mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-27 04:52:05 +08:00
de63c46b54
At <https://sourceware.org/ml/gdb-patches/2017-12/msg00298.html>, Joel wrote: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider the following code which first declares a tagged type (the equivalent of a class in Ada), and then a procedure which takes a pointer (access) to this type's 'Class. package Pck is type Top_T is tagged record N : Integer := 1; end record; procedure Inspect (Obj: access Top_T'Class); end Pck; Putting a breakpoint in that procedure and then running to it triggers an internal error: (gdb) break inspect (gdb) continue Breakpoint 1, pck.inspect (obj=0x63e010 /[...]/gdb/stack.c:621: internal-error: void print_frame_args(symbol*, frame_info*, int, ui_file*): Assertion `nsym != NULL' failed. What's special about this subprogram is that it takes an access to what we call a 'Class type, and for implementation reasons, the compiler adds an extra argument named "objL". If you are curious why, it allows the compiler for perform dynamic accessibility checks that are mandated by the language. If we look at the location where we get the internal error (in stack.c), we find that we are looping over the symbol of each parameter, and for each parameter, we do: /* We have to look up the symbol because arguments can have two entries (one a parameter, one a local) and the one we want is the local, which lookup_symbol will find for us. [...] nsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL).symbol; gdb_assert (nsym != NULL); The lookup_symbol goes through the lookup structure, which means the symbol's linkage name ("objL") gets transformed into a lookup_name_info object (in block_lookup_symbol), before it gets fed to the block symbol dictionary iterators. This, in turn, triggers the symbol matching by comparing the "lookup" name which, for Ada, means among other things, lowercasing the given name to "objl". It is this transformation that causes the lookup find no matches, and therefore trip this assertion. Going back to the "offending" call to lookup_symbol in stack.c, what we are trying to do, here, is do a lookup by linkage name. So, I think what we mean to be doing is a completely literal symbol lookup, so maybe not even strcmp_iw, but actually just plain strcmp??? In the past, in practice, you could get that effect by doing a lookup using the C language. But that doesn't work, because we still end up somehow using Ada's lookup_name routine which transforms "objL". So, ideally, as I hinted before, I think what we need is a way to perform a literal lookup so that searches by linkage names like the above can be performed. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This commit fixes the problem by implementing something similar to Joel's literal idea, but with some important differences. I considered adding a symbol_name_match_type::LINKAGE and supporting searching by linkage name for any language, but the problem with that is that the dictionaries only work with SYMBOL_SEARCH_NAME, because that's what is used for hashing. We'd need separate dictionaries for hashed linkage names. So with the current symbol tables infrastructure, it's not literal linkage names that we want to pass down, but instead literal _search_ names (SYMBOL_SEARCH_NAME, etc.). However, psymbols have no overload/function parameter info in C++, so a straight strcmp doesn't work properly for C++ name matching. So what we do is be a little less aggressive then and add a new symbol_name_match_type::SEARCH_SYMBOL instead that takes as input a non-user-input search symbol, and then we skip any decoding/demangling steps and make: - Ada treat that as a verbatim match, - other languages treat it as symbol_name_match_type::FULL. This also fixes the new '"maint check-psymtabs" for Ada' testcase for me (gdb.ada/maint_with_ada.exp). I've not removed the kfail yet because Joel still sees that testcase failing with this patch. That'll be fixed in follow up patches. gdb/ChangeLog: 2018-01-05 Pedro Alves <palves@redhat.com> PR gdb/22670 * ada-lang.c (literal_symbol_name_matcher): New function. (ada_get_symbol_name_matcher): Use it for symbol_name_match_type::SEARCH_NAME. * block.c (block_lookup_symbol): New parameter 'match_type'. Pass it down instead of assuming symbol_name_match_type::FULL. * block.h (block_lookup_symbol): New parameter 'match_type'. * c-valprint.c (print_unpacked_pointer): Use lookup_symbol_search_name instead of lookup_symbol. * compile/compile-object-load.c (get_out_value_type): Pass down symbol_name_match_type::SEARCH_NAME. * cp-namespace.c (cp_basic_lookup_symbol): Pass down symbol_name_match_type::FULL. * cp-support.c (cp_get_symbol_name_matcher): Handle symbol_name_match_type::SEARCH_NAME. * infrun.c (insert_exception_resume_breakpoint): Use lookup_symbol_search_name. * p-valprint.c (pascal_val_print): Use lookup_symbol_search_name. * psymtab.c (maintenance_check_psymtabs): Use symbol_name_match_type::SEARCH_NAME and SYMBOL_SEARCH_NAME. * stack.c (print_frame_args): Use lookup_symbol_search_name and SYMBOL_SEARCH_NAME. * symtab.c (lookup_local_symbol): Don't demangle the lookup name if symbol_name_match_type::SEARCH_NAME. (lookup_symbol_in_language): Pass down symbol_name_match_type::FULL. (lookup_symbol_search_name): New. (lookup_language_this): Pass down symbol_name_match_type::SEARCH_NAME. (lookup_symbol_aux, lookup_local_symbol): New parameter 'match_type'. Pass it down. * symtab.h (symbol_name_match_type::SEARCH_NAME): New enumerator. (lookup_symbol_search_name): New declaration. (lookup_symbol_in_block): New 'match_type' parameter. gdb/testsuite/ChangeLog: 2018-01-05 Joel Brobecker <brobecker@adacore.com> PR gdb/22670 * gdb.ada/access_tagged_param.exp: New file. * gdb.ada/access_tagged_param/foo.adb: New file.
