binutils-gdb/bfd/pei-x86_64.c
2014-03-05 22:16:15 +10:30

657 lines
19 KiB
C

/* BFD back-end for Intel 386 PE IMAGE COFF files.
Copyright (C) 2006-2014 Free Software Foundation, Inc.
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
MA 02110-1301, USA.
Written by Kai Tietz, OneVision Software GmbH&CoKg. */
#include "sysdep.h"
#include "bfd.h"
#define TARGET_SYM x86_64pei_vec
#define TARGET_NAME "pei-x86-64"
#define COFF_IMAGE_WITH_PE
#define COFF_WITH_PE
#define COFF_WITH_pex64
#define PCRELOFFSET TRUE
#if defined (USE_MINGW64_LEADING_UNDERSCORES)
#define TARGET_UNDERSCORE '_'
#else
#define TARGET_UNDERSCORE 0
#endif
/* Long section names not allowed in executable images, only object files. */
#define COFF_LONG_SECTION_NAMES 0
#define COFF_SUPPORT_GNU_LINKONCE
#define COFF_LONG_FILENAMES
#define PDATA_ROW_SIZE (3 * 4)
#define COFF_SECTION_ALIGNMENT_ENTRIES \
{ COFF_SECTION_NAME_EXACT_MATCH (".bss"), \
COFF_ALIGNMENT_FIELD_EMPTY, COFF_ALIGNMENT_FIELD_EMPTY, 4 }, \
{ COFF_SECTION_NAME_PARTIAL_MATCH (".data"), \
COFF_ALIGNMENT_FIELD_EMPTY, COFF_ALIGNMENT_FIELD_EMPTY, 4 }, \
{ COFF_SECTION_NAME_PARTIAL_MATCH (".rdata"), \
COFF_ALIGNMENT_FIELD_EMPTY, COFF_ALIGNMENT_FIELD_EMPTY, 4 }, \
{ COFF_SECTION_NAME_PARTIAL_MATCH (".text"), \
COFF_ALIGNMENT_FIELD_EMPTY, COFF_ALIGNMENT_FIELD_EMPTY, 4 }, \
{ COFF_SECTION_NAME_PARTIAL_MATCH (".idata"), \
COFF_ALIGNMENT_FIELD_EMPTY, COFF_ALIGNMENT_FIELD_EMPTY, 2 }, \
{ COFF_SECTION_NAME_EXACT_MATCH (".pdata"), \
COFF_ALIGNMENT_FIELD_EMPTY, COFF_ALIGNMENT_FIELD_EMPTY, 2 }, \
{ COFF_SECTION_NAME_PARTIAL_MATCH (".debug"), \
COFF_ALIGNMENT_FIELD_EMPTY, COFF_ALIGNMENT_FIELD_EMPTY, 0 }, \
{ COFF_SECTION_NAME_PARTIAL_MATCH (".gnu.linkonce.wi."), \
COFF_ALIGNMENT_FIELD_EMPTY, COFF_ALIGNMENT_FIELD_EMPTY, 0 }
/* Note we have to make sure not to include headers twice.
