mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-27 04:52:05 +08:00
213516ef31
This commit is the result of running the gdb/copyright.py script, which automated the update of the copyright year range for all source files managed by the GDB project to be updated to include year 2023.
410 lines
14 KiB
C++
410 lines
14 KiB
C++
/* Copyright (C) 1986-2023 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#ifndef INFRUN_H
|
|
#define INFRUN_H 1
|
|
|
|
#include "gdbthread.h"
|
|
#include "symtab.h"
|
|
#include "gdbsupport/byte-vector.h"
|
|
#include "gdbsupport/intrusive_list.h"
|
|
|
|
struct target_waitstatus;
|
|
class frame_info_ptr;
|
|
struct address_space;
|
|
struct return_value_info;
|
|
struct process_stratum_target;
|
|
struct thread_info;
|
|
|
|
/* True if we are debugging run control. */
|
|
extern bool debug_infrun;
|
|
|
|
/* Print an "infrun" debug statement. */
|
|
|
|
#define infrun_debug_printf(fmt, ...) \
|
|
debug_prefixed_printf_cond (debug_infrun, "infrun", fmt, ##__VA_ARGS__)
|
|
|
|
/* Print "infrun" start/end debug statements. */
|
|
|
|
#define INFRUN_SCOPED_DEBUG_START_END(fmt, ...) \
|
|
scoped_debug_start_end (debug_infrun, "infrun", fmt, ##__VA_ARGS__)
|
|
|
|
/* Print "infrun" enter/exit debug statements. */
|
|
|
|
#define INFRUN_SCOPED_DEBUG_ENTER_EXIT \
|
|
scoped_debug_enter_exit (debug_infrun, "infrun")
|
|
|
|
/* A infrun debug helper routine to print out all the threads in the set
|
|
THREADS (which should be a range type that returns thread_info*
|
|
objects).
|
|
|
|
The TITLE is a string that is printed before the list of threads.
|
|
|
|
Output is only produced when 'set debug infrun on'. */
|
|
|
|
template<typename ThreadRange>
|
|
static inline void
|
|
infrun_debug_show_threads (const char *title, ThreadRange threads)
|
|
{
|
|
if (debug_infrun)
|
|
{
|
|
INFRUN_SCOPED_DEBUG_ENTER_EXIT;
|
|
|
|
infrun_debug_printf ("%s:", title);
|
|
for (thread_info *thread : threads)
|
|
infrun_debug_printf (" thread %s, executing = %d, resumed = %d, "
|
|
"state = %s",
|
|
thread->ptid.to_string ().c_str (),
|
|
thread->executing (),
|
|
thread->resumed (),
|
|
thread_state_string (thread->state));
|
|
}
|
|
}
|
|
|
|
|
|
/* Nonzero if we want to give control to the user when we're notified
|
|
of shared library events by the dynamic linker. */
|
|
extern int stop_on_solib_events;
|
|
|
|
/* True if execution commands resume all threads of all processes by
|
|
default; otherwise, resume only threads of the current inferior
|
|
process. */
|
|
extern bool sched_multi;
|
|
|
|
/* When set, stop the 'step' command if we enter a function which has
|
|
no line number information. The normal behavior is that we step
|
|
over such function. */
|
|
extern bool step_stop_if_no_debug;
|
|
|
|
/* If set, the inferior should be controlled in non-stop mode. In
|
|
this mode, each thread is controlled independently. Execution
|
|
commands apply only to the selected thread by default, and stop
|
|
events stop only the thread that had the event -- the other threads
|
|
are kept running freely. */
|
|
extern bool non_stop;
|
|
|
|
/* When set (default), the target should attempt to disable the
|
|
operating system's address space randomization feature when
|
|
starting an inferior. */
|
|
extern bool disable_randomization;
|
|
|
|
/* Returns a unique identifier for the current stop. This can be used
|
|
to tell whether a command has proceeded the inferior past the
|
|
current location. */
|
|
extern ULONGEST get_stop_id (void);
|
|
|
|
/* Reverse execution. */
|
|
enum exec_direction_kind
|
|
{
|
|
EXEC_FORWARD,
|
|
EXEC_REVERSE
|
|
};
|
|
|
|
/* The current execution direction. */
|
|
extern enum exec_direction_kind execution_direction;
|
|
|
|
extern void start_remote (int from_tty);
|
|
|
|
/* Clear out all variables saying what to do when inferior is
|
|
continued or stepped. First do this, then set the ones you want,
|
|
then call `proceed'. STEP indicates whether we're preparing for a
|
|
step/stepi command. */
|
|
extern void clear_proceed_status (int step);
|
|
|
|
extern void proceed (CORE_ADDR, enum gdb_signal);
|
|
|
|
/* Return a ptid representing the set of threads that we will proceed,
|
|
in the perspective of the user/frontend. We may actually resume