1080 lines
34 KiB
C
1080 lines
34 KiB
C
/* Helper routines for C++ support in GDB.
|
|
Copyright (C) 2003-2018 Free Software Foundation, Inc.
|
|
|
|
Contributed by David Carlton and by Kealia, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "defs.h"
|
|
#include "cp-support.h"
|
|
#include "gdb_obstack.h"
|
|
#include "symtab.h"
|
|
#include "symfile.h"
|
|
#include "block.h"
|
|
#include "objfiles.h"
|
|
#include "gdbtypes.h"
|
|
#include "dictionary.h"
|
|
#include "command.h"
|
|
#include "frame.h"
|
|
#include "buildsym.h"
|
|
#include "language.h"
|
|
#include "namespace.h"
|
|
#include <string>
|
|
|
|
static struct block_symbol
|
|
cp_lookup_nested_symbol_1 (struct type *container_type,
|
|
const char *nested_name,
|
|
const char *concatenated_name,
|
|
const struct block *block,
|
|
const domain_enum domain,
|
|
int basic_lookup, int is_in_anonymous);
|
|
|
|
static struct type *cp_lookup_transparent_type_loop (const char *name,
|
|
const char *scope,
|
|
int scope_len);
|
|
|
|
/* Check to see if SYMBOL refers to an object contained within an
|
|
anonymous namespace; if so, add an appropriate using directive. */
|
|
|
|
void
|
|
cp_scan_for_anonymous_namespaces (const struct symbol *const symbol,
|
|
struct objfile *const objfile)
|
|
{
|
|
if (SYMBOL_DEMANGLED_NAME (symbol) != NULL)
|
|
{
|
|
const char *name = SYMBOL_DEMANGLED_NAME (symbol);
|
|
unsigned int previous_component;
|
|
unsigned int next_component;
|
|
|
|
/* Start with a quick-and-dirty check for mention of "(anonymous
|
|
namespace)". */
|
|
|
|
if (!cp_is_in_anonymous (name))
|
|
return;
|
|
|
|
previous_component = 0;
|
|
next_component = cp_find_first_component (name + previous_component);
|
|
|
|
while (name[next_component] == ':')
|
|
{
|
|
if (((next_component - previous_component)
|
|
== CP_ANONYMOUS_NAMESPACE_LEN)
|
|
&& strncmp (name + previous_component,
|
|
CP_ANONYMOUS_NAMESPACE_STR,
|
|
CP_ANONYMOUS_NAMESPACE_LEN) == 0)
|
|
{
|
|
int dest_len = (previous_component == 0
|
|
? 0 : previous_component - 2);
|
|
int src_len = next_component;
|
|
|
|
char *dest = (char *) alloca (dest_len + 1);
|
|
char *src = (char *) alloca (src_len + 1);
|
|
|
|
memcpy (dest, name, dest_len);
|
|
memcpy (src, name, src_len);
|
|
|
|
dest[dest_len] = '\0';
|
|
src[src_len] = '\0';
|
|
|
|
/* We've found a component of the name that's an
|
|
anonymous namespace. So add symbols in it to the
|
|
namespace given by the previous component if there is
|
|
one, or to the global namespace if there isn't. */
|
|
std::vector<const char *> excludes;
|
|
add_using_directive (&local_using_directives,
|
|
dest, src, NULL, NULL, excludes, 1,
|
|
&objfile->objfile_obstack);
|
|
}
|
|
/* The "+ 2" is for the "::". */
|
|
previous_component = next_component + 2;
|
|
next_component = (previous_component
|
|
+ cp_find_first_component (name
|
|
+ previous_component));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Test whether or not NAMESPACE looks like it mentions an anonymous
|
|
namespace; return nonzero if so. */
|
|
|
|
int
|
|
cp_is_in_anonymous (const char *symbol_name)
|
|
{
|
|
return (strstr (symbol_name, CP_ANONYMOUS_NAMESPACE_STR)
|
|
!= NULL);
|
|
}
|
|
|
|
/* Look up NAME in DOMAIN in BLOCK's static block and in global blocks.
|
|
If IS_IN_ANONYMOUS is nonzero, the symbol in question is located
|
|
within an anonymous namespace. */
|
|
|
|
static struct block_symbol
|
|
cp_basic_lookup_symbol (const char *name, const struct block *block,
|
|
const domain_enum domain, int is_in_anonymous)
|
|
{
|
|
struct block_symbol sym;
|
|
|
|
sym = lookup_symbol_in_static_block (name, block, domain);
|
|
if (sym.symbol != NULL)
|
|
return sym;
|
|
|
|
if (is_in_anonymous)
|
|
{
|
|
/* Symbols defined in anonymous namespaces have external linkage
|
|
but should be treated as local to a single file nonetheless.
|
|
So we only search the current file's global block. */
|
|
|
|
const struct block *global_block = block_global_block (block);
|
|
|
|
if (global_block != NULL)
|
|
{
|
|
sym.symbol = lookup_symbol_in_block (name,
|
|
symbol_name_match_type::FULL,
|
|
global_block, domain);
|
|
sym.block = global_block;
|
|
}
|
|
}
|
|
else
|
|
sym = lookup_global_symbol (name, block, domain);
|
|
|
|
return sym;
|
|
}
|
|
|
|
/* Search bare symbol NAME in DOMAIN in BLOCK.
|
|
NAME is guaranteed to not have any scope (no "::") in its name, though
|
|
if for example NAME is a template spec then "::" may appear in the
|
|
argument list.
|
|
If LANGDEF is non-NULL then try to lookup NAME as a primitive type in
|
|
that language. Normally we wouldn't need LANGDEF but fortran also uses
|
|
this code.
