binutils-gdb/gdbsupport/parallel-for.h
Tom Tromey 20c4eb4226 Fix --disable-threading build
PR build/29110 points out that GDB fails to build on mingw when the
"win32" thread model is in use.  It turns out that the Fedora cross
tools using the "posix" thread model, which somehow manages to support
std::future, whereas the win32 model does not.

While looking into this, I found that the configuring with
--disable-threading will also cause a build failure.

This patch fixes this build by introducing a compatibility wrapper for
std::future.

I am not able to test the win32 thread model build, but I'm going to
ask the reporter to try this patch.

Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=29110
2022-05-10 08:15:40 -06:00

178 lines
4.6 KiB
C++

/* Parallel for loops
Copyright (C) 2019-2022 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#ifndef GDBSUPPORT_PARALLEL_FOR_H
#define GDBSUPPORT_PARALLEL_FOR_H
#include <algorithm>
#include <type_traits>
#include "gdbsupport/thread-pool.h"
namespace gdb
{
namespace detail
{
/* This is a helper class that is used to accumulate results for
parallel_for. There is a specialization for 'void', below. */
template<typename T>
struct par_for_accumulator
{
public:
explicit par_for_accumulator (size_t n_threads)
: m_futures (n_threads)
{
}
/* The result type that is accumulated. */
typedef std::vector<T> result_type;
/* Post the Ith task to a background thread, and store a future for
later. */
void post (size_t i, std::function<T ()> task)
{
m_futures[i]
= gdb::thread_pool::g_thread_pool->post_task (std::move (task));
}
/* Invoke TASK in the current thread, then compute all the results
from all background tasks and put them into a result vector,
which is returned. */
result_type finish (gdb::function_view<T ()> task)
{
result_type result (m_futures.size () + 1);
result.back () = task ();
for (size_t i = 0; i < m_futures.size (); ++i)
result[i] = m_futures[i].get ();
return result;
}
private:
/* A vector of futures coming from the tasks run in the
background. */
std::vector<gdb::future<T>> m_futures;
};
/* See the generic template. */
template<>
struct par_for_accumulator<void>
{
public:
explicit par_for_accumulator (size_t n_threads)
: m_futures (n_threads)
{
}
/* This specialization does not compute results. */
typedef void result_type;
void post (size_t i, std::function<void ()> task)
{
m_futures[i]
= gdb::thread_pool::g_thread_pool->post_task (std::move (task));
}
result_type finish (gdb::function_view<void ()> task)
{
task ();
for (auto &future : m_futures)
{
/* Use 'get' and not 'wait', to propagate any exception. */
future.get ();
}
}
private:
std::vector<gdb::future<void>> m_futures;
};
}
/* A very simple "parallel for". This splits the range of iterators
into subranges, and then passes each subrange to the callback. The
work may or may not be done in separate threads.
This approach was chosen over having the callback work on single
items because it makes it simple for the caller to do
once-per-subrange initialization and destruction.
The parameter N says how batching ought to be done -- there will be
at least N elements processed per thread. Setting N to 0 is not
allowed.
If the function returns a non-void type, then a vector of the
results is returned. The size of the resulting vector depends on
the number of threads that were used. */
template<class RandomIt, class RangeFunction>
typename gdb::detail::par_for_accumulator<
typename std::result_of<RangeFunction (RandomIt, RandomIt)>::type
>::result_type
parallel_for_each (unsigned n, RandomIt first, RandomIt last,
RangeFunction callback)
{
using result_type
= typename std::result_of<RangeFunction (RandomIt, RandomIt)>::type;
size_t n_threads = thread_pool::g_thread_pool->thread_count ();
size_t n_elements = last - first;
size_t elts_per_thread = 0;
if (n_threads > 1)
{
/* Require that there should be at least N elements in a
thread. */
gdb_assert (n > 0);
if (n_elements / n_threads < n)
n_threads = std::max (n_elements / n, (size_t) 1);
elts_per_thread = n_elements / n_threads;
}
size_t count = n_threads == 0 ? 0 : n_threads - 1;
gdb::detail::par_for_accumulator<result_type> results (count);
for (int i = 0; i < count; ++i)
{
RandomIt end = first + elts_per_thread;
results.post (i, [=] ()
{
return callback (first, end);
});
first = end;
}
/* Process all the remaining elements in the main thread. */
return results.finish ([=] ()
{
return callback (first, last);
});
}
}
#endif /* GDBSUPPORT_PARALLEL_FOR_H */