|
|
fewer threads at first, e.g., if a thread is stopped at a
|
|
breakpoint that needs stepping-off, but that should not be visible
|
|
to the user/frontend, and neither should the frontend/user be
|
|
allowed to proceed any of the threads that happen to be stopped for
|
|
internal run control handling, if a previous command wanted them
|
|
resumed. */
|
|
extern ptid_t user_visible_resume_ptid (int step);
|
|
|
|
/* Return the process_stratum target that we will proceed, in the
|
|
perspective of the user/frontend. If RESUME_PTID is
|
|
MINUS_ONE_PTID, then we'll resume all threads of all targets, so
|
|
the function returns NULL. Otherwise, we'll be resuming a process
|
|
or thread of the current process, so we return the current
|
|
inferior's process stratum target. */
|
|
extern process_stratum_target *user_visible_resume_target (ptid_t resume_ptid);
|
|
|
|
/* Return control to GDB when the inferior stops for real. Print
|
|
appropriate messages, remove breakpoints, give terminal our modes,
|
|
and run the stop hook. Returns true if the stop hook proceeded the
|
|
target, false otherwise. */
|
|
extern int normal_stop (void);
|
|
|
|
/* Return the cached copy of the last target/ptid/waitstatus returned
|
|
by target_wait(). The data is actually cached by handle_inferior_event(),
|
|
which gets called immediately after target_wait(). */
|
|
extern void get_last_target_status (process_stratum_target **target,
|
|
ptid_t *ptid,
|
|
struct target_waitstatus *status);
|
|
|
|
/* Set the cached copy of the last target/ptid/waitstatus. */
|
|
extern void set_last_target_status (process_stratum_target *target, ptid_t ptid,
|
|
const target_waitstatus &status);
|
|
|
|
/* Clear the cached copy of the last ptid/waitstatus returned by
|
|
target_wait(). */
|
|
extern void nullify_last_target_wait_ptid ();
|
|
|
|
/* Stop all threads. Only returns after everything is halted.
|
|
|
|
REASON is a string indicating the reason why we stop all threads, used in
|
|
debug messages.
|
|
|
|
If INF is non-nullptr, stop all threads of that inferior. Otherwise, stop
|
|
all threads of all inferiors. */
|
|
extern void stop_all_threads (const char *reason, inferior *inf = nullptr);
|
|
|
|
extern void prepare_for_detach (void);
|
|
|
|
extern void fetch_inferior_event ();
|
|
|
|
extern void init_wait_for_inferior (void);
|
|
|
|
extern void insert_step_resume_breakpoint_at_sal (struct gdbarch *,
|
|
struct symtab_and_line ,
|
|
struct frame_id);
|
|
|
|
/* Returns true if we're trying to step past the instruction at
|
|
ADDRESS in ASPACE. */
|
|
extern int stepping_past_instruction_at (struct address_space *aspace,
|
|
CORE_ADDR address);
|
|
|
|
/* Returns true if thread whose thread number is THREAD is stepping
|
|
over a breakpoint. */
|
|
extern int thread_is_stepping_over_breakpoint (int thread);
|
|
|
|
/* Returns true if we're trying to step past an instruction that
|
|
triggers a non-steppable watchpoint. */
|
|
extern int stepping_past_nonsteppable_watchpoint (void);
|
|
|
|
/* Record in TP the frame and location we're currently stepping through. */
|
|
extern void set_step_info (thread_info *tp,
|
|
frame_info_ptr frame,
|
|
struct symtab_and_line sal);
|
|
|
|
/* Several print_*_reason helper functions to print why the inferior
|
|
has stopped to the passed in UIOUT. */
|
|
|
|
/* Signal received, print why the inferior has stopped. */
|
|
extern void print_signal_received_reason (struct ui_out *uiout,
|
|
enum gdb_signal siggnal);
|
|
|
|
/* Print why the inferior has stopped. We are done with a
|
|
step/next/si/ni command, print why the inferior has stopped. */
|
|
extern void print_end_stepping_range_reason (struct ui_out *uiout);
|
|
|
|
/* The inferior was terminated by a signal, print why it stopped. */
|
|
extern void print_signal_exited_reason (struct ui_out *uiout,
|
|
enum gdb_signal siggnal);
|
|
|
|
/* The inferior program is finished, print why it stopped. */
|
|
extern void print_exited_reason (struct ui_out *uiout, int exitstatus);
|
|
|
|
/* Reverse execution: target ran out of history info, print why the
|
|
inferior has stopped. */
|
|
extern void print_no_history_reason (struct ui_out *uiout);
|
|
|
|
/* Print the result of a function at the end of a 'finish' command.