|
|
If SEARCH is non-zero then see if we can determine "this" from BLOCK, and
|
|
if so then also search for NAME in that class. */
|
|
|
|
static struct block_symbol
|
|
cp_lookup_bare_symbol (const struct language_defn *langdef,
|
|
const char *name, const struct block *block,
|
|
const domain_enum domain, int search)
|
|
{
|
|
struct block_symbol sym;
|
|
|
|
/* Note: We can't do a simple assert for ':' not being in NAME because
|
|
':' may be in the args of a template spec. This isn't intended to be
|
|
a complete test, just cheap and documentary. */
|
|
if (strchr (name, '<') == NULL && strchr (name, '(') == NULL)
|
|
gdb_assert (strstr (name, "::") == NULL);
|
|
|
|
sym = lookup_symbol_in_static_block (name, block, domain);
|
|
if (sym.symbol != NULL)
|
|
return sym;
|
|
|
|
/* If we didn't find a definition for a builtin type in the static block,
|
|
search for it now. This is actually the right thing to do and can be
|
|
a massive performance win. E.g., when debugging a program with lots of
|
|
shared libraries we could search all of them only to find out the
|
|
builtin type isn't defined in any of them. This is common for types
|
|
like "void". */
|
|
if (langdef != NULL && domain == VAR_DOMAIN)
|
|
{
|
|
struct gdbarch *gdbarch;
|
|
|
|
if (block == NULL)
|
|
gdbarch = target_gdbarch ();
|
|
else
|
|
gdbarch = block_gdbarch (block);
|
|
sym.symbol
|
|
= language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
|
|
sym.block = NULL;
|
|
if (sym.symbol != NULL)
|
|
return sym;
|
|
}
|
|
|
|
sym = lookup_global_symbol (name, block, domain);
|
|
if (sym.symbol != NULL)
|
|
return sym;
|
|
|
|
if (search)
|
|
{
|
|
struct block_symbol lang_this;
|
|
struct type *type;
|
|
|
|
lang_this.symbol = NULL;
|
|
|
|
if (langdef != NULL)
|
|
lang_this = lookup_language_this (langdef, block);
|
|
|
|
if (lang_this.symbol == NULL)
|
|
return null_block_symbol;
|
|
|
|
|
|
type = check_typedef (TYPE_TARGET_TYPE (SYMBOL_TYPE (lang_this.symbol)));
|
|
/* If TYPE_NAME is NULL, abandon trying to find this symbol.
|
|
This can happen for lambda functions compiled with clang++,
|
|
which outputs no name for the container class. */
|
|
if (TYPE_NAME (type) == NULL)
|
|
return null_block_symbol;
|
|
|
|
/* Look for symbol NAME in this class. */
|
|
sym = cp_lookup_nested_symbol (type, name, block, domain);
|
|
}
|
|
|
|
return sym;
|
|
}
|
|
|
|
/* Search NAME in DOMAIN in all static blocks, and then in all baseclasses.
|
|
BLOCK specifies the context in which to perform the search.
|
|
NAME is guaranteed to have scope (contain "::") and PREFIX_LEN specifies
|
|
the length of the entire scope of NAME (up to, but not including, the last
|
|
"::".
|
|
|
|
Note: At least in the case of Fortran, which also uses this code, there
|
|
may be no text after the last "::". */
|
|
|
|
static struct block_symbol
|
|
cp_search_static_and_baseclasses (const char *name,
|
|
const struct block *block,
|
|
const domain_enum domain,
|
|
unsigned int prefix_len,
|
|
int is_in_anonymous)
|
|
{
|
|
/* Check for malformed input. */
|
|
if (prefix_len + 2 > strlen (name) || name[prefix_len + 1] != ':')
|
|
return null_block_symbol;
|
|
|
|
/* The class, namespace or function name is everything up to and
|
|
including PREFIX_LEN. */
|
|
std::string scope (name, prefix_len);
|
|
|
|
/* The rest of the name is everything else past the initial scope
|
|
operator. */
|
|
const char *nested = name + prefix_len + 2;
|
|
|
|
/* Lookup the scope symbol. If none is found, there is nothing more
|
|
that can be done. SCOPE could be a namespace, so always look in
|
|
VAR_DOMAIN. This works for classes too because of
|
|
symbol_matches_domain (which should be replaced with something
|
|
else, but it's what we have today). */
|
|
block_symbol scope_sym = lookup_symbol_in_static_block (scope.c_str (),
|
|
block, VAR_DOMAIN);
|
|
if (scope_sym.symbol == NULL)
|
|
scope_sym = lookup_global_symbol (scope.c_str (), block, VAR_DOMAIN);
|
|
if (scope_sym.symbol == NULL)
|
|
return null_block_symbol;
|
|
|
|
struct type *scope_type = SYMBOL_TYPE (scope_sym.symbol);
|
|
|
|
/* If the scope is a function/method, then look up NESTED as a local
|
|
static variable. E.g., "print 'function()::static_var'". */
|
|
if (TYPE_CODE (scope_type) == TYPE_CODE_FUNC
|
|
|| TYPE_CODE (scope_type) == TYPE_CODE_METHOD)
|
|
return lookup_symbol (nested, SYMBOL_BLOCK_VALUE (scope_sym.symbol),
|
|
VAR_DOMAIN, NULL);
|
|
|
|
/* Look for a symbol named NESTED in this class/namespace.
|
|
The caller is assumed to have already have done a basic lookup of NAME.
|
|
So we pass zero for BASIC_LOOKUP to cp_lookup_nested_symbol_1 here. */
|
|
return cp_lookup_nested_symbol_1 (scope_type, nested, name,
|
|
block, domain, 0, is_in_anonymous);
|
|
}
|
|
|
|
/* Look up NAME in the C++ namespace NAMESPACE. Other arguments are
|
|
as in cp_lookup_symbol_nonlocal. If SEARCH is non-zero, search
|
|
through base classes for a matching symbol.
|
|
|
|
Note: Part of the complexity is because NAME may itself specify scope.
