const Relobj* object, unsigned int shndx,
section_offset_type offset,
section_offset_type *poutput) const;
// Return whether this is the merge section for the input section
// SHNDX in OBJECT.
bool
is_merge_section_for(const Relobj* object, unsigned int shndx) const;
// Write out the data. This does nothing for an input section.
void
write(Output_file*);
// Write the data to a buffer. This does nothing for an input
// section.
void
write_to_buffer(unsigned char*);
// Print to a map file.
void
print_to_mapfile(Mapfile*) const;
// Print statistics about merge sections to stderr.
void
print_merge_stats(const char* section_name)
{
if (this->shndx_ == MERGE_DATA_SECTION_CODE
|| this->shndx_ == MERGE_STRING_SECTION_CODE)
this->u2_.posd->print_merge_stats(section_name);
}
private:
// Code values which appear in shndx_. If the value is not one of
// these codes, it is the input section index in the object file.
enum
{
// An Output_section_data.
OUTPUT_SECTION_CODE = -1U,
// An Output_section_data for an SHF_MERGE section with
// SHF_STRINGS not set.
MERGE_DATA_SECTION_CODE = -2U,
// An Output_section_data for an SHF_MERGE section with
// SHF_STRINGS set.
MERGE_STRING_SECTION_CODE = -3U,
// An Output_section_data for a relaxed input section.
RELAXED_INPUT_SECTION_CODE = -4U
};
// For an ordinary input section, this is the section index in the
// input file. For an Output_section_data, this is
// OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
// MERGE_STRING_SECTION_CODE.
unsigned int shndx_;
// The required alignment, stored as a power of 2.
unsigned int p2align_;
union
{
// For an ordinary input section, the section size.
off_t data_size;
// For OUTPUT_SECTION_CODE or RELAXED_INPUT_SECTION_CODE, this is not
// used. For MERGE_DATA_SECTION_CODE or MERGE_STRING_SECTION_CODE, the
// entity size.
uint64_t entsize;
} u1_;
union
{
// For an ordinary input section, the object which holds the
// input section.
Relobj* object;
// For OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
// MERGE_STRING_SECTION_CODE, the data.
Output_section_data* posd;
Output_merge_base* pomb;
// For RELAXED_INPUT_SECTION_CODE, the data.
Output_relaxed_input_section* poris;
} u2_;
// The line number of the pattern it matches in the --section-ordering-file
// file. It is 0 if does not match any pattern.
unsigned int section_order_index_;
};
// Store the list of input sections for this Output_section into the
// list passed in. This removes the input sections, leaving only
// any Output_section_data elements. This returns the size of those
// Output_section_data elements. ADDRESS is the address of this
// output section. FILL is the fill value to use, in case there are
// any spaces between the remaining Output_section_data elements.
uint64_t
get_input_sections(uint64_t address, const std::string& fill,
std::list<Input_section>*);
// Add a script input section. A script input section can either be
// a plain input section or a sub-class of Output_section_data.
void
add_script_input_section(const Input_section& input_section);
// Set the current size of the output section.
void
set_current_data_size(off_t size)
{ this->set_current_data_size_for_child(size); }
// Get the current size of the output section.
off_t
current_data_size() const
{ return this->current_data_size_for_child(); }
// End of linker script support.
// Save states before doing section layout.
// This is used for relaxation.
void
save_states();
// Restore states prior to section layout.
void
restore_states();
// Discard states.
void
discard_states();
// Convert existing input sections to relaxed input sections.
void
convert_input_sections_to_relaxed_sections(
const std::vector<Output_relaxed_input_section*>& sections);
// Find a relaxed input section to an input section in OBJECT
// with index SHNDX. Return NULL if none is found.
const Output_relaxed_input_section*
find_relaxed_input_section(const Relobj* object, unsigned int shndx) const;
// Whether section offsets need adjustment due to relaxation.
bool
section_offsets_need_adjustment() const
{ return this->section_offsets_need_adjustment_; }
// Set section_offsets_need_adjustment to be true.
void
set_section_offsets_need_adjustment()
{ this->section_offsets_need_adjustment_ = true; }
// Adjust section offsets of input sections in this. This is
// requires if relaxation caused some input sections to change sizes.
void
adjust_section_offsets();
// Whether this is a NOLOAD section.
bool
is_noload() const
{ return this->is_noload_; }
// Set NOLOAD flag.
void
set_is_noload()
{ this->is_noload_ = true; }
// Print merge statistics to stderr.
void
print_merge_stats();
protected:
// Return the output section--i.e., the object itself.
