binutils-gdb/gdb/sparc-obsd-tdep.c
Joel Brobecker 213516ef31 Update copyright year range in header of all files managed by GDB
This commit is the result of running the gdb/copyright.py script,
which automated the update of the copyright year range for all
source files managed by the GDB project to be updated to include
year 2023.
2023-01-01 17:01:16 +04:00

264 lines
7.4 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Target-dependent code for OpenBSD/sparc.
Copyright (C) 2004-2023 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "frame.h"
#include "frame-unwind.h"
#include "gdbcore.h"
#include "osabi.h"
#include "regcache.h"
#include "symtab.h"
#include "trad-frame.h"
#include "inferior.h"
#include "obsd-tdep.h"
#include "sparc-tdep.h"
#include "solib-svr4.h"
#include "bsd-uthread.h"
#include "gdbarch.h"
/* Signal trampolines. */
/* The OpenBSD kernel maps the signal trampoline at some random
location in user space, which means that the traditional BSD way of
detecting it won't work.
The signal trampoline will be mapped at an address that is page
aligned. We recognize the signal trampoline by looking for the
sigreturn system call. */
static const int sparc32obsd_page_size = 4096;
static int
sparc32obsd_pc_in_sigtramp (CORE_ADDR pc, const char *name)
{
CORE_ADDR start_pc = (pc & ~(sparc32obsd_page_size - 1));
unsigned long insn;
if (name)
return 0;
/* Check for "restore %g0, SYS_sigreturn, %g1". */
insn = sparc_fetch_instruction (start_pc + 0xec);
if (insn != 0x83e82067)
return 0;
/* Check for "t ST_SYSCALL". */
insn = sparc_fetch_instruction (start_pc + 0xf4);
if (insn != 0x91d02000)
return 0;
return 1;
}
static struct sparc_frame_cache *
sparc32obsd_sigtramp_frame_cache (frame_info_ptr this_frame,
void **this_cache)
{
struct sparc_frame_cache *cache;
CORE_ADDR addr;
if (*this_cache)
return (struct sparc_frame_cache *) *this_cache;
cache = sparc_frame_cache (this_frame, this_cache);
gdb_assert (cache == *this_cache);
/* If we couldn't find the frame's function, we're probably dealing
with an on-stack signal trampoline. */
if (cache->pc == 0)
{
cache->pc = get_frame_pc (this_frame);
cache->pc &= ~(sparc32obsd_page_size - 1);
/* Since we couldn't find the frame's function, the cache was
initialized under the assumption that we're frameless. */
sparc_record_save_insn (cache);
addr = get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
cache->base = addr;
}
cache->saved_regs = sparc32nbsd_sigcontext_saved_regs (this_frame);
return cache;
}
static void
sparc32obsd_sigtramp_frame_this_id (frame_info_ptr this_frame,
void **this_cache,
struct frame_id *this_id)
{
struct sparc_frame_cache *cache =
sparc32obsd_sigtramp_frame_cache (this_frame, this_cache);
(*this_id) = frame_id_build (cache->base, cache->pc);
}
static struct value *
sparc32obsd_sigtramp_frame_prev_register (frame_info_ptr this_frame,
void **this_cache, int regnum)
{
struct sparc_frame_cache *cache =
sparc32obsd_sigtramp_frame_cache (this_frame, this_cache);
return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
}
static int
sparc32obsd_sigtramp_frame_sniffer (const struct frame_unwind *self,
frame_info_ptr this_frame,
void **this_cache)
{
CORE_ADDR pc = get_frame_pc (this_frame);
const char *name;
find_pc_partial_function (pc, &name, NULL, NULL);
if (sparc32obsd_pc_in_sigtramp (pc, name))
return 1;
return 0;
}
static const struct frame_unwind sparc32obsd_sigtramp_frame_unwind =