|
|
Part of the complexity is also because this handles the case where
|
|
there is no scoping in which case we also try looking in the class of
|
|
"this" if we can compute it. */
|
|
|
|
static struct block_symbol
|
|
cp_lookup_symbol_in_namespace (const char *the_namespace, const char *name,
|
|
const struct block *block,
|
|
const domain_enum domain, int search)
|
|
{
|
|
char *concatenated_name = NULL;
|
|
int is_in_anonymous;
|
|
unsigned int prefix_len;
|
|
struct block_symbol sym;
|
|
|
|
if (the_namespace[0] != '\0')
|
|
{
|
|
concatenated_name
|
|
= (char *) alloca (strlen (the_namespace) + 2 + strlen (name) + 1);
|
|
strcpy (concatenated_name, the_namespace);
|
|
strcat (concatenated_name, "::");
|
|
strcat (concatenated_name, name);
|
|
name = concatenated_name;
|
|
}
|
|
|
|
prefix_len = cp_entire_prefix_len (name);
|
|
if (prefix_len == 0)
|
|
return cp_lookup_bare_symbol (NULL, name, block, domain, search);
|
|
|
|
/* This would be simpler if we just called cp_lookup_nested_symbol
|
|
at this point. But that would require first looking up the containing
|
|
class/namespace. Since we're only searching static and global blocks
|
|
there's often no need to first do that lookup. */
|
|
|
|
is_in_anonymous
|
|
= the_namespace[0] != '\0' && cp_is_in_anonymous (the_namespace);
|
|
sym = cp_basic_lookup_symbol (name, block, domain, is_in_anonymous);
|
|
if (sym.symbol != NULL)
|
|
return sym;
|
|
|
|
if (search)
|
|
sym = cp_search_static_and_baseclasses (name, block, domain, prefix_len,
|
|
is_in_anonymous);
|
|
|
|
return sym;
|
|
}
|
|
|
|
/* Search for NAME by applying all import statements belonging to
|
|
BLOCK which are applicable in SCOPE. If DECLARATION_ONLY the
|
|
search is restricted to using declarations.
|
|
Example:
|
|
|
|
namespace A {
|
|
int x;
|
|
}
|
|
using A::x;
|
|
|
|
If SEARCH_PARENTS the search will include imports which are
|
|
applicable in parents of SCOPE.
|
|
Example:
|
|
|
|
namespace A {
|
|
using namespace X;
|
|
namespace B {
|
|
using namespace Y;
|
|
}
|
|
}
|
|
|
|
If SCOPE is "A::B" and SEARCH_PARENTS is true the imports of
|
|
namespaces X and Y will be considered. If SEARCH_PARENTS is false
|
|
only the import of Y is considered.
|
|
|
|
SEARCH_SCOPE_FIRST is an internal implementation detail: Callers must
|
|
pass 0 for it. Internally we pass 1 when recursing. */
|
|
|
|
static struct block_symbol
|
|
cp_lookup_symbol_via_imports (const char *scope,
|
|
const char *name,
|
|
const struct block *block,
|
|
const domain_enum domain,
|
|
const int search_scope_first,
|
|
const int declaration_only,
|
|
const int search_parents)
|
|
{
|
|
struct using_direct *current;
|
|
struct block_symbol sym;
|
|
int len;
|
|
int directive_match;
|
|
|
|
sym.symbol = NULL;
|
|
sym.block = NULL;
|
|
|
|
/* First, try to find the symbol in the given namespace if requested. */
|
|
if (search_scope_first)
|
|
sym = cp_lookup_symbol_in_namespace (scope, name,
|
|
block, domain, 1);
|
|
|
|
if (sym.symbol != NULL)
|
|
return sym;
|
|
|
|
/* Go through the using directives. If any of them add new names to
|
|
the namespace we're searching in, see if we can find a match by
|
|
applying them. */
|
|
|
|
for (current = block_using (block);
|
|
current != NULL;
|
|
current = current->next)
|
|
{
|
|
const char **excludep;
|
|
|
|
len = strlen (current->import_dest);
|
|
directive_match = (search_parents
|
|
? (startswith (scope, current->import_dest)
|
|
&& (len == 0
|
|
|| scope[len] == ':'
|
|
|| scope[len] == '\0'))
|
|
: strcmp (scope, current->import_dest) == 0);
|
|
|
|
/* If the import destination is the current scope or one of its
|
|
ancestors then it is applicable. */
|
|
if (directive_match && !current->searched)
|
|
{
|
|
/* Mark this import as searched so that the recursive call
|
|
does not search it again. */
|
|
scoped_restore reset_directive_searched
|
|
= make_scoped_restore (¤t->searched, 1);
|
|
|
|
/* If there is an import of a single declaration, compare the
|
|
imported declaration (after optional renaming by its alias)
|
|
with the sought out name. If there is a match pass
|
|
current->import_src as NAMESPACE to direct the search
|
|
towards the imported namespace. */
|
|
if (current->declaration
|
|
&& strcmp (name, current->alias
|
|
? current->alias : current->declaration) == 0)
|
|
sym = cp_lookup_symbol_in_namespace (current->import_src,
|
|
current->declaration,
|
|
block, domain, 1);
|
|
|
|
/* If this is a DECLARATION_ONLY search or a symbol was found
|
|
or this import statement was an import declaration, the
|
|
search of this import is complete. */
|
|
if (declaration_only || sym.symbol != NULL || current->declaration)
|
|
{
|
|
if (sym.symbol != NULL)
|
|
return sym;
|
|
|
|
continue;
|
|
}
|
|
|
|
/* Do not follow CURRENT if NAME matches its EXCLUDES. */
|
|
for (excludep = current->excludes; *excludep; excludep++)
|
|