Output_section*
do_output_section()
{ return this; }
const Output_section*
do_output_section() const
{ return this; }
// Return the section index in the output file.
unsigned int
do_out_shndx() const
{
gold_assert(this->out_shndx_ != -1U);
return this->out_shndx_;
}
// Set the output section index.
void
do_set_out_shndx(unsigned int shndx)
{
gold_assert(this->out_shndx_ == -1U || this->out_shndx_ == shndx);
this->out_shndx_ = shndx;
}
// Set the final data size of the Output_section. For a typical
// Output_section, there is nothing to do, but if there are any
// Output_section_data objects we need to set their final addresses
// here.
virtual void
set_final_data_size();
// Reset the address and file offset.
void
do_reset_address_and_file_offset();
// Return true if address and file offset already have reset values. In
// other words, calling reset_address_and_file_offset will not change them.
bool
do_address_and_file_offset_have_reset_values() const;
// Write the data to the file. For a typical Output_section, this
// does nothing: the data is written out by calling Object::Relocate
// on each input object. But if there are any Output_section_data
// objects we do need to write them out here.
virtual void
do_write(Output_file*);
// Return the address alignment--function required by parent class.
uint64_t
do_addralign() const
{ return this->addralign_; }
// Return whether there is a load address.
bool
do_has_load_address() const
{ return this->has_load_address_; }
// Return the load address.
uint64_t
do_load_address() const
{
gold_assert(this->has_load_address_);
return this->load_address_;
}
// Return whether this is an Output_section.
bool
do_is_section() const
{ return true; }
// Return whether this is a section of the specified type.
bool
do_is_section_type(elfcpp::Elf_Word type) const
{ return this->type_ == type; }
// Return whether the specified section flag is set.
bool
do_is_section_flag_set(elfcpp::Elf_Xword flag) const
{ return (this->flags_ & flag) != 0; }
// Set the TLS offset. Called only for SHT_TLS sections.
void
do_set_tls_offset(uint64_t tls_base);
// Return the TLS offset, relative to the base of the TLS segment.
// Valid only for SHT_TLS sections.
uint64_t
do_tls_offset() const
{ return this->tls_offset_; }
// This may be implemented by a child class.
virtual void
do_finalize_name(Layout*)
{ }
// Print to the map file.
virtual void
do_print_to_mapfile(Mapfile*) const;
// Record that this section requires postprocessing after all
// relocations have been applied. This is called by a child class.
void
set_requires_postprocessing()
{
this->requires_postprocessing_ = true;
this->after_input_sections_ = true;
}
// Write all the data of an Output_section into the postprocessing
// buffer.
void
write_to_postprocessing_buffer();
typedef std::vector<Input_section> Input_section_list;
// Allow a child class to access the input sections.
const Input_section_list&
input_sections() const
{ return this->input_sections_; }
// Whether this always keeps an input section list
bool
always_keeps_input_sections() const
{ return this->always_keeps_input_sections_; }
// Always keep an input section list.
void
set_always_keeps_input_sections()
{
gold_assert(this->current_data_size_for_child() == 0);
this->always_keeps_input_sections_ = true;
}
private:
// We only save enough information to undo the effects of section layout.
class Checkpoint_output_section
{
public:
Checkpoint_output_section(uint64_t addralign, elfcpp::Elf_Xword flags,
const Input_section_list& input_sections,
off_t first_input_offset,
bool attached_input_sections_are_sorted)
: addralign_(addralign), flags_(flags),
input_sections_(input_sections),
input_sections_size_(input_sections_.size()),
input_sections_copy_(), first_input_offset_(first_input_offset),
attached_input_sections_are_sorted_(attached_input_sections_are_sorted)
{ }
virtual
~Checkpoint_output_section()
{ }
// Return the address alignment.
uint64_t
addralign() const
{ return this->addralign_; }
// Return the section flags.
elfcpp::Elf_Xword
flags() const
{ return this->flags_; }
// Return a reference to the input section list copy.
