binutils-gdb/sim/or1k/traps.c
Stafford Horne fa8b7c2128 sim: or1k: add or1k target to sim
This adds the OpenRISC 32-bit sim target.  The OpenRISC sim is a CGEN
based sim so the bulk of the code is generated from the .cpu files by
CGEN.  The engine decode and execute logic in mloop uses scache with
pseudo-basic-block extraction and supports both full and fast (switch)
modes.

The sim does not implement an mmu at the moment.  The sim does implement
fpu instructions via the common sim-fpu implementation.

sim/ChangeLog:

2017-12-12  Stafford Horne  <shorne@gmail.com>
	    Peter Gavin  <pgavin@gmail.com>

	* configure.tgt: Add or1k sim.
	* or1k/README: New file.
	* or1k/Makefile.in: New file.
	* or1k/configure.ac: New file.
	* or1k/mloop.in: New file.
	* or1k/or1k-sim.h: New file.
	* or1k/or1k.c: New file.
	* or1k/sim-if.c: New file.
	* or1k/sim-main.h: New file.
	* or1k/traps.c: New file.
2017-12-12 23:44:14 +09:00

300 lines
7.6 KiB
C

/* OpenRISC exception, interrupts, syscall and trap support
Copyright (C) 2017 Free Software Foundation, Inc.
This file is part of GDB, the GNU debugger.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#define WANT_CPU_OR1K32BF
#define WANT_CPU
#include "sim-main.h"
#include "cgen-ops.h"
/* Implement the sim invalid instruction function. This will set the error
effective address to that of the invalid instruction then call the
exception handler. */
SEM_PC
sim_engine_invalid_insn (SIM_CPU *current_cpu, IADDR cia, SEM_PC vpc)
{
SET_H_SYS_EEAR0 (cia);
#ifdef WANT_CPU_OR1K32BF
or1k32bf_exception (current_cpu, cia, EXCEPT_ILLEGAL);
#endif
return vpc;
}
/* Generate the appropriate OpenRISC fpu exception based on the status code from
the sim fpu. */
void
or1k32bf_fpu_error (CGEN_FPU* fpu, int status)
{
SIM_CPU *current_cpu = (SIM_CPU *)fpu->owner;
/* If floating point exceptions are enabled. */
if (GET_H_SYS_FPCSR_FPEE() != 0)
{
/* Set all of the status flag bits. */
if (status
& (sim_fpu_status_invalid_snan
| sim_fpu_status_invalid_qnan
| sim_fpu_status_invalid_isi
| sim_fpu_status_invalid_idi
| sim_fpu_status_invalid_zdz
| sim_fpu_status_invalid_imz
| sim_fpu_status_invalid_cvi
| sim_fpu_status_invalid_cmp
| sim_fpu_status_invalid_sqrt))
SET_H_SYS_FPCSR_IVF (1);
if (status & sim_fpu_status_invalid_snan)
SET_H_SYS_FPCSR_SNF (1);
if (status & sim_fpu_status_invalid_qnan)
SET_H_SYS_FPCSR_QNF (1);
if (status & sim_fpu_status_overflow)
SET_H_SYS_FPCSR_OVF (1);
if (status & sim_fpu_status_underflow)
SET_H_SYS_FPCSR_UNF (1);
if (status
& (sim_fpu_status_invalid_isi
| sim_fpu_status_invalid_idi))
SET_H_SYS_FPCSR_INF (1);
if (status & sim_fpu_status_invalid_div0)
SET_H_SYS_FPCSR_DZF (1);
if (status & sim_fpu_status_inexact)
SET_H_SYS_FPCSR_IXF (1);
/* If any of the exception bits were actually set. */
if (GET_H_SYS_FPCSR()
& (SPR_FIELD_MASK_SYS_FPCSR_IVF
| SPR_FIELD_MASK_SYS_FPCSR_SNF
| SPR_FIELD_MASK_SYS_FPCSR_QNF
| SPR_FIELD_MASK_SYS_FPCSR_OVF
| SPR_FIELD_MASK_SYS_FPCSR_UNF
| SPR_FIELD_MASK_SYS_FPCSR_INF
| SPR_FIELD_MASK_SYS_FPCSR_DZF
| SPR_FIELD_MASK_SYS_FPCSR_IXF))
{
SIM_DESC sd = CPU_STATE (current_cpu);
/* If the sim is running in fast mode, i.e. not profiling,
per-instruction callbacks are not triggered which would allow
us to track the PC. This means we cannot track which
instruction caused the FPU error. */
if (STATE_RUN_FAST_P (sd) == 1)
sim_io_eprintf
(sd, "WARNING: ignoring fpu error caught in fast mode.\n");
else
or1k32bf_exception (current_cpu, GET_H_SYS_PPC (), EXCEPT_FPE);
}
}
}
/* Implement the OpenRISC exception function. This is mostly used by the
CGEN generated files. For example, this is used when handling a
overflow exception during a multiplication instruction. */