if (strcmp (name, *excludep) == 0)
|
|
break;
|
|
if (*excludep)
|
|
continue;
|
|
|
|
if (current->alias != NULL
|
|
&& strcmp (name, current->alias) == 0)
|
|
/* If the import is creating an alias and the alias matches
|
|
the sought name. Pass current->import_src as the NAME to
|
|
direct the search towards the aliased namespace. */
|
|
{
|
|
sym = cp_lookup_symbol_in_namespace (scope,
|
|
current->import_src,
|
|
block, domain, 1);
|
|
}
|
|
else if (current->alias == NULL)
|
|
{
|
|
/* If this import statement creates no alias, pass
|
|
current->inner as NAMESPACE to direct the search
|
|
towards the imported namespace. */
|
|
sym = cp_lookup_symbol_via_imports (current->import_src,
|
|
name, block,
|
|
domain, 1, 0, 0);
|
|
}
|
|
|
|
if (sym.symbol != NULL)
|
|
return sym;
|
|
}
|
|
}
|
|
|
|
return null_block_symbol;
|
|
}
|
|
|
|
/* Helper function that searches an array of symbols for one named NAME. */
|
|
|
|
static struct symbol *
|
|
search_symbol_list (const char *name, int num,
|
|
struct symbol **syms)
|
|
{
|
|
int i;
|
|
|
|
/* Maybe we should store a dictionary in here instead. */
|
|
for (i = 0; i < num; ++i)
|
|
{
|
|
if (strcmp (name, SYMBOL_NATURAL_NAME (syms[i])) == 0)
|
|
return syms[i];
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* Like cp_lookup_symbol_via_imports, but if BLOCK is a function, it
|
|
searches through the template parameters of the function and the
|
|
function's type. */
|
|
|
|
struct block_symbol
|
|
cp_lookup_symbol_imports_or_template (const char *scope,
|
|
const char *name,
|
|
const struct block *block,
|
|
const domain_enum domain)
|
|
{
|
|
struct symbol *function = BLOCK_FUNCTION (block);
|
|
struct block_symbol result;
|
|
|
|
if (symbol_lookup_debug)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"cp_lookup_symbol_imports_or_template"
|
|
" (%s, %s, %s, %s)\n",
|
|
scope, name, host_address_to_string (block),
|
|
domain_name (domain));
|
|
}
|
|
|
|
if (function != NULL && SYMBOL_LANGUAGE (function) == language_cplus)
|
|
{
|
|
/* Search the function's template parameters. */
|
|
if (SYMBOL_IS_CPLUS_TEMPLATE_FUNCTION (function))
|
|
{
|
|
struct template_symbol *templ
|
|
= (struct template_symbol *) function;
|
|
struct symbol *sym = search_symbol_list (name,
|
|
templ->n_template_arguments,
|
|
templ->template_arguments);
|
|
|
|
if (sym != NULL)
|
|
{
|
|
if (symbol_lookup_debug)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"cp_lookup_symbol_imports_or_template"
|
|
" (...) = %s\n",
|
|
host_address_to_string (sym));
|
|
}
|
|
return (struct block_symbol) {sym, block};
|
|
}
|
|
}
|
|
|
|
/* Search the template parameters of the function's defining
|
|
context. */
|
|
if (SYMBOL_NATURAL_NAME (function))
|
|
{
|
|
struct type *context;
|
|
std::string name_copy (SYMBOL_NATURAL_NAME (function));
|
|
const struct language_defn *lang = language_def (language_cplus);
|
|
struct gdbarch *arch = symbol_arch (function);
|
|
const struct block *parent = BLOCK_SUPERBLOCK (block);
|
|
struct symbol *sym;
|
|
|
|
while (1)
|
|
{
|
|
unsigned int prefix_len
|
|
= cp_entire_prefix_len (name_copy.c_str ());
|
|
|
|
if (prefix_len == 0)
|
|
context = NULL;
|
|
else
|
|
{
|
|
name_copy.erase (prefix_len);
|
|
context = lookup_typename (lang, arch,
|
|
name_copy.c_str (),
|
|
parent, 1);
|
|
}
|
|
|
|
if (context == NULL)
|
|
break;
|
|
|
|
sym
|
|
= search_symbol_list (name,
|
|
TYPE_N_TEMPLATE_ARGUMENTS (context),
|
|
TYPE_TEMPLATE_ARGUMENTS (context));
|
|
if (sym != NULL)
|
|
{
|
|
if (symbol_lookup_debug)
|
|
{
|
|
fprintf_unfiltered
|
|
(gdb_stdlog,
|
|
"cp_lookup_symbol_imports_or_template (...) = %s\n",
|
|
host_address_to_string (sym));
|
|
}
|
|
return (struct block_symbol) {sym, parent};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
result = cp_lookup_symbol_via_imports (scope, name, block, domain, 0, 1, 1);
|
|
if (symbol_lookup_debug)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"cp_lookup_symbol_imports_or_template (...) = %s\n",
|
|
result.symbol != NULL
|
|
? host_address_to_string (result.symbol) : "NULL");
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/* Search for NAME by applying relevant import statements belonging to BLOCK
|
|
and its parents. SCOPE is the namespace scope of the context in which the
|
|
search is being evaluated. */
|
|
|
|
static struct block_symbol
|
|
cp_lookup_symbol_via_all_imports (const char *scope, const char *name,
|
|
const struct block *block,
|
|
const domain_enum domain)
|
|
{
|
|
struct block_symbol sym;
|
|
|
|
while (block != NULL)
|
|
{
|
|
sym = cp_lookup_symbol_via_imports (scope, name, block, domain, 0, 0, 1);
|
|
if (sym.symbol)
|
|
return sym;
|
|
|
|
block = BLOCK_SUPERBLOCK (block);
|
|
}
|
|
|
|
return null_block_symbol;
|
|
}
|
|
|
|
/* Searches for NAME in the current namespace, and by applying
|
|
relevant import statements belonging to BLOCK and its parents.