Input_section_list*
input_sections()
{ return &this->input_sections_copy_; }
// Return the size of input_sections at the time when checkpoint is
// taken.
size_t
input_sections_size() const
{ return this->input_sections_size_; }
// Whether input sections are copied.
bool
input_sections_saved() const
{ return this->input_sections_copy_.size() == this->input_sections_size_; }
off_t
first_input_offset() const
{ return this->first_input_offset_; }
bool
attached_input_sections_are_sorted() const
{ return this->attached_input_sections_are_sorted_; }
// Save input sections.
void
save_input_sections()
{
this->input_sections_copy_.reserve(this->input_sections_size_);
this->input_sections_copy_.clear();
Input_section_list::const_iterator p = this->input_sections_.begin();
gold_assert(this->input_sections_size_ >= this->input_sections_.size());
for(size_t i = 0; i < this->input_sections_size_ ; i++, ++p)
this->input_sections_copy_.push_back(*p);
}
private:
// The section alignment.
uint64_t addralign_;
// The section flags.
elfcpp::Elf_Xword flags_;
// Reference to the input sections to be checkpointed.
const Input_section_list& input_sections_;
// Size of the checkpointed portion of input_sections_;
size_t input_sections_size_;
// Copy of input sections.
Input_section_list input_sections_copy_;
// The offset of the first entry in input_sections_.
off_t first_input_offset_;
// True if the input sections attached to this output section have
// already been sorted.
bool attached_input_sections_are_sorted_;
};
// This class is used to sort the input sections.
class Input_section_sort_entry;
// This is the sort comparison function for ctors and dtors.
struct Input_section_sort_compare
{
bool
operator()(const Input_section_sort_entry&,
const Input_section_sort_entry&) const;
};
// This is the sort comparison function for .init_array and .fini_array.
struct Input_section_sort_init_fini_compare
{
bool
operator()(const Input_section_sort_entry&,
const Input_section_sort_entry&) const;
};
// This is the sort comparison function when a section order is specified
// from an input file.
struct Input_section_sort_section_order_index_compare
{
bool
operator()(const Input_section_sort_entry&,
const Input_section_sort_entry&) const;
};
// Fill data. This is used to fill in data between input sections.
// It is also used for data statements (BYTE, WORD, etc.) in linker
// scripts. When we have to keep track of the input sections, we
// can use an Output_data_const, but we don't want to have to keep
// track of input sections just to implement fills.
class Fill
{
public:
Fill(off_t section_offset, off_t length)
: section_offset_(section_offset),
length_(convert_to_section_size_type(length))
{ }
// Return section offset.
off_t
section_offset() const
{ return this->section_offset_; }
// Return fill length.
section_size_type
length() const
{ return this->length_; }
private:
// The offset within the output section.
off_t section_offset_;
// The length of the space to fill.
section_size_type length_;
};
typedef std::vector<Fill> Fill_list;
// Map used during relaxation of existing sections. This map
// a section id an input section list index. We assume that
// Input_section_list is a vector.
typedef Unordered_map<Section_id, size_t, Section_id_hash> Relaxation_map;
// Add a new output section by Input_section.
void
add_output_section_data(Input_section*);
// Add an SHF_MERGE input section. Returns true if the section was
// handled. If KEEPS_INPUT_SECTIONS is true, the output merge section
// stores information about the merged input sections.
bool
add_merge_input_section(Relobj* object, unsigned int shndx, uint64_t flags,
uint64_t entsize, uint64_t addralign,
bool keeps_input_sections);
// Add an output SHF_MERGE section POSD to this output section.