|
|
RV points at an object representing the captured return value/type
|
|
and its position in the value history. */
|
|
|
|
extern void print_return_value (struct ui_out *uiout,
|
|
struct return_value_info *rv);
|
|
|
|
/* Print current location without a level number, if we have changed
|
|
functions or hit a breakpoint. Print source line if we have one.
|
|
If the execution command captured a return value, print it. If
|
|
DISPLAYS is false, do not call 'do_displays'. */
|
|
|
|
extern void print_stop_event (struct ui_out *uiout, bool displays = true);
|
|
|
|
/* Pretty print the results of target_wait, for debugging purposes. */
|
|
|
|
extern void print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
|
|
const struct target_waitstatus &ws);
|
|
|
|
extern int signal_stop_state (int);
|
|
|
|
extern int signal_print_state (int);
|
|
|
|
extern int signal_pass_state (int);
|
|
|
|
extern int signal_stop_update (int, int);
|
|
|
|
extern int signal_print_update (int, int);
|
|
|
|
extern int signal_pass_update (int, int);
|
|
|
|
extern void update_signals_program_target (void);
|
|
|
|
/* Clear the convenience variables associated with the exit of the
|
|
inferior. Currently, those variables are $_exitcode and
|
|
$_exitsignal. */
|
|
extern void clear_exit_convenience_vars (void);
|
|
|
|
/* Dump LEN bytes at BUF in hex to a string and return it. */
|
|
extern std::string displaced_step_dump_bytes (const gdb_byte *buf, size_t len);
|
|
|
|
extern void update_observer_mode (void);
|
|
|
|
extern void signal_catch_update (const unsigned int *);
|
|
|
|
/* In some circumstances we allow a command to specify a numeric
|
|
signal. The idea is to keep these circumstances limited so that
|
|
users (and scripts) develop portable habits. For comparison,
|
|
POSIX.2 `kill' requires that 1,2,3,6,9,14, and 15 work (and using a
|
|
numeric signal at all is obsolescent. We are slightly more lenient
|
|
and allow 1-15 which should match host signal numbers on most
|
|
systems. Use of symbolic signal names is strongly encouraged. */
|
|
enum gdb_signal gdb_signal_from_command (int num);
|
|
|
|
/* Enables/disables infrun's async event source in the event loop. */
|
|
extern void infrun_async (int enable);
|
|
|
|
/* Call infrun's event handler the next time through the event
|
|
loop. */
|
|
extern void mark_infrun_async_event_handler (void);
|
|
|
|
/* The global chain of threads that need to do a step-over operation
|
|
to get past e.g., a breakpoint. */
|
|
extern thread_step_over_list global_thread_step_over_list;
|
|
|
|
/* Remove breakpoints if possible (usually that means, if everything
|
|
is stopped). On failure, print a message. */
|
|
extern void maybe_remove_breakpoints (void);
|
|
|
|
/* If a UI was in sync execution mode, and now isn't, restore its
|
|
prompt (a synchronous execution command has finished, and we're
|
|
ready for input). */
|
|
extern void all_uis_check_sync_execution_done (void);
|
|
|
|
/* If a UI was in sync execution mode, and hasn't displayed the prompt
|
|
yet, re-disable its prompt (a synchronous execution command was
|
|
started or re-started). */
|
|
extern void all_uis_on_sync_execution_starting (void);
|
|
|
|
/* In all-stop, restart the target if it had to be stopped to
|
|
detach. */
|
|
extern void restart_after_all_stop_detach (process_stratum_target *proc_target);
|
|
|
|
/* RAII object to temporarily disable the requirement for target
|
|
stacks to commit their resumed threads.