|
|
SCOPE is the namespace scope of the context in which the search is
|
|
being evaluated. */
|
|
|
|
struct block_symbol
|
|
cp_lookup_symbol_namespace (const char *scope,
|
|
const char *name,
|
|
const struct block *block,
|
|
const domain_enum domain)
|
|
{
|
|
struct block_symbol sym;
|
|
|
|
if (symbol_lookup_debug)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"cp_lookup_symbol_namespace (%s, %s, %s, %s)\n",
|
|
scope, name, host_address_to_string (block),
|
|
domain_name (domain));
|
|
}
|
|
|
|
/* First, try to find the symbol in the given namespace. */
|
|
sym = cp_lookup_symbol_in_namespace (scope, name, block, domain, 1);
|
|
|
|
/* Search for name in namespaces imported to this and parent blocks. */
|
|
if (sym.symbol == NULL)
|
|
sym = cp_lookup_symbol_via_all_imports (scope, name, block, domain);
|
|
|
|
if (symbol_lookup_debug)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"cp_lookup_symbol_namespace (...) = %s\n",
|
|
sym.symbol != NULL
|
|
? host_address_to_string (sym.symbol) : "NULL");
|
|
}
|
|
return sym;
|
|
}
|
|
|
|
/* Lookup NAME at namespace scope (or, in C terms, in static and
|
|
global variables). SCOPE is the namespace that the current
|
|
function is defined within; only consider namespaces whose length
|
|
is at least SCOPE_LEN. Other arguments are as in
|
|
cp_lookup_symbol_nonlocal.
|
|
|
|
For example, if we're within a function A::B::f and looking for a
|
|
symbol x, this will get called with NAME = "x", SCOPE = "A::B", and
|
|
SCOPE_LEN = 0. It then calls itself with NAME and SCOPE the same,
|
|
but with SCOPE_LEN = 1. And then it calls itself with NAME and
|
|
SCOPE the same, but with SCOPE_LEN = 4. This third call looks for
|
|
"A::B::x"; if it doesn't find it, then the second call looks for
|
|
"A::x", and if that call fails, then the first call looks for
|
|
"x". */
|
|
|
|
static struct block_symbol
|
|
lookup_namespace_scope (const struct language_defn *langdef,
|
|
const char *name,
|
|
const struct block *block,
|
|
const domain_enum domain,
|
|
const char *scope,
|
|
int scope_len)
|
|
{
|
|
char *the_namespace;
|
|
|
|
if (scope[scope_len] != '\0')
|
|
{
|
|
/* Recursively search for names in child namespaces first. */
|
|
|
|
struct block_symbol sym;
|
|
int new_scope_len = scope_len;
|
|
|
|
/* If the current scope is followed by "::", skip past that. */
|
|
if (new_scope_len != 0)
|
|
{
|
|
gdb_assert (scope[new_scope_len] == ':');
|
|
new_scope_len += 2;
|
|
}
|
|
new_scope_len += cp_find_first_component (scope + new_scope_len);
|
|
sym = lookup_namespace_scope (langdef, name, block, domain,
|
|
scope, new_scope_len);
|
|
if (sym.symbol != NULL)
|
|
return sym;
|
|
}
|
|
|
|
/* Okay, we didn't find a match in our children, so look for the
|
|
name in the current namespace.
|
|
|
|
If we there is no scope and we know we have a bare symbol, then short
|
|
circuit everything and call cp_lookup_bare_symbol directly.
|
|
This isn't an optimization, rather it allows us to pass LANGDEF which
|
|
is needed for primitive type lookup. The test doesn't have to be
|
|
perfect: if NAME is a bare symbol that our test doesn't catch (e.g., a
|
|
template symbol with "::" in the argument list) then
|
|
cp_lookup_symbol_in_namespace will catch it. */
|
|
|
|
if (scope_len == 0 && strchr (name, ':') == NULL)
|
|
return cp_lookup_bare_symbol (langdef, name, block, domain, 1);
|
|
|
|
the_namespace = (char *) alloca (scope_len + 1);
|
|
strncpy (the_namespace, scope, scope_len);
|
|
the_namespace[scope_len] = '\0';
|
|
return cp_lookup_symbol_in_namespace (the_namespace, name,
|
|
block, domain, 1);
|
|
}
|
|
|
|
/* The C++-specific version of name lookup for static and global
|
|
names. This makes sure that names get looked for in all namespaces
|
|
that are in scope. NAME is the natural name of the symbol that
|
|
we're looking for, BLOCK is the block that we're searching within,
|
|
DOMAIN says what kind of symbols we're looking for. */
|
|
|
|
struct block_symbol
|
|
cp_lookup_symbol_nonlocal (const struct language_defn *langdef,
|
|
const char *name,
|
|
const struct block *block,
|
|
const domain_enum domain)
|
|
{
|
|
struct block_symbol sym;
|
|
const char *scope = block_scope (block);
|
|
|
|
if (symbol_lookup_debug)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"cp_lookup_symbol_non_local"
|
|
" (%s, %s (scope %s), %s)\n",
|
|
name, host_address_to_string (block), scope,
|
|
domain_name (domain));
|
|
}
|
|
|
|
/* First, try to find the symbol in the given namespace, and all
|
|
containing namespaces. */
|
|
sym = lookup_namespace_scope (langdef, name, block, domain, scope, 0);
|
|
|
|
/* Search for name in namespaces imported to this and parent blocks. */
|
|
if (sym.symbol == NULL)
|
|
sym = cp_lookup_symbol_via_all_imports (scope, name, block, domain);
|
|
|
|