// IS_STRING indicates whether it is a SHF_STRINGS section, and
// ENTSIZE is the entity size. This returns the entry added to
// input_sections_.
void
add_output_merge_section(Output_section_data* posd, bool is_string,
uint64_t entsize);
// Sort the attached input sections.
void
sort_attached_input_sections();
// Find the merge section into which an input section with index SHNDX in
// OBJECT has been added. Return NULL if none found.
Output_section_data*
find_merge_section(const Relobj* object, unsigned int shndx) const;
// Build a relaxation map.
void
build_relaxation_map(
const Input_section_list& input_sections,
size_t limit,
Relaxation_map* map) const;
// Convert input sections in an input section list into relaxed sections.
void
convert_input_sections_in_list_to_relaxed_sections(
const std::vector<Output_relaxed_input_section*>& relaxed_sections,
const Relaxation_map& map,
Input_section_list* input_sections);
// Build the lookup maps for merge and relaxed input sections.
void
build_lookup_maps() const;
// Most of these fields are only valid after layout.
// The name of the section. This will point into a Stringpool.
const char* name_;
// The section address is in the parent class.
// The section alignment.
uint64_t addralign_;
// The section entry size.
uint64_t entsize_;
// The load address. This is only used when using a linker script
// with a SECTIONS clause. The has_load_address_ field indicates
// whether this field is valid.
uint64_t load_address_;
// The file offset is in the parent class.
// Set the section link field to the index of this section.
const Output_data* link_section_;
// If link_section_ is NULL, this is the link field.
unsigned int link_;
// Set the section info field to the index of this section.
const Output_section* info_section_;
// If info_section_ is NULL, set the info field to the symbol table
// index of this symbol.
const Symbol* info_symndx_;
// If info_section_ and info_symndx_ are NULL, this is the section
// info field.
unsigned int info_;
// The section type.
const elfcpp::Elf_Word type_;
// The section flags.
elfcpp::Elf_Xword flags_;
// The section index.
unsigned int out_shndx_;
// If there is a STT_SECTION for this output section in the normal
// symbol table, this is the symbol index. This starts out as zero.
// It is initialized in Layout::finalize() to be the index, or -1U
// if there isn't one.
unsigned int symtab_index_;
// If there is a STT_SECTION for this output section in the dynamic
// symbol table, this is the symbol index. This starts out as zero.
// It is initialized in Layout::finalize() to be the index, or -1U
// if there isn't one.
unsigned int dynsym_index_;
// The input sections. This will be empty in cases where we don't
// need to keep track of them.
Input_section_list input_sections_;
// The offset of the first entry in input_sections_.
off_t first_input_offset_;
// The fill data. This is separate from input_sections_ because we
// often will need fill sections without needing to keep track of
// input sections.
Fill_list fills_;
// If the section requires postprocessing, this buffer holds the
// section contents during relocation.
unsigned char* postprocessing_buffer_;
// Whether this output section needs a STT_SECTION symbol in the
// normal symbol table. This will be true if there is a relocation
// which needs it.
bool needs_symtab_index_ : 1;
// Whether this output section needs a STT_SECTION symbol in the
// dynamic symbol table. This will be true if there is a dynamic
// relocation which needs it.
bool needs_dynsym_index_ : 1;
// Whether the link field of this output section should point to the
// normal symbol table.
bool should_link_to_symtab_ : 1;
// Whether the link field of this output section should point to the
// dynamic symbol table.
bool should_link_to_dynsym_ : 1;
// Whether this section should be written after all the input
// sections are complete.
bool after_input_sections_ : 1;
// Whether this section requires post processing after all
// relocations have been applied.
bool requires_postprocessing_ : 1;
// Whether an input section was mapped to this output section
// because of a SECTIONS clause in a linker script.
bool found_in_sections_clause_ : 1;
// Whether this section has an explicitly specified load address.
bool has_load_address_ : 1;
// True if the info_section_ field means the section index of the
// section, false if it means the symbol index of the corresponding
// section symbol.
bool info_uses_section_index_ : 1;
// True if input sections attached to this output section have to be
// sorted according to a specified order.
