binutils-gdb/sim/or1k
Mike Frysinger f9a4d54332 sim: overhaul & unify endian settings management
The m4 macro has 2 args: the "wire" settings (which represents the
hardwired port behavior), and the default settings (which are used
if nothing else is specified).  If none are specified, the arch is
expected to support both, and the value will be probed based on the
user runtime options or the input program.

Only two arches today set the default value (bpf & mips).  We can
probably let this go as it only shows up in one scenario: the sim
is invoked, but with no inputs, and no user endian selection.  This
means bpf will not behave like the other arches: an error is shown
and forces the user to make a choice.  If an input program is used
though, we'll still switch the default to that.  This allows us to
remove the WITH_DEFAULT_TARGET_BYTE_ORDER setting.

For the ports that set a "wire" endian, move it to the runtime init
of the respective sim_open calls.  This allows us to change the
WITH_TARGET_BYTE_ORDER to purely a user-selected configure setting
if they want to force a specific endianness.

With all the endian logic moved to runtime selection, we can move
the configure call up to the common dir so we only process it once
across all ports.

The ppc arch was picking the wire endian based on the target used,
but since we weren't doing that for other biendian arches, we can
let this go too.  We'll rely on the input selecting the endian, or
make the user decide.
2021-06-17 23:20:13 -04:00
..
aclocal.m4 sim: overhaul & unify endian settings management 2021-06-17 23:20:13 -04:00
arch.c Update copyright year range in all GDB files 2021-01-01 12:12:21 +04:00
arch.h Update copyright year range in all GDB files 2021-01-01 12:12:21 +04:00
ChangeLog sim: overhaul & unify endian settings management 2021-06-17 23:20:13 -04:00
configure sim: overhaul & unify endian settings management 2021-06-17 23:20:13 -04:00
configure.ac sim: overhaul & unify endian settings management 2021-06-17 23:20:13 -04:00
cpu.c Update copyright year range in all GDB files 2021-01-01 12:12:21 +04:00
cpu.h Update copyright year range in all GDB files 2021-01-01 12:12:21 +04:00
cpuall.h Update copyright year range in all GDB files 2021-01-01 12:12:21 +04:00
decode.c sim: bpf/or1k: fix CGEN_TRACE_EXTRACT name 2021-01-31 17:08:49 -05:00
decode.h Update copyright year range in all GDB files 2021-01-01 12:12:21 +04:00
Makefile.in Remove and modernize dependencies in sim 2021-04-22 19:51:55 -06:00
mloop.in Add missing stdlib.h includes to sim 2021-05-04 13:19:33 -06:00
model.c Update copyright year range in all GDB files 2021-01-01 12:12:21 +04:00
or1k-sim.h Update copyright year range in all GDB files 2021-01-01 12:12:21 +04:00
or1k.c sim: switch config.h usage to defs.h 2021-05-16 22:38:41 -04:00
README
sem-switch.c Update copyright year range in all GDB files 2021-01-01 12:12:21 +04:00
sem.c Update copyright year range in all GDB files 2021-01-01 12:12:21 +04:00
sim-if.c sim: overhaul & unify endian settings management 2021-06-17 23:20:13 -04:00
sim-main.h sim: cgen: invert sim_state storage for cgen ports 2021-05-17 00:46:32 -04:00
traps.c sim: cgen: inline cgen_init logic 2021-06-09 18:21:28 -04:00

SIM port for the OpenRISC architecture

Authors: Stafford Horne <shorne@gmail.com>
	 Peter Gavin

# Guide to Code #

We have tried to comment on the functions in the simulator implementation as
best as we can.  Here we provide some general architecture comments for
reference.  Please let me know if there is a better place for these kind of
docs.

The or1k sim uses the CGEN system to generate most of the simulator code.  There
is some documentation for CGEN on sourceware.org here:

  https://sourceware.org/cgen/docs/cgen.html

In the binutils-gdb project there are several files which get combined to make
up the CGEN simulator.  The process for how those are built can be seen in
`or1k/Makefile.in`.  But the main files are:

MAIN
 sim/common/nrun.c - the main() calls sim_open(), sim_resume() and others
 sim/or1k/sim-if.c - implements sim_open() and others used by nrun
                     when envoking sim in gdb, gdb uses sim_open() directly

CGEN input and generated files
 cpu/or1k*.cpu - these define the hardware, model and semantics
 sim/or1k/arch.c - generated defines sim_machs array
 sim/or1k/cpu.c - *generated defines register setters and getters
 sim/or1k/decode.c - generated defines instruction decoder
 sim/or1k/model.c - generated defines instruction cycles
 sim/or1k/sem.c - *generated defines instruction operation semantics
 sim/or1k/sem-switch.c - *generated ditto but as a switch

ENGINE runs decode execute loop
 sim/common/cgen-* - cgen implementation helpers
 sim/common/cgen-run.c - implements sim_resume() which runs the engine
 sim/common/genmloop.sh - helper script to generate mloop.c engine the
                          decode, execute loop
 sim/or1k/mloop.in - openRISC implementation of mloop parts

EXTRAS callbacks from sem* to c code
 sim/or1k/or1k.c - implements some instructions in c (not cgen schema)
 sim/or1k/traps.c - exception handler

For each sim architecture we have choices for how the mloop is implemented.  The
OpenRISC engine uses scache pbb (pseudo-basic-block) instruction extraction with
both fast (sem-switch.c based) and full (sem.c based) implementations.  The fast
and full modes are switch via the command line options to the `run` command,
i.e. --trace-insn will run in full mode.

                            # Building #

Below are some details on how we build and test the openrisc sim.

                            ## TOOLCHAIN ##

This may not be needed as binutils contains most/all of the utilities required.
But if needed, get this toolchain (this is the newlib binary, others also
available)

  https://github.com/openrisc/or1k-gcc/releases/download/or1k-5.4.0-20170218/or1k-elf-5.4.0-20170218.tar.xz

If you want to build that from scratch look to:

  https://github.com/openrisc/newlib/blob/scripts/build.sh

                              ## GDB ##

In a directory along side binutils-gdb source

  mkdir build-or1k-elf-gdb
  cd build-or1k-elf-gdb

  ../binutils-gdb/configure --target=or1k-elf \
    --prefix=/opt/shorne/software/or1k \
    --disable-itcl \
    --disable-tk \
    --disable-tcl \
    --disable-winsup \
    --disable-gdbtk \
    --disable-libgui \
    --disable-rda \
    --disable-sid \
    --with-sysroot \
    --disable-newlib \
    --disable-libgloss \
    --disable-gas \
    --disable-ld \
    --disable-binutils \
    --disable-gprof \
    --with-system-zlib

  # make gdb, sim
  make

  # test sim
  cd sim
  make check

The sim creates a binary simulator too, you can run binaries such as hello
world with:

  or1k-elf-gcc hello.c
  ./or1k/run --trace-insn ./a.out