void
or1k32bf_exception (sim_cpu *current_cpu, USI pc, USI exnum)
{
SIM_DESC sd = CPU_STATE (current_cpu);
if (exnum == EXCEPT_TRAP)
{
/* Trap, used for breakpoints, sends control back to gdb breakpoint
handling. */
sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
}
else
{
/* Calculate the exception program counter. */
switch (exnum)
{
case EXCEPT_RESET:
break;
case EXCEPT_FPE:
case EXCEPT_SYSCALL:
SET_H_SYS_EPCR0 (pc + 4 - (current_cpu->delay_slot ? 4 : 0));
break;
case EXCEPT_BUSERR:
case EXCEPT_ALIGN:
case EXCEPT_ILLEGAL:
case EXCEPT_RANGE:
SET_H_SYS_EPCR0 (pc - (current_cpu->delay_slot ? 4 : 0));
break;
default:
sim_io_error (sd, "unexpected exception 0x%x raised at PC 0x%08x",
exnum, pc);
break;
}
/* Store the current SR into ESR0. */
SET_H_SYS_ESR0 (GET_H_SYS_SR ());
/* Indicate in SR if the failed instruction is in delay slot or not. */
SET_H_SYS_SR_DSX (current_cpu->delay_slot);
current_cpu->next_delay_slot = 0;
/* Jump program counter into handler. */
IADDR handler_pc =
(GET_H_SYS_SR_EPH ()? 0xf0000000 : 0x00000000) + (exnum << 8);
sim_engine_restart (sd, current_cpu, NULL, handler_pc);
}
}
/* Implement the return from exception instruction. This is used to return
the CPU to its previous state from within an exception handler. */
void
or1k32bf_rfe (sim_cpu *current_cpu)
{
SET_H_SYS_SR (GET_H_SYS_ESR0 ());
SET_H_SYS_SR_FO (1);
current_cpu->next_delay_slot = 0;
sim_engine_restart (CPU_STATE (current_cpu), current_cpu, NULL,
GET_H_SYS_EPCR0 ());
}
/* Implement the move from SPR instruction. This is used to read from the
CPU's special purpose registers. */
USI
or1k32bf_mfspr (sim_cpu *current_cpu, USI addr)
{
SIM_DESC sd = CPU_STATE (current_cpu);
if (!GET_H_SYS_SR_SM () && !GET_H_SYS_SR_SUMRA ())
{
sim_io_eprintf (sd, "WARNING: l.mfspr in user mode (SR 0x%x)\n",
GET_H_SYS_SR ());
return 0;
}
if (addr >= NUM_SPR)
goto bad_address;
SI val = GET_H_SPR (addr);
switch (addr)
{
case SPR_ADDR (SYS, VR):
case SPR_ADDR (SYS, UPR):
case SPR_ADDR (SYS, CPUCFGR):
case SPR_ADDR (SYS, SR):
case SPR_ADDR (SYS, PPC):
case SPR_ADDR (SYS, FPCSR):
case SPR_ADDR (SYS, EPCR0):
case SPR_ADDR (MAC, MACLO):
case SPR_ADDR (MAC, MACHI):
break;
default:
if (addr < SPR_ADDR (SYS, GPR0) || addr > SPR_ADDR (SYS, GPR511))
goto bad_address;
break;
}
return val;
bad_address:
sim_io_eprintf (sd, "WARNING: l.mfspr with invalid SPR address 0x%x\n", addr);
return 0;
}
/* Implement the move to SPR instruction. This is used to write too the
CPU's special purpose registers. */
void
or1k32bf_mtspr (sim_cpu *current_cpu, USI addr, USI val)
{
SIM_DESC sd = CPU_STATE (current_cpu);
if (!GET_H_SYS_SR_SM () && !GET_H_SYS_SR_SUMRA ())
{
sim_io_eprintf
(sd, "WARNING: l.mtspr with address 0x%x in user mode (SR 0x%x)\n",
addr, GET_H_SYS_SR ());
return;
}
if (addr >= NUM_SPR)
goto bad_address;
switch (addr)
{
case SPR_ADDR (SYS, FPCSR):
case SPR_ADDR (SYS, EPCR0):
case SPR_ADDR (SYS, ESR0):
case SPR_ADDR (MAC, MACHI):
case SPR_ADDR (MAC, MACLO):
SET_H_SPR (addr, val);
break;
case SPR_ADDR (SYS, SR):
SET_H_SPR (addr, val);
SET_H_SYS_SR_FO (1);
break;
case SPR_ADDR (SYS, NPC):
current_cpu->next_delay_slot = 0;
sim_engine_restart (CPU_STATE (current_cpu), current_cpu, NULL, val);
break;
case SPR_ADDR (TICK, TTMR):
/* Allow some registers to be silently cleared. */
if (val != 0)
sim_io_eprintf
(sd, "WARNING: l.mtspr to SPR address 0x%x with invalid value 0x%x\n",
addr, val);
break;
default:
if (addr >= SPR_ADDR (SYS, GPR0) && addr <= SPR_ADDR (SYS, GPR511))
SET_H_SPR (addr, val);
else
goto bad_address;
break;
}
return;
bad_address:
sim_io_eprintf (sd, "WARNING: l.mtspr with invalid SPR address 0x%x\n", addr);
}