bool input_section_order_specified_ : 1;
// True if the input sections attached to this output section may
// need sorting.
bool may_sort_attached_input_sections_ : 1;
// True if the input sections attached to this output section must
// be sorted.
bool must_sort_attached_input_sections_ : 1;
// True if the input sections attached to this output section have
// already been sorted.
bool attached_input_sections_are_sorted_ : 1;
// True if this section holds relro data.
bool is_relro_ : 1;
// True if this section holds relro local data.
bool is_relro_local_ : 1;
// True if this must be the last relro section.
bool is_last_relro_ : 1;
// True if this must be the first section after the relro sections.
bool is_first_non_relro_ : 1;
// True if this is a small section.
bool is_small_section_ : 1;
// True if this is a large section.
bool is_large_section_ : 1;
// True if this is the .interp section going into the PT_INTERP
// segment.
bool is_interp_ : 1;
// True if this is section is read by the dynamic linker.
bool is_dynamic_linker_section_ : 1;
// Whether code-fills are generated at write.
bool generate_code_fills_at_write_ : 1;
// Whether the entry size field should be zero.
bool is_entsize_zero_ : 1;
// Whether section offsets need adjustment due to relaxation.
bool section_offsets_need_adjustment_ : 1;
// Whether this is a NOLOAD section.
bool is_noload_ : 1;
// Whether this always keeps input section.
bool always_keeps_input_sections_ : 1;
// For SHT_TLS sections, the offset of this section relative to the base
// of the TLS segment.
uint64_t tls_offset_;
// Saved checkpoint.
Checkpoint_output_section* checkpoint_;
// Fast lookup maps for merged and relaxed input sections.
Output_section_lookup_maps* lookup_maps_;
};
// An output segment. PT_LOAD segments are built from collections of
// output sections. Other segments typically point within PT_LOAD
// segments, and are built directly as needed.
//
// NOTE: We want to use the copy constructor for this class. During
// relaxation, we may try built the segments multiple times. We do
// that by copying the original segment list before lay-out, doing
// a trial lay-out and roll-back to the saved copied if we need to
// to the lay-out again.
class Output_segment
{
public:
// Create an output segment, specifying the type and flags.
Output_segment(elfcpp::Elf_Word, elfcpp::Elf_Word);
// Return the virtual address.
uint64_t
vaddr() const
{ return this->vaddr_; }
// Return the physical address.
uint64_t
paddr() const
{ return this->paddr_; }
// Return the segment type.
elfcpp::Elf_Word
type() const
{ return this->type_; }
// Return the segment flags.
elfcpp::Elf_Word
flags() const
{ return this->flags_; }
// Return the memory size.
uint64_t
memsz() const
{ return this->memsz_; }
// Return the file size.
off_t
filesz() const
{ return this->filesz_; }
// Return the file offset.
off_t
offset() const
{ return this->offset_; }
// Whether this is a segment created to hold large data sections.
bool
is_large_data_segment() const
{ return this->is_large_data_segment_; }
// Record that this is a segment created to hold large data
// sections.
void
set_is_large_data_segment()
{ this->is_large_data_segment_ = true; }
// Return the maximum alignment of the Output_data.
uint64_t
maximum_alignment();
// Add the Output_section OS to this segment. SEG_FLAGS is the
// segment flags to use. DO_SORT is true if we should sort the
// placement of the input section for more efficient generated code.
void
add_output_section(Output_section* os, elfcpp::Elf_Word seg_flags,
bool do_sort);
// Remove an Output_section from this segment. It is an error if it
// is not present.
void
remove_output_section(Output_section* os);
// Add an Output_data (which need not be an Output_section) to the
// start of this segment.
void
add_initial_output_data(Output_data*);
// Return true if this segment has any sections which hold actual
// data, rather than being a BSS section.
bool
has_any_data_sections() const
{ return !this->output_data_.empty(); }
// Return the number of dynamic relocations applied to this segment.
unsigned int
dynamic_reloc_count() const;
// Return the address of the first section.