Not all headers are wrapped in #ifdef guards, so we define
PEI_HEADERS to prevent double including in coff-x86_64.c */
#define PEI_HEADERS
#include "sysdep.h"
#include "bfd.h"
#include "libbfd.h"
#include "coff/x86_64.h"
#include "coff/internal.h"
#include "coff/pe.h"
#include "libcoff.h"
#include "libpei.h"
#include "libiberty.h"
#undef AOUTSZ
#define AOUTSZ PEPAOUTSZ
#define PEAOUTHDR PEPAOUTHDR
/* Name of registers according to SEH conventions. */
static const char * const pex_regs[16] = {
"rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi",
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
};
/* Swap in a runtime function. */
static void
pex64_get_runtime_function (bfd *abfd, struct pex64_runtime_function *rf,
const void *data)
{
const struct external_pex64_runtime_function *ex_rf =
(const struct external_pex64_runtime_function *) data;
rf->rva_BeginAddress = bfd_get_32 (abfd, ex_rf->rva_BeginAddress);
rf->rva_EndAddress = bfd_get_32 (abfd, ex_rf->rva_EndAddress);
rf->rva_UnwindData = bfd_get_32 (abfd, ex_rf->rva_UnwindData);
}
/* Swap in unwind info header. */
static void
pex64_get_unwind_info (bfd *abfd, struct pex64_unwind_info *ui, void *data)
{
struct external_pex64_unwind_info *ex_ui =
(struct external_pex64_unwind_info *) data;
bfd_byte *ex_dta = (bfd_byte *) data;
memset (ui, 0, sizeof (struct pex64_unwind_info));
ui->Version = PEX64_UWI_VERSION (ex_ui->Version_Flags);
ui->Flags = PEX64_UWI_FLAGS (ex_ui->Version_Flags);
ui->SizeOfPrologue = (bfd_vma) ex_ui->SizeOfPrologue;
ui->CountOfCodes = (bfd_vma) ex_ui->CountOfCodes;
ui->FrameRegister = PEX64_UWI_FRAMEREG (ex_ui->FrameRegisterOffset);
ui->FrameOffset = PEX64_UWI_FRAMEOFF (ex_ui->FrameRegisterOffset);
ui->sizeofUnwindCodes = PEX64_UWI_SIZEOF_UWCODE_ARRAY (ui->CountOfCodes);
ui->SizeOfBlock = ui->sizeofUnwindCodes + 4;
ui->rawUnwindCodes = &ex_dta[4];
ex_dta += ui->SizeOfBlock;
switch (ui->Flags)
{
case UNW_FLAG_CHAININFO:
ui->rva_BeginAddress = bfd_get_32 (abfd, ex_dta + 0);
ui->rva_EndAddress = bfd_get_32 (abfd, ex_dta + 4);
ui->rva_UnwindData = bfd_get_32 (abfd, ex_dta + 8);
ui->SizeOfBlock += 12;
return;
case UNW_FLAG_EHANDLER:
case UNW_FLAG_UHANDLER:
case UNW_FLAG_FHANDLER:
ui->rva_ExceptionHandler = bfd_get_32 (abfd, ex_dta);
ui->SizeOfBlock += 4;
return;
default:
return;
}
}
/* Display unwind codes. */
static void
pex64_xdata_print_uwd_codes (FILE *file, bfd *abfd,
struct pex64_unwind_info *ui,
struct pex64_runtime_function *rf)
{
unsigned int i;
unsigned int tmp; /* At least 32 bits. */
int save_allowed;
if (ui->CountOfCodes == 0 || ui->rawUnwindCodes == NULL)
return;
/* According to UNWIND_CODE documentation:
If an FP reg is used, the any unwind code taking an offset must only be
used after the FP reg is established in the prolog.
But there are counter examples of that in system dlls... */
save_allowed = TRUE;
i = 0;
if (ui->Version == 2
&& PEX64_UNWCODE_CODE (ui->rawUnwindCodes[1]) == UWOP_EPILOG)
{
/* Display epilog opcode (whose docoding is not fully documented).