|
|
|
|
On construction, set process_stratum_target::commit_resumed_state
|
|
to false for all process_stratum targets in all target
|
|
stacks.
|
|
|
|
On destruction (or if reset_and_commit() is called), set
|
|
process_stratum_target::commit_resumed_state to true for all
|
|
process_stratum targets in all target stacks, except those that:
|
|
|
|
- have no resumed threads
|
|
- have a resumed thread with a pending status
|
|
|
|
target_commit_resumed is not called in the destructor, because its
|
|
implementations could throw, and we don't to swallow that error in
|
|
a destructor. Instead, the caller should call the
|
|
reset_and_commit_resumed() method so that an eventual exception can
|
|
propagate. "reset" in the method name refers to the fact that this
|
|
method has the same effect as the destructor, in addition to
|
|
committing resumes.
|
|
|
|
The creation of nested scoped_disable_commit_resumed objects is
|
|
tracked, such that only the outermost instance actually does
|
|
something, for cases like this:
|
|
|
|
void
|
|
inner_func ()
|
|
{
|
|
scoped_disable_commit_resumed disable;
|
|
|
|
// do stuff
|
|
|
|
disable.reset_and_commit ();
|
|
}
|
|
|
|
void
|
|
outer_func ()
|
|
{
|
|
scoped_disable_commit_resumed disable;
|
|
|
|
for (... each thread ...)
|
|
inner_func ();
|
|
|
|
disable.reset_and_commit ();
|
|
}
|
|
|
|
In this case, we don't want the `disable` destructor in
|
|
`inner_func` to require targets to commit resumed threads, so that
|
|
the `reset_and_commit()` call in `inner_func` doesn't actually
|
|
resume threads. */
|
|
|
|
struct scoped_disable_commit_resumed
|
|
{
|
|
explicit scoped_disable_commit_resumed (const char *reason);
|
|
~scoped_disable_commit_resumed ();
|
|
|
|
DISABLE_COPY_AND_ASSIGN (scoped_disable_commit_resumed);
|
|
|
|
/* Undoes the disabling done by the ctor, and calls
|
|
maybe_call_commit_resumed_all_targets(). */
|
|
void reset_and_commit ();
|
|
|
|
private:
|
|
/* Undoes the disabling done by the ctor. */
|
|
void reset ();
|
|
|
|
/* Whether this object has been reset. */
|
|
bool m_reset = false;
|
|
|
|
const char *m_reason;
|
|
bool m_prev_enable_commit_resumed;
|
|
};
|
|
|
|
/* Call target_commit_resumed method on all target stacks whose
|
|
process_stratum target layer has COMMIT_RESUME_STATE set. */
|
|
|
|
extern void maybe_call_commit_resumed_all_targets ();
|
|
|
|
/* RAII object to temporarily enable the requirement for target stacks
|
|
to commit their resumed threads. This is the inverse of
|
|
scoped_disable_commit_resumed. The constructor calls the
|
|
maybe_call_commit_resumed_all_targets function itself, since it's
|
|
OK to throw from a constructor. */
|
|
|
|
struct scoped_enable_commit_resumed
|
|
{
|
|
explicit scoped_enable_commit_resumed (const char *reason);
|
|
~scoped_enable_commit_resumed ();
|
|
|
|
DISABLE_COPY_AND_ASSIGN (scoped_enable_commit_resumed);
|
|
|
|
private:
|
|
const char *m_reason;
|
|
bool m_prev_enable_commit_resumed;
|
|
};
|
|
|
|
|
|
#endif /* INFRUN_H */
|