uint64_t
first_section_load_address() const;
// Return whether the addresses have been set already.
bool
are_addresses_set() const
{ return this->are_addresses_set_; }
// Set the addresses.
void
set_addresses(uint64_t vaddr, uint64_t paddr)
{
this->vaddr_ = vaddr;
this->paddr_ = paddr;
this->are_addresses_set_ = true;
}
// Update the flags for the flags of an output section added to this
// segment.
void
update_flags_for_output_section(elfcpp::Elf_Xword flags)
{
// The ELF ABI specifies that a PT_TLS segment should always have
// PF_R as the flags.
if (this->type() != elfcpp::PT_TLS)
this->flags_ |= flags;
}
// Set the segment flags. This is only used if we have a PHDRS
// clause which explicitly specifies the flags.
void
set_flags(elfcpp::Elf_Word flags)
{ this->flags_ = flags; }
// Set the address of the segment to ADDR and the offset to *POFF
// and set the addresses and offsets of all contained output
// sections accordingly. Set the section indexes of all contained
// output sections starting with *PSHNDX. If RESET is true, first
// reset the addresses of the contained sections. Return the
// address of the immediately following segment. Update *POFF and
// *PSHNDX. This should only be called for a PT_LOAD segment.
uint64_t
set_section_addresses(const Layout*, bool reset, uint64_t addr,
unsigned int increase_relro, off_t* poff,
unsigned int* pshndx);
// Set the minimum alignment of this segment. This may be adjusted
// upward based on the section alignments.
void
set_minimum_p_align(uint64_t align)
{
if (align > this->min_p_align_)
this->min_p_align_ = align;
}
// Set the offset of this segment based on the section. This should
// only be called for a non-PT_LOAD segment.
void
set_offset(unsigned int increase);
// Set the TLS offsets of the sections contained in the PT_TLS segment.
void
set_tls_offsets();
// Return the number of output sections.
unsigned int
output_section_count() const;
// Return the section attached to the list segment with the lowest
// load address. This is used when handling a PHDRS clause in a
// linker script.
Output_section*
section_with_lowest_load_address() const;
// Write the segment header into *OPHDR.
template<int size, bool big_endian>
void
write_header(elfcpp::Phdr_write<size, big_endian>*);
// Write the section headers of associated sections into V.
template<int size, bool big_endian>
unsigned char*
write_section_headers(const Layout*, const Stringpool*, unsigned char* v,
unsigned int* pshndx) const;
// Print the output sections in the map file.
void
print_sections_to_mapfile(Mapfile*) const;
private:
typedef std::list<Output_data*> Output_data_list;
// Find the maximum alignment in an Output_data_list.
static uint64_t
maximum_alignment_list(const Output_data_list*);
// Return whether the first data section is a relro section.
bool
is_first_section_relro() const;
// Set the section addresses in an Output_data_list.
uint64_t
set_section_list_addresses(const Layout*, bool reset, Output_data_list*,
uint64_t addr, off_t* poff, unsigned int* pshndx,
bool* in_tls);
// Return the number of Output_sections in an Output_data_list.
unsigned int
output_section_count_list(const Output_data_list*) const;
// Return the number of dynamic relocs in an Output_data_list.
unsigned int
dynamic_reloc_count_list(const Output_data_list*) const;
// Find the section with the lowest load address in an
// Output_data_list.
void
lowest_load_address_in_list(const Output_data_list* pdl,
Output_section** found,
uint64_t* found_lma) const;
// Write the section headers in the list into V.
template<int size, bool big_endian>
unsigned char*
write_section_headers_list(const Layout*, const Stringpool*,
const Output_data_list*, unsigned char* v,
unsigned int* pshdx) const;
// Print a section list to the mapfile.
void
print_section_list_to_mapfile(Mapfile*, const Output_data_list*) const;
// NOTE: We want to use the copy constructor. Currently, shallow copy
// works for us so we do not need to write our own copy constructor.
// The list of output data with contents attached to this segment.
Output_data_list output_data_;
// The list of output data without contents attached to this segment.