Looks to be designed to speed-up unwinding, as there is no need
to decode instruction flow if outside an epilog. */
unsigned int func_size = rf->rva_EndAddress - rf->rva_BeginAddress;
fprintf (file, "\tv2 epilog (length: %02x) at pc+:",
ui->rawUnwindCodes[0]);
if (PEX64_UNWCODE_INFO (ui->rawUnwindCodes[1]))
fprintf (file, " 0x%x", func_size - ui->rawUnwindCodes[0]);
i++;
for (; i < ui->CountOfCodes; i++)
{
const bfd_byte *dta = ui->rawUnwindCodes + 2 * i;
unsigned int off;
if (PEX64_UNWCODE_CODE (dta[1]) != UWOP_EPILOG)
break;
off = dta[0] | (PEX64_UNWCODE_INFO (dta[1]) << 8);
if (off == 0)
fprintf (file, " [pad]");
else
fprintf (file, " 0x%x", func_size - off);
}
fputc ('\n', file);
}
for (; i < ui->CountOfCodes; i++)
{
const bfd_byte *dta = ui->rawUnwindCodes + 2 * i;
unsigned int info = PEX64_UNWCODE_INFO (dta[1]);
int unexpected = FALSE;
fprintf (file, "\t pc+0x%02x: ", (unsigned int) dta[0]);
switch (PEX64_UNWCODE_CODE (dta[1]))
{
case UWOP_PUSH_NONVOL:
fprintf (file, "push %s", pex_regs[info]);
break;
case UWOP_ALLOC_LARGE:
if (info == 0)
{
tmp = bfd_get_16 (abfd, &dta[2]) * 8;
i++;
}
else
{
tmp = bfd_get_32 (abfd, &dta[2]);
i += 2;
}
fprintf (file, "alloc large area: rsp = rsp - 0x%x", tmp);
break;
case UWOP_ALLOC_SMALL:
fprintf (file, "alloc small area: rsp = rsp - 0x%x", (info + 1) * 8);
break;
case UWOP_SET_FPREG:
/* According to the documentation, info field is unused. */
fprintf (file, "FPReg: %s = rsp + 0x%x (info = 0x%x)",
pex_regs[ui->FrameRegister],
(unsigned int) ui->FrameOffset * 16, info);
unexpected = ui->FrameRegister == 0;
save_allowed = FALSE;
break;
case UWOP_SAVE_NONVOL:
tmp = bfd_get_16 (abfd, &dta[2]) * 8;
i++;
fprintf (file, "save %s at rsp + 0x%x", pex_regs[info], tmp);
unexpected = !save_allowed;
break;
case UWOP_SAVE_NONVOL_FAR:
tmp = bfd_get_32 (abfd, &dta[2]);
i += 2;
fprintf (file, "save %s at rsp + 0x%x", pex_regs[info], tmp);
unexpected = !save_allowed;
break;
case UWOP_SAVE_XMM:
if (ui->Version == 1)
{
tmp = bfd_get_16 (abfd, &dta[2]) * 8;
i++;
fprintf (file, "save mm%u at rsp + 0x%x", info, tmp);
unexpected = !save_allowed;
}
else if (ui->Version == 2)
{
fprintf (file, "epilog %02x %01x", dta[0], info);
unexpected = TRUE;
}
break;
case UWOP_SAVE_XMM_FAR:
tmp = bfd_get_32 (abfd, &dta[2]) * 8;
i += 2;
fprintf (file, "save mm%u at rsp + 0x%x", info, tmp);
unexpected = !save_allowed;
break;
case UWOP_SAVE_XMM128:
tmp = bfd_get_16 (abfd, &dta[2]) * 16;
i++;
fprintf (file, "save xmm%u at rsp + 0x%x", info, tmp);
unexpected = !save_allowed;
break;
case UWOP_SAVE_XMM128_FAR:
tmp = bfd_get_32 (abfd, &dta[2]) * 16;
i += 2;
fprintf (file, "save xmm%u at rsp + 0x%x", info, tmp);
unexpected = !save_allowed;
break;
case UWOP_PUSH_MACHFRAME:
fprintf (file, "interrupt entry (SS, old RSP, EFLAGS, CS, RIP");
if (info == 0)
fprintf (file, ")");
else if (info == 1)
fprintf (file, ",ErrorCode)");
else
fprintf (file, ", unknown(%u))", info);
break;
default:
/* Already caught by the previous scan. */
abort ();
}
if (unexpected)
fprintf (file, " [Unexpected!]");
fputc ('\n', file);
}
}
/* Check wether section SEC_NAME contains the xdata at address ADDR. */
static asection *
pex64_get_section_by_rva (bfd *abfd, bfd_vma addr, const char *sec_name)
{
asection *section = bfd_get_section_by_name (abfd, sec_name);
bfd_vma vsize;
bfd_size_type datasize = 0;
if (section == NULL
|| coff_section_data (abfd, section) == NULL
|| pei_section_data (abfd, section) == NULL)
return NULL;
vsize = section->vma - pe_data (abfd)->pe_opthdr.ImageBase;
datasize = section->size;
if (!datasize || vsize > addr || (vsize + datasize) < addr)
return NULL;
return section;
}
/* Dump xdata at for function RF to FILE. The argument XDATA_SECTION
designate the bfd section containing the xdata, XDATA is its content,
and ENDX the size if known (or NULL). */
static void
pex64_dump_xdata (FILE *file, bfd *abfd,
asection *xdata_section, bfd_byte *xdata, bfd_vma *endx,
struct pex64_runtime_function *rf)
{
bfd_vma vaddr;
bfd_vma end_addr;
bfd_vma addr = rf->rva_UnwindData;
struct pex64_unwind_info ui;
vaddr = xdata_section->vma - pe_data (abfd)->pe_opthdr.ImageBase;
addr -= vaddr;
if (endx)
end_addr = endx[0] - vaddr;
else
end_addr = (xdata_section->rawsize != 0 ?
