binutils-gdb/gdbsupport/intrusive_list.h
Andrew Burgess 1d506c26d9 Update copyright year range in header of all files managed by GDB
This commit is the result of the following actions:

  - Running gdb/copyright.py to update all of the copyright headers to
    include 2024,

  - Manually updating a few files the copyright.py script told me to
    update, these files had copyright headers embedded within the
    file,

  - Regenerating gdbsupport/Makefile.in to refresh it's copyright
    date,

  - Using grep to find other files that still mentioned 2023.  If
    these files were updated last year from 2022 to 2023 then I've
    updated them this year to 2024.

I'm sure I've probably missed some dates.  Feel free to fix them up as
you spot them.
2024-01-12 15:49:57 +00:00

598 lines
14 KiB
C++

/* Intrusive double linked list for GDB, the GNU debugger.
Copyright (C) 2021-2024 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#ifndef GDBSUPPORT_INTRUSIVE_LIST_H
#define GDBSUPPORT_INTRUSIVE_LIST_H
#define INTRUSIVE_LIST_UNLINKED_VALUE ((T *) -1)
/* A list node. The elements put in an intrusive_list either inherit
from this, or have a field of this type. */
template<typename T>
class intrusive_list_node
{
public:
bool is_linked () const
{
return next != INTRUSIVE_LIST_UNLINKED_VALUE;
}
private:
T *next = INTRUSIVE_LIST_UNLINKED_VALUE;
T *prev = INTRUSIVE_LIST_UNLINKED_VALUE;
template<typename T2, typename AsNode>
friend struct intrusive_list_iterator;
template<typename T2, typename AsNode>
friend struct intrusive_list_reverse_iterator;
template<typename T2, typename AsNode>
friend struct intrusive_list;
};
/* Follows a couple types used by intrusive_list as template parameter to find
the intrusive_list_node for a given element. One for lists where the
elements inherit intrusive_list_node, and another for elements that keep the
node as member field. */
/* For element types that inherit from intrusive_list_node. */
template<typename T>
struct intrusive_base_node
{
static intrusive_list_node<T> *as_node (T *elem)
{ return elem; }
};
/* For element types that keep the node as member field. */
template<typename T, intrusive_list_node<T> T::*MemberNode>
struct intrusive_member_node
{
static intrusive_list_node<T> *as_node (T *elem)
{ return &(elem->*MemberNode); }
};
/* Common code for forward and reverse iterators. */
template<typename T, typename AsNode, typename SelfType>
struct intrusive_list_base_iterator
{
using self_type = SelfType;
using iterator_category = std::bidirectional_iterator_tag;
using value_type = T;
using pointer = T *;
using const_pointer = const T *;
using reference = T &;
using const_reference = const T &;
using difference_type = ptrdiff_t;
using size_type = size_t;
using node_type = intrusive_list_node<T>;
/* Create an iterator pointing to ELEM. */
explicit intrusive_list_base_iterator (pointer elem)
: m_elem (elem)
{}
/* Create a past-the-end iterator. */
intrusive_list_base_iterator ()
: m_elem (nullptr)
{}
reference operator* () const
{ return *m_elem; }
pointer operator-> () const
{ return m_elem; }
bool operator== (const self_type &other) const
{ return m_elem == other.m_elem; }
bool operator!= (const self_type &other) const
{ return m_elem != other.m_elem; }
protected:
static node_type *as_node (pointer elem)
{ return AsNode::as_node (elem); }
/* A past-end-the iterator points to the list's head. */
pointer m_elem;
};
/* Forward iterator for an intrusive_list. */
template<typename T, typename AsNode = intrusive_base_node<T>>
struct intrusive_list_iterator
: public intrusive_list_base_iterator
<T, AsNode, intrusive_list_iterator<T, AsNode>>
{
using base = intrusive_list_base_iterator
<T, AsNode, intrusive_list_iterator<T, AsNode>>;
using self_type = typename base::self_type;
using node_type = typename base::node_type;
/* Inherit constructor and M_NODE visibility from base. */
using base::base;
using base::m_elem;
self_type &operator++ ()
{
node_type *node = this->as_node (m_elem);
m_elem = node->next;
return *this;
}
self_type operator++ (int)
{
self_type temp = *this;
node_type *node = this->as_node (m_elem);
m_elem = node->next;
return temp;
}
self_type &operator-- ()
{
node_type *node = this->as_node (m_elem);
m_elem = node->prev;
return *this;
}
self_type operator-- (int)
{
self_type temp = *this;
node_type *node = this->as_node (m_elem);
m_elem = node->prev;
return temp;