{
"sparc32 openbsd sigtramp",
SIGTRAMP_FRAME,
default_frame_unwind_stop_reason,
sparc32obsd_sigtramp_frame_this_id,
sparc32obsd_sigtramp_frame_prev_register,
NULL,
sparc32obsd_sigtramp_frame_sniffer
};
/* Offset wthin the thread structure where we can find %fp and %i7. */
#define SPARC32OBSD_UTHREAD_FP_OFFSET 128
#define SPARC32OBSD_UTHREAD_PC_OFFSET 132
static void
sparc32obsd_supply_uthread (struct regcache *regcache,
int regnum, CORE_ADDR addr)
{
struct gdbarch *gdbarch = regcache->arch ();
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
CORE_ADDR fp, fp_addr = addr + SPARC32OBSD_UTHREAD_FP_OFFSET;
gdb_byte buf[4];
/* This function calls functions that depend on the global current thread. */
gdb_assert (regcache->ptid () == inferior_ptid);
gdb_assert (regnum >= -1);
fp = read_memory_unsigned_integer (fp_addr, 4, byte_order);
if (regnum == SPARC_SP_REGNUM || regnum == -1)
{
store_unsigned_integer (buf, 4, byte_order, fp);
regcache->raw_supply (SPARC_SP_REGNUM, buf);
if (regnum == SPARC_SP_REGNUM)
return;
}
if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM
|| regnum == -1)
{
CORE_ADDR i7, i7_addr = addr + SPARC32OBSD_UTHREAD_PC_OFFSET;
i7 = read_memory_unsigned_integer (i7_addr, 4, byte_order);
if (regnum == SPARC32_PC_REGNUM || regnum == -1)
{
store_unsigned_integer (buf, 4, byte_order, i7 + 8);
regcache->raw_supply (SPARC32_PC_REGNUM, buf);
}
if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
{
store_unsigned_integer (buf, 4, byte_order, i7 + 12);
regcache->raw_supply (SPARC32_NPC_REGNUM, buf);
}
if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
return;
}
sparc_supply_rwindow (regcache, fp, regnum);
}
static void
sparc32obsd_collect_uthread(const struct regcache *regcache,
int regnum, CORE_ADDR addr)
{
struct gdbarch *gdbarch = regcache->arch ();
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
CORE_ADDR sp;
gdb_byte buf[4];
/* This function calls functions that depend on the global current thread. */
gdb_assert (regcache->ptid () == inferior_ptid);
gdb_assert (regnum >= -1);
if (regnum == SPARC_SP_REGNUM || regnum == -1)
{
CORE_ADDR fp_addr = addr + SPARC32OBSD_UTHREAD_FP_OFFSET;
regcache->raw_collect (SPARC_SP_REGNUM, buf);
write_memory (fp_addr,buf, 4);
}
if (regnum == SPARC32_PC_REGNUM || regnum == -1)
{
CORE_ADDR i7, i7_addr = addr + SPARC32OBSD_UTHREAD_PC_OFFSET;
regcache->raw_collect (SPARC32_PC_REGNUM, buf);
i7 = extract_unsigned_integer (buf, 4, byte_order) - 8;
write_memory_unsigned_integer (i7_addr, 4, byte_order, i7);
if (regnum == SPARC32_PC_REGNUM)
return;
}
regcache->raw_collect (SPARC_SP_REGNUM, buf);
sp = extract_unsigned_integer (buf, 4, byte_order);
sparc_collect_rwindow (regcache, sp, regnum);
}
static void
sparc32obsd_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
/* OpenBSD/sparc is very similar to NetBSD/sparc ELF. */
sparc32nbsd_init_abi (info, gdbarch);
set_gdbarch_skip_solib_resolver (gdbarch, obsd_skip_solib_resolver);
frame_unwind_append_unwinder (gdbarch, &sparc32obsd_sigtramp_frame_unwind);
/* OpenBSD provides a user-level threads implementation. */
bsd_uthread_set_supply_uthread (gdbarch, sparc32obsd_supply_uthread);
bsd_uthread_set_collect_uthread (gdbarch, sparc32obsd_collect_uthread);
}
void _initialize_sparc32obsd_tdep ();
void
_initialize_sparc32obsd_tdep ()
{
gdbarch_register_osabi (bfd_arch_sparc, 0, GDB_OSABI_OPENBSD,
sparc32obsd_init_abi);
}