xdata_section->rawsize : xdata_section->size);
pex64_get_unwind_info (abfd, &ui, &xdata[addr]);
if (ui.Version != 1 && ui.Version != 2)
{
unsigned int i;
fprintf (file, "\tVersion %u (unknown).\n",
(unsigned int) ui.Version);
for (i = 0; addr < end_addr; addr += 1, i++)
{
if ((i & 15) == 0)
fprintf (file, "\t %03x:", i);
fprintf (file, " %02x", xdata[addr]);
if ((i & 15) == 15)
fprintf (file, "\n");
}
if ((i & 15) != 0)
fprintf (file, "\n");
return;
}
fprintf (file, "\tVersion: %d, Flags: ", ui.Version);
switch (ui.Flags)
{
case UNW_FLAG_NHANDLER:
fprintf (file, "none");
break;
case UNW_FLAG_EHANDLER:
fprintf (file, "UNW_FLAG_EHANDLER");
break;
case UNW_FLAG_UHANDLER:
fprintf (file, "UNW_FLAG_UHANDLER");
break;
case UNW_FLAG_FHANDLER:
fprintf
(file, "UNW_FLAG_EHANDLER | UNW_FLAG_UHANDLER");
break;
case UNW_FLAG_CHAININFO:
fprintf (file, "UNW_FLAG_CHAININFO");
break;
default:
fprintf (file, "unknown flags value 0x%x", (unsigned int) ui.Flags);
break;
}
fputc ('\n', file);
fprintf (file, "\tNbr codes: %u, ", (unsigned int) ui.CountOfCodes);
fprintf (file, "Prologue size: 0x%02x, Frame offset: 0x%x, ",
(unsigned int) ui.SizeOfPrologue, (unsigned int) ui.FrameOffset);
fprintf (file, "Frame reg: %s\n",
ui.FrameRegister == 0 ? "none"
: pex_regs[(unsigned int) ui.FrameRegister]);
pex64_xdata_print_uwd_codes (file, abfd, &ui, rf);
switch (ui.Flags)
{
case UNW_FLAG_EHANDLER:
case UNW_FLAG_UHANDLER:
case UNW_FLAG_FHANDLER:
fprintf (file, "\tHandler: ");
fprintf_vma (file, (ui.rva_ExceptionHandler
+ pe_data (abfd)->pe_opthdr.ImageBase));
fprintf (file, ".\n");
break;
case UNW_FLAG_CHAININFO:
fprintf (file, "\tChain: start: ");
fprintf_vma (file, ui.rva_BeginAddress);
fprintf (file, ", end: ");
fprintf_vma (file, ui.rva_EndAddress);
fprintf (file, "\n\t unwind data: ");
fprintf_vma (file, ui.rva_UnwindData);
fprintf (file, ".\n");
break;
}
/* Now we need end of this xdata block. */
addr += ui.SizeOfBlock;
if (addr < end_addr)
{
unsigned int i;
fprintf (file,"\tUser data:\n");
for (i = 0; addr < end_addr; addr += 1, i++)
{
if ((i & 15) == 0)
fprintf (file, "\t %03x:", i);
fprintf (file, " %02x", xdata[addr]);
if ((i & 15) == 15)
fprintf (file, "\n");
}
if ((i & 15) != 0)
fprintf (file, "\n");
}
}
/* Helper function to sort xdata. The entries of xdata are sorted to know
the size of each entry. */
static int
sort_xdata_arr (const void *l, const void *r)
{
const bfd_vma *lp = (const bfd_vma *) l;
const bfd_vma *rp = (const bfd_vma *) r;
if (*lp == *rp)
return 0;
return (*lp < *rp ? -1 : 1);
}
/* Display unwind tables for x86-64. */
static bfd_boolean
pex64_bfd_print_pdata (bfd *abfd, void *vfile)
{
FILE *file = (FILE *) vfile;
bfd_byte *pdata = NULL;
bfd_byte *xdata = NULL;
asection *pdata_section = bfd_get_section_by_name (abfd, ".pdata");