}
};
/* Reverse iterator for an intrusive_list. */
template<typename T, typename AsNode = intrusive_base_node<T>>
struct intrusive_list_reverse_iterator
: public intrusive_list_base_iterator
<T, AsNode, intrusive_list_reverse_iterator<T, AsNode>>
{
using base = intrusive_list_base_iterator
<T, AsNode, intrusive_list_reverse_iterator<T, AsNode>>;
using self_type = typename base::self_type;
/* Inherit constructor and M_NODE visibility from base. */
using base::base;
using base::m_elem;
using node_type = typename base::node_type;
self_type &operator++ ()
{
node_type *node = this->as_node (m_elem);
m_elem = node->prev;
return *this;
}
self_type operator++ (int)
{
self_type temp = *this;
node_type *node = this->as_node (m_elem);
m_elem = node->prev;
return temp;
}
self_type &operator-- ()
{
node_type *node = this->as_node (m_elem);
m_elem = node->next;
return *this;
}
self_type operator-- (int)
{
self_type temp = *this;
node_type *node = this->as_node (m_elem);
m_elem = node->next;
return temp;
}
};
/* An intrusive double-linked list.
T is the type of the elements to link. The type T must either:
- inherit from intrusive_list_node<T>
- have an intrusive_list_node<T> member
AsNode is a type with an as_node static method used to get a node from an
element. If elements inherit from intrusive_list_node<T>, use the default
intrusive_base_node<T>. If elements have an intrusive_list_node<T> member,
use:
intrusive_member_node<T, &T::member>
where `member` is the name of the member. */
template <typename T, typename AsNode = intrusive_base_node<T>>
class intrusive_list
{
public:
using value_type = T;
using pointer = T *;
using const_pointer = const T *;
using reference = T &;
using const_reference = const T &;
using difference_type = ptrdiff_t;
using size_type = size_t;
using iterator = intrusive_list_iterator<T, AsNode>;
using reverse_iterator = intrusive_list_reverse_iterator<T, AsNode>;
using const_iterator = const intrusive_list_iterator<T, AsNode>;
using const_reverse_iterator
= const intrusive_list_reverse_iterator<T, AsNode>;
using node_type = intrusive_list_node<T>;
intrusive_list () = default;
~intrusive_list ()
{
clear ();
}
intrusive_list (intrusive_list &&other)
: m_front (other.m_front),
m_back (other.m_back)
{
other.m_front = nullptr;
other.m_back = nullptr;
}
intrusive_list &operator= (intrusive_list &&other)
{
m_front = other.m_front;
m_back = other.m_back;
other.m_front = nullptr;
other.m_back = nullptr;
return *this;
}
void swap (intrusive_list &other)
{
std::swap (m_front, other.m_front);
std::swap (m_back, other.m_back);
}
iterator iterator_to (reference value)
{
return iterator (&value);
}
const_iterator iterator_to (const_reference value)
{
return const_iterator (&value);
}
reference front ()
{
gdb_assert (!this->empty ());
return *m_front;
}
const_reference front () const
{
gdb_assert (!this->empty ());
return *m_front;
}
reference back ()
{
gdb_assert (!this->empty ());
return *m_back;
}
const_reference back () const
{
gdb_assert (!this->empty ());
return *m_back;
}
void push_front (reference elem)
{
intrusive_list_node<T> *elem_node = as_node (&elem);
gdb_assert (elem_node->next == INTRUSIVE_LIST_UNLINKED_VALUE);
gdb_assert (elem_node->prev == INTRUSIVE_LIST_UNLINKED_VALUE);
if (this->empty ())
this->push_empty (elem);
else
this->push_front_non_empty (elem);
}
void push_back (reference elem)
{
intrusive_list_node<T> *elem_node = as_node (&elem);
gdb_assert (elem_node->next == INTRUSIVE_LIST_UNLINKED_VALUE);
gdb_assert (elem_node->prev == INTRUSIVE_LIST_UNLINKED_VALUE);
if (this->empty ())
this->push_empty (elem);
else
this->push_back_non_empty (elem);
}
/* Inserts ELEM before POS. */
void insert (const_iterator pos, reference elem)
{
if (this->empty ())
return this->push_empty (elem);
if (pos == this->begin ())
return this->push_front_non_empty (elem);
if (pos == this->end ())
return this->push_back_non_empty (elem);
intrusive_list_node<T> *elem_node = as_node (&elem);
pointer pos_elem = &*pos;
intrusive_list_node<T> *pos_node = as_node (pos_elem);
pointer prev_elem = pos_node->prev;
intrusive_list_node<T> *prev_node = as_node (prev_elem);
gdb_assert (elem_node->next == INTRUSIVE_LIST_UNLINKED_VALUE);
gdb_assert (elem_node->prev == INTRUSIVE_LIST_UNLINKED_VALUE);
elem_node->prev = prev_elem;
prev_node->next = &elem;
elem_node->next = pos_elem;
pos_node->prev = &elem;
}