Output_data_list output_bss_;
// The segment virtual address.
uint64_t vaddr_;
// The segment physical address.
uint64_t paddr_;
// The size of the segment in memory.
uint64_t memsz_;
// The maximum section alignment. The is_max_align_known_ field
// indicates whether this has been finalized.
uint64_t max_align_;
// The required minimum value for the p_align field. This is used
// for PT_LOAD segments. Note that this does not mean that
// addresses should be aligned to this value; it means the p_paddr
// and p_vaddr fields must be congruent modulo this value. For
// non-PT_LOAD segments, the dynamic linker works more efficiently
// if the p_align field has the more conventional value, although it
// can align as needed.
uint64_t min_p_align_;
// The offset of the segment data within the file.
off_t offset_;
// The size of the segment data in the file.
off_t filesz_;
// The segment type;
elfcpp::Elf_Word type_;
// The segment flags.
elfcpp::Elf_Word flags_;
// Whether we have finalized max_align_.
bool is_max_align_known_ : 1;
// Whether vaddr and paddr were set by a linker script.
bool are_addresses_set_ : 1;
// Whether this segment holds large data sections.
bool is_large_data_segment_ : 1;
};
// This class represents the output file.
class Output_file
{
public:
Output_file(const char* name);
// Indicate that this is a temporary file which should not be
// output.
void
set_is_temporary()
{ this->is_temporary_ = true; }
// Try to open an existing file. Returns false if the file doesn't
// exist, has a size of 0 or can't be mmaped. This method is
// thread-unsafe.
bool
open_for_modification();
// Open the output file. FILE_SIZE is the final size of the file.
// If the file already exists, it is deleted/truncated. This method
// is thread-unsafe.
void
open(off_t file_size);
// Resize the output file. This method is thread-unsafe.
void
resize(off_t file_size);
// Close the output file (flushing all buffered data) and make sure
// there are no errors. This method is thread-unsafe.
void
close();
// Return the size of this file.
off_t
filesize()
{ return this->file_size_; }
// Return the name of this file.
const char*
filename()
{ return this->name_; }
// We currently always use mmap which makes the view handling quite
// simple. In the future we may support other approaches.
// Write data to the output file.
void
write(off_t offset, const void* data, size_t len)
{ memcpy(this->base_ + offset, data, len); }
// Get a buffer to use to write to the file, given the offset into
// the file and the size.
unsigned char*
get_output_view(off_t start, size_t size)
{
gold_assert(start >= 0
&& start + static_cast<off_t>(size) <= this->file_size_);
return this->base_ + start;
}
// VIEW must have been returned by get_output_view. Write the
// buffer to the file, passing in the offset and the size.
void
write_output_view(off_t, size_t, unsigned char*)
{ }
// Get a read/write buffer. This is used when we want to write part
// of the file, read it in, and write it again.
unsigned char*
get_input_output_view(off_t start, size_t size)
{ return this->get_output_view(start, size); }
// Write a read/write buffer back to the file.
void
write_input_output_view(off_t, size_t, unsigned char*)
{ }
// Get a read buffer. This is used when we just want to read part
// of the file back it in.
const unsigned char*
get_input_view(off_t start, size_t size)
{ return this->get_output_view(start, size); }
// Release a read bfufer.
void
free_input_view(off_t, size_t, const unsigned char*)
{ }
private:
// Map the file into memory or, if that fails, allocate anonymous
// memory.
void
map();
// Allocate anonymous memory for the file.
bool
map_anonymous();
// Map the file into memory.
bool
map_no_anonymous();
// Unmap the file from memory (and flush to disk buffers).
void
unmap();
// File name.
const char* name_;
// File descriptor.
int o_;
// File size.
off_t file_size_;
// Base of file mapped into memory.
unsigned char* base_;
// True iff base_ points to a memory buffer rather than an output file.
bool map_is_anonymous_;
// True if this is a temporary file which should not be output.
bool is_temporary_;
};
} // End namespace gold.
#endif // !defined(GOLD_OUTPUT_H)