asection *xdata_section;
bfd_vma xdata_base;
bfd_size_type i;
bfd_size_type stop;
bfd_vma prev_beginaddress = 0;
bfd_vma prev_unwinddata_rva = 0;
bfd_vma imagebase;
int onaline = PDATA_ROW_SIZE;
int seen_error = 0;
bfd_vma *xdata_arr = NULL;
int xdata_arr_cnt;
/* Sanity checks. */
if (pdata_section == NULL
|| coff_section_data (abfd, pdata_section) == NULL
|| pei_section_data (abfd, pdata_section) == NULL)
return TRUE;
stop = pei_section_data (abfd, pdata_section)->virt_size;
if ((stop % onaline) != 0)
fprintf (file,
_("warning: .pdata section size (%ld) is not a multiple of %d\n"),
(long) stop, onaline);
/* Display functions table. */
fprintf (file,
_("\nThe Function Table (interpreted .pdata section contents)\n"));
fprintf (file, _("vma:\t\t\tBeginAddress\t EndAddress\t UnwindData\n"));
if (!bfd_malloc_and_get_section (abfd, pdata_section, &pdata))
goto done;
/* Table of xdata entries. */
xdata_arr = (bfd_vma *) xmalloc (sizeof (bfd_vma) * ((stop / onaline) + 1));
xdata_arr_cnt = 0;
imagebase = pe_data (abfd)->pe_opthdr.ImageBase;
for (i = 0; i < stop; i += onaline)
{
struct pex64_runtime_function rf;
if (i + PDATA_ROW_SIZE > stop)
break;
pex64_get_runtime_function (abfd, &rf, &pdata[i]);
if (rf.rva_BeginAddress == 0 && rf.rva_EndAddress == 0
&& rf.rva_UnwindData == 0)
/* We are probably into the padding of the section now. */
break;
fputc (' ', file);
fprintf_vma (file, i + pdata_section->vma);
fprintf (file, ":\t");
fprintf_vma (file, imagebase + rf.rva_BeginAddress);
fprintf (file, " ");
fprintf_vma (file, imagebase + rf.rva_EndAddress);
fprintf (file, " ");
fprintf_vma (file, imagebase + rf.rva_UnwindData);
fprintf (file, "\n");
if (i != 0 && rf.rva_BeginAddress <= prev_beginaddress)
{
seen_error = 1;
fprintf (file, " has %s begin address as predecessor\n",
(rf.rva_BeginAddress < prev_beginaddress ? "smaller" : "same"));
}
prev_beginaddress = rf.rva_BeginAddress;
/* Now we check for negative addresses. */
if ((prev_beginaddress & 0x80000000) != 0)
{
seen_error = 1;
fprintf (file, " has negative begin address\n");
}
if ((rf.rva_EndAddress & 0x80000000) != 0)
{
seen_error = 1;
fprintf (file, " has negative end address\n");
}
if ((rf.rva_UnwindData & 0x80000000) != 0)
{
seen_error = 1;
fprintf (file, " has negative unwind address\n");
}
if (rf.rva_UnwindData && !PEX64_IS_RUNTIME_FUNCTION_CHAINED (&rf))
xdata_arr[xdata_arr_cnt++] = rf.rva_UnwindData;
}
if (seen_error)
goto done;
/* Add end of list marker. */
xdata_arr[xdata_arr_cnt++] = ~((bfd_vma) 0);
/* Sort start RVAs of xdata. */
if (xdata_arr_cnt > 1)
qsort (xdata_arr, (size_t) xdata_arr_cnt, sizeof (bfd_vma),
sort_xdata_arr);
/* Find the section containing the unwind data (.xdata). */
xdata_base = xdata_arr[0];