/* Move elements from LIST at the end of the current list. */
void splice (intrusive_list &&other)
{
if (other.empty ())
return;
if (this->empty ())
{
*this = std::move (other);
return;
}
/* [A ... B] + [C ... D] */
pointer b_elem = m_back;
node_type *b_node = as_node (b_elem);
pointer c_elem = other.m_front;
node_type *c_node = as_node (c_elem);
pointer d_elem = other.m_back;
b_node->next = c_elem;
c_node->prev = b_elem;
m_back = d_elem;
other.m_front = nullptr;
other.m_back = nullptr;
}
void pop_front ()
{
gdb_assert (!this->empty ());
erase_element (*m_front);
}
void pop_back ()
{
gdb_assert (!this->empty ());
erase_element (*m_back);
}
private:
/* Push ELEM in the list, knowing the list is empty. */
void push_empty (reference elem)
{
gdb_assert (this->empty ());
intrusive_list_node<T> *elem_node = as_node (&elem);
gdb_assert (elem_node->next == INTRUSIVE_LIST_UNLINKED_VALUE);
gdb_assert (elem_node->prev == INTRUSIVE_LIST_UNLINKED_VALUE);
m_front = &elem;
m_back = &elem;
elem_node->prev = nullptr;
elem_node->next = nullptr;
}
/* Push ELEM at the front of the list, knowing the list is not empty. */
void push_front_non_empty (reference elem)
{
gdb_assert (!this->empty ());
intrusive_list_node<T> *elem_node = as_node (&elem);
intrusive_list_node<T> *front_node = as_node (m_front);
gdb_assert (elem_node->next == INTRUSIVE_LIST_UNLINKED_VALUE);
gdb_assert (elem_node->prev == INTRUSIVE_LIST_UNLINKED_VALUE);
elem_node->next = m_front;
front_node->prev = &elem;
elem_node->prev = nullptr;
m_front = &elem;
}
/* Push ELEM at the back of the list, knowing the list is not empty. */
void push_back_non_empty (reference elem)
{
gdb_assert (!this->empty ());
intrusive_list_node<T> *elem_node = as_node (&elem);
intrusive_list_node<T> *back_node = as_node (m_back);
gdb_assert (elem_node->next == INTRUSIVE_LIST_UNLINKED_VALUE);
gdb_assert (elem_node->prev == INTRUSIVE_LIST_UNLINKED_VALUE);
elem_node->prev = m_back;
back_node->next = &elem;
elem_node->next = nullptr;
m_back = &elem;
}
void erase_element (reference elem)
{
intrusive_list_node<T> *elem_node = as_node (&elem);
gdb_assert (elem_node->prev != INTRUSIVE_LIST_UNLINKED_VALUE);
gdb_assert (elem_node->next != INTRUSIVE_LIST_UNLINKED_VALUE);
if (m_front == &elem)
{
gdb_assert (elem_node->prev == nullptr);
m_front = elem_node->next;
}
else
{
gdb_assert (elem_node->prev != nullptr);
intrusive_list_node<T> *prev_node = as_node (elem_node->prev);
prev_node->next = elem_node->next;
}
if (m_back == &elem)
{
gdb_assert (elem_node->next == nullptr);
m_back = elem_node->prev;
}
else
{
gdb_assert (elem_node->next != nullptr);
intrusive_list_node<T> *next_node = as_node (elem_node->next);
next_node->prev = elem_node->prev;
}
elem_node->next = INTRUSIVE_LIST_UNLINKED_VALUE;
elem_node->prev = INTRUSIVE_LIST_UNLINKED_VALUE;
}
public:
/* Remove the element pointed by I from the list. The element
pointed by I is not destroyed. */
iterator erase (const_iterator i)
{
iterator ret = i;
++ret;
erase_element (*i);
return ret;
}
/* Erase all the elements. The elements are not destroyed. */
void clear ()
{
while (!this->empty ())
pop_front ();
}
/* Erase all the elements. Disposer::operator()(pointer) is called
for each of the removed elements. */
template<typename Disposer>
void clear_and_dispose (Disposer disposer)
{
while (!this->empty ())
{
pointer p = &front ();
pop_front ();
disposer (p);
}
}
bool empty () const
{
return m_front == nullptr;
}
iterator begin () noexcept
{
return iterator (m_front);
}
const_iterator begin () const noexcept
{
return const_iterator (m_front);
}
const_iterator cbegin () const noexcept
{
return const_iterator (m_front);
}
iterator end () noexcept
{
return {};
}
const_iterator end () const noexcept
{
return {};
}
const_iterator cend () const noexcept
{
return {};
}
reverse_iterator rbegin () noexcept
{
return reverse_iterator (m_back);
}
const_reverse_iterator rbegin () const noexcept
{
return const_reverse_iterator (m_back);
}
const_reverse_iterator crbegin () const noexcept
{
return const_reverse_iterator (m_back);
}
reverse_iterator rend () noexcept
{
return {};
}
const_reverse_iterator rend () const noexcept
{
return {};
}
const_reverse_iterator crend () const noexcept
{
return {};
}
private:
static node_type *as_node (pointer elem)
{
return AsNode::as_node (elem);
}
pointer m_front = nullptr;
pointer m_back = nullptr;
};
#endif /* GDBSUPPORT_INTRUSIVE_LIST_H */