if (symbol_lookup_debug)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"cp_lookup_symbol_nonlocal (...) = %s\n",
|
|
(sym.symbol != NULL
|
|
? host_address_to_string (sym.symbol)
|
|
: "NULL"));
|
|
}
|
|
return sym;
|
|
}
|
|
|
|
/* Search through the base classes of PARENT_TYPE for a base class
|
|
named NAME and return its type. If not found, return NULL. */
|
|
|
|
struct type *
|
|
cp_find_type_baseclass_by_name (struct type *parent_type, const char *name)
|
|
{
|
|
int i;
|
|
|
|
parent_type = check_typedef (parent_type);
|
|
for (i = 0; i < TYPE_N_BASECLASSES (parent_type); ++i)
|
|
{
|
|
struct type *type = check_typedef (TYPE_BASECLASS (parent_type, i));
|
|
const char *base_name = TYPE_BASECLASS_NAME (parent_type, i);
|
|
|
|
if (base_name == NULL)
|
|
continue;
|
|
|
|
if (streq (base_name, name))
|
|
return type;
|
|
|
|
type = cp_find_type_baseclass_by_name (type, name);
|
|
if (type != NULL)
|
|
return type;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Search through the base classes of PARENT_TYPE for a symbol named
|
|
NAME in block BLOCK. */
|
|
|
|
static struct block_symbol
|
|
find_symbol_in_baseclass (struct type *parent_type, const char *name,
|
|
const struct block *block, const domain_enum domain,
|
|
int is_in_anonymous)
|
|
{
|
|
int i;
|
|
struct block_symbol sym;
|
|
|
|
sym.symbol = NULL;
|
|
sym.block = NULL;
|
|
|
|
for (i = 0; i < TYPE_N_BASECLASSES (parent_type); ++i)
|
|
{
|
|
struct type *base_type = TYPE_BASECLASS (parent_type, i);
|
|
const char *base_name = TYPE_BASECLASS_NAME (parent_type, i);
|
|
|
|
if (base_name == NULL)
|
|
continue;
|
|
|
|
std::string concatenated_name = std::string (base_name) + "::" + name;
|
|
|
|
sym = cp_lookup_nested_symbol_1 (base_type, name,
|
|
concatenated_name.c_str (),
|
|
block, domain, 1, is_in_anonymous);
|
|
if (sym.symbol != NULL)
|
|
break;
|
|
}
|
|
|
|
return sym;
|
|
}
|
|
|
|
/* Helper function to look up NESTED_NAME in CONTAINER_TYPE and in DOMAIN
|
|
and within the context of BLOCK.
|
|
NESTED_NAME may have scope ("::").
|
|
CONTAINER_TYPE needn't have been "check_typedef'd" yet.
|
|
CONCATENATED_NAME is the fully scoped spelling of NESTED_NAME, it is
|
|
passed as an argument so that callers can control how space for it is
|
|
allocated.
|
|
If BASIC_LOOKUP is non-zero then perform a basic lookup of
|
|
CONCATENATED_NAME. See cp_basic_lookup_symbol for details.
|
|
If IS_IN_ANONYMOUS is non-zero then CONCATENATED_NAME is in an anonymous
|
|
namespace. */
|
|
|
|
static struct block_symbol
|
|
cp_lookup_nested_symbol_1 (struct type *container_type,
|
|
const char *nested_name,
|
|
const char *concatenated_name,
|
|
const struct block *block,
|
|
const domain_enum domain,
|
|
int basic_lookup, int is_in_anonymous)
|
|
{
|
|
struct block_symbol sym;
|
|
|
|
/* NOTE: carlton/2003-11-10: We don't treat C++ class members
|
|
of classes like, say, data or function members. Instead,
|
|
they're just represented by symbols whose names are
|
|
qualified by the name of the surrounding class. This is
|
|
just like members of namespaces; in particular,
|
|
cp_basic_lookup_symbol works when looking them up. */
|
|
|
|
if (basic_lookup)
|
|
{
|
|
sym = cp_basic_lookup_symbol (concatenated_name, block, domain,
|
|
is_in_anonymous);
|
|
if (sym.symbol != NULL)
|
|
return sym;
|
|
}
|
|
|
|
/* Now search all static file-level symbols. We have to do this for things
|
|
like typedefs in the class. We do not try to guess any imported
|
|
namespace as even the fully specified namespace search is already not
|
|
C++ compliant and more assumptions could make it too magic. */
|
|
|
|
/* First search in this symtab, what we want is possibly there. */
|
|
sym = lookup_symbol_in_static_block (concatenated_name, block, domain);
|
|
if (sym.symbol != NULL)
|
|
return sym;
|
|
|
|
/* Nope. We now have to search all static blocks in all objfiles,
|
|
even if block != NULL, because there's no guarantees as to which
|
|
symtab the symbol we want is in. Except for symbols defined in
|
|
anonymous namespaces should be treated as local to a single file,
|
|
which we just searched. */
|
|
if (!is_in_anonymous)
|
|
{
|
|
sym = lookup_static_symbol (concatenated_name, domain);
|
|
if (sym.symbol != NULL)
|
|
return sym;
|
|
}
|
|
|
|
/* If this is a class with baseclasses, search them next. */
|
|
container_type = check_typedef (container_type);
|
|
if (TYPE_N_BASECLASSES (container_type) > 0)
|
|
{
|
|
sym = find_symbol_in_baseclass (container_type, nested_name, block,
|
|
domain, is_in_anonymous);
|
|
if (sym.symbol != NULL)
|
|
return sym;
|
|
}
|
|
|
|
return null_block_symbol;
|
|
}
|
|
|
|
/* Look up a symbol named NESTED_NAME that is nested inside the C++
|
|
class or namespace given by PARENT_TYPE, from within the context
|
|
given by BLOCK, and in DOMAIN.