xdata_section = pex64_get_section_by_rva (abfd, xdata_base, ".rdata");
if (!xdata_section)
xdata_section = pex64_get_section_by_rva (abfd, xdata_base, ".data");
if (!xdata_section)
xdata_section = pex64_get_section_by_rva (abfd, xdata_base, ".xdata");
if (!xdata_section)
xdata_section = pex64_get_section_by_rva (abfd, xdata_base, ".pdata");
if (!xdata_section)
xdata_section = pex64_get_section_by_rva (abfd, xdata_base, ".text");
if (!xdata_section
|| !bfd_malloc_and_get_section (abfd, xdata_section, &xdata))
goto done;
/* Do dump of pdata related xdata. */
for (i = 0; i < stop; i += onaline)
{
struct pex64_runtime_function rf;
if (i + PDATA_ROW_SIZE > stop)
break;
pex64_get_runtime_function (abfd, &rf, &pdata[i]);
if (rf.rva_BeginAddress == 0 && rf.rva_EndAddress == 0
&& rf.rva_UnwindData == 0)
/* We are probably into the padding of the section now. */
break;
if (i == 0)
fprintf (file, "\nDump of .xdata\n");
fputc (' ', file);
fprintf_vma (file, rf.rva_UnwindData + imagebase);
if (prev_unwinddata_rva == rf.rva_UnwindData)
{
/* Do not dump again the xdata for the same entry. */
fprintf (file, " also used for function at ");
fprintf_vma (file, rf.rva_BeginAddress + imagebase);
fputc ('\n', file);
continue;
}
else
prev_unwinddata_rva = rf.rva_UnwindData;
fprintf (file, " (rva: %08x): ",
(unsigned int) rf.rva_UnwindData);
fprintf_vma (file, rf.rva_BeginAddress + imagebase);
fprintf (file, " - ");
fprintf_vma (file, rf.rva_EndAddress + imagebase);
fputc ('\n', file);
if (rf.rva_UnwindData != 0)
{
if (PEX64_IS_RUNTIME_FUNCTION_CHAINED (&rf))
{
bfd_vma altent = PEX64_GET_UNWINDDATA_UNIFIED_RVA (&rf);
bfd_vma pdata_vma = bfd_get_section_vma (abfd, pdata_section);
struct pex64_runtime_function arf;
fprintf (file, "\t shares information with ");
altent += imagebase;
if (altent >= pdata_vma
&& (altent + PDATA_ROW_SIZE <= pdata_vma
+ pei_section_data (abfd, pdata_section)->virt_size))
{
pex64_get_runtime_function
(abfd, &arf, &pdata[altent - pdata_vma]);
fprintf (file, "pdata element at 0x");
fprintf_vma (file, arf.rva_UnwindData);
}
else
fprintf (file, "unknown pdata element");
fprintf (file, ".\n");
}
else
{
bfd_vma *p;
/* Search for the current entry in the sorted array. */
p = (bfd_vma *)
bsearch (&rf.rva_UnwindData, xdata_arr,
(size_t) xdata_arr_cnt, sizeof (bfd_vma),
sort_xdata_arr);
/* Advance to the next pointer into the xdata section. We may
have shared xdata entries, which will result in a string of
identical pointers in the array; advance past all of them. */
while (p[0] <= rf.rva_UnwindData)
++p;
if (p[0] == ~((bfd_vma) 0))
p = NULL;
pex64_dump_xdata (file, abfd, xdata_section, xdata, p, &rf);
}
}
}
done:
free (pdata);
free (xdata_arr);
free (xdata);
return TRUE;
}
#define bfd_pe_print_pdata pex64_bfd_print_pdata
#include "coff-x86_64.c"