|
|
Return NULL if there is no such nested symbol. */
|
|
|
|
struct block_symbol
|
|
cp_lookup_nested_symbol (struct type *parent_type,
|
|
const char *nested_name,
|
|
const struct block *block,
|
|
const domain_enum domain)
|
|
{
|
|
/* type_name_no_tag_or_error provides better error reporting using the
|
|
original type. */
|
|
struct type *saved_parent_type = parent_type;
|
|
|
|
parent_type = check_typedef (parent_type);
|
|
|
|
if (symbol_lookup_debug)
|
|
{
|
|
const char *type_name = type_name_no_tag (saved_parent_type);
|
|
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"cp_lookup_nested_symbol (%s, %s, %s, %s)\n",
|
|
type_name != NULL ? type_name : "unnamed",
|
|
nested_name, host_address_to_string (block),
|
|
domain_name (domain));
|
|
}
|
|
|
|
switch (TYPE_CODE (parent_type))
|
|
{
|
|
case TYPE_CODE_STRUCT:
|
|
case TYPE_CODE_NAMESPACE:
|
|
case TYPE_CODE_UNION:
|
|
case TYPE_CODE_ENUM:
|
|
/* NOTE: Handle modules here as well, because Fortran is re-using the C++
|
|
specific code to lookup nested symbols in modules, by calling the
|
|
function pointer la_lookup_symbol_nonlocal, which ends up here. */
|
|
case TYPE_CODE_MODULE:
|
|
{
|
|
int size;
|
|
const char *parent_name = type_name_no_tag_or_error (saved_parent_type);
|
|
struct block_symbol sym;
|
|
char *concatenated_name;
|
|
int is_in_anonymous;
|
|
|
|
size = strlen (parent_name) + 2 + strlen (nested_name) + 1;
|
|
concatenated_name = (char *) alloca (size);
|
|
xsnprintf (concatenated_name, size, "%s::%s",
|
|
parent_name, nested_name);
|
|
is_in_anonymous = cp_is_in_anonymous (concatenated_name);
|
|
|
|
sym = cp_lookup_nested_symbol_1 (parent_type, nested_name,
|
|
concatenated_name, block, domain,
|
|
1, is_in_anonymous);
|
|
|
|
if (symbol_lookup_debug)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"cp_lookup_nested_symbol (...) = %s\n",
|
|
(sym.symbol != NULL
|
|
? host_address_to_string (sym.symbol)
|
|
: "NULL"));
|
|
}
|
|
return sym;
|
|
}
|
|
|
|
case TYPE_CODE_FUNC:
|
|
case TYPE_CODE_METHOD:
|
|
if (symbol_lookup_debug)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"cp_lookup_nested_symbol (...) = NULL"
|
|
" (func/method)\n");
|
|
}
|
|
return null_block_symbol;
|
|
|
|
default:
|
|
internal_error (__FILE__, __LINE__,
|
|
_("cp_lookup_nested_symbol called "
|
|
"on a non-aggregate type."));
|
|
}
|
|
}
|
|
|
|
/* The C++-version of lookup_transparent_type. */
|
|
|
|
/* FIXME: carlton/2004-01-16: The problem that this is trying to
|
|
address is that, unfortunately, sometimes NAME is wrong: it may not
|
|
include the name of namespaces enclosing the type in question.
|
|
lookup_transparent_type gets called when the type in question
|
|
is a declaration, and we're trying to find its definition; but, for
|
|
declarations, our type name deduction mechanism doesn't work.
|
|
There's nothing we can do to fix this in general, I think, in the
|
|
absence of debug information about namespaces (I've filed PR
|
|
gdb/1511 about this); until such debug information becomes more
|
|
prevalent, one heuristic which sometimes looks is to search for the
|
|
definition in namespaces containing the current namespace.
|
|
|
|
We should delete this functions once the appropriate debug
|
|
information becomes more widespread. (GCC 3.4 will be the first
|
|
released version of GCC with such information.) */
|
|
|
|
struct type *
|
|
cp_lookup_transparent_type (const char *name)
|
|
{
|
|
/* First, try the honest way of looking up the definition. */
|
|
struct type *t = basic_lookup_transparent_type (name);
|
|
const char *scope;
|
|
|
|
if (t != NULL)
|
|
return t;
|
|
|
|
/* If that doesn't work and we're within a namespace, look there
|
|
instead. */
|
|
scope = block_scope (get_selected_block (0));
|
|
|
|
if (scope[0] == '\0')
|
|
return NULL;
|
|
|
|
return cp_lookup_transparent_type_loop (name, scope, 0);
|
|
}
|
|
|
|
/* Lookup the type definition associated to NAME in namespaces/classes
|
|
containing SCOPE whose name is strictly longer than LENGTH. LENGTH
|
|
must be the index of the start of a component of SCOPE. */
|
|
|
|
static struct type *
|
|
cp_lookup_transparent_type_loop (const char *name,
|
|
const char *scope,
|
|
int length)
|
|
{
|
|
int scope_length = length + cp_find_first_component (scope + length);
|
|
char *full_name;
|
|
|
|
/* If the current scope is followed by "::", look in the next
|
|
component. */
|
|
if (scope[scope_length] == ':')
|
|
{
|
|
struct type *retval
|
|
= cp_lookup_transparent_type_loop (name, scope,
|
|
scope_length + 2);
|
|
|
|
if (retval != NULL)
|
|
return retval;
|
|
}
|
|
|
|
full_name = (char *) alloca (scope_length + 2 + strlen (name) + 1);
|
|
strncpy (full_name, scope, scope_length);
|
|
memcpy (full_name + scope_length, "::", 2);
|
|
strcpy (full_name + scope_length + 2, name);
|
|
|
|
return basic_lookup_transparent_type (full_name);
|
|
}
|
|
|
|
/* This used to do something but was removed when it became
|
|
obsolete. */
|
|
|
|
static void
|
|
maintenance_cplus_namespace (const char *args, int from_tty)
|
|
{
|
|
printf_unfiltered (_("The `maint namespace' command was removed.\n"));
|
|
}
|
|
|
|
void
|
|
_initialize_cp_namespace (void)
|
|
{
|
|
struct cmd_list_element *cmd;
|
|
|
|
cmd = add_cmd ("namespace", class_maintenance,
|
|
maintenance_cplus_namespace,
|
|
_("Deprecated placeholder for removed functionality."),
|
|
&maint_cplus_cmd_list);
|
|
deprecate_cmd (cmd, NULL);
|
|
}
|