mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-21 01:12:32 +08:00
6e09d4a6e6
libctf has long prohibited addition of enums with overlapping constants in a single enum, but now that we are properly considering enums with overlapping constants to be conflciting types, we can go further and prohibit addition of enumeration constants to a dict if they already exist in any enum in that dict: the same rules as C itself. We do this in a fashion vaguely similar to what we just did in the deduplicator, by considering enumeration constants as identifiers and adding them to the core type/identifier namespace, ctf_dict_t.ctf_names. This is a little fiddly, because we do not want to prohibit opening of existing dicts into which the deduplicator has stuffed enums with overlapping constants! We just want to prohibit the addition of *new* enumerators that violate that rule. Even then, it's fine to add overlapping enumerator constants as long as at least one of them is in a non-root type. (This is essential for proper deduplicator operation in cu-mapped mode, where multiple compilation units can be smashed into one dict, with conflicting types marked as hidden: these types may well contain overlapping enumerators.) So, at open time, keep track of all enums observed, then do a third pass through the enums alone, adding each enumerator either to the ctf_names table as a mapping from the enumerator name to the enum it is part of (if not already present), or to a new ctf_conflicting_enums hashtable that tracks observed duplicates. (The latter is not used yet, but will be soon.) (We need to do a third pass because it's quite possible to have an enum containing an enumerator FOO followed by a type FOO: since they're processed in order, the enumerator would be processed before the type, and at that stage it seems nonconflicting. The easiest fix is to run through the enumerators after all type names are interned.) At ctf_add_enumerator time, if the enumerator to which we are adding a type is root-visible, check for an already-present name and error out if found, then intern the new name in the ctf_names table as is done at open time. (We retain the existing code which scans the enum itself for duplicates because it is still an error to add an enumerator twice to a non-root-visible enum type; but we only need to do this if the enum is non-root-visible, so the cost of enum addition is reduced.) Tested in an upcoming commit. libctf/ * ctf-impl.h (ctf_dict_t) <ctf_names>: Augment comment. <ctf_conflicting_enums>: New. (ctf_dynset_elements): New. * ctf-hash.c (ctf_dynset_elements): Implement it. * ctf-open.c (init_static_types): Split body into... (init_static_types_internal): ... here. Count enumerators; keep track of observed enums in pass 2; populate ctf_names and ctf_conflicting_enums with enumerators in a third pass. (ctf_dict_close): Free ctf_conflicting_enums. * ctf-create.c (ctf_add_enumerator): Prohibit addition of duplicate enumerators in root-visible enum types. include/ * ctf-api.h (CTF_ADD_NONROOT): Describe what non-rootness means for enumeration constants. (ctf_add_enumerator): The name is not a misnomer. We now require that enumerators have unique names. Document the non-rootness of enumerators.
811 lines
20 KiB
C
811 lines
20 KiB
C
/* Interface to hashtable implementations.
|
|
Copyright (C) 2006-2024 Free Software Foundation, Inc.
|
|
|
|
This file is part of libctf.
|
|
|
|
libctf is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
This program is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
See the GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; see the file COPYING. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include <ctf-impl.h>
|
|
#include <string.h>
|
|
#include "libiberty.h"
|
|
#include "hashtab.h"
|
|
|
|
/* We have two hashtable implementations:
|
|
|
|
- ctf_dynhash_* is an interface to a dynamically-expanding hash with
|
|
unknown size that should support addition of large numbers of items,
|
|
and removal as well, and is used only at type-insertion time and during
|
|
linking. It can be constructed with an expected initial number of
|
|
elements, but need not be.
|
|
|
|
- ctf_dynset_* is an interface to a dynamically-expanding hash that contains
|
|
only keys: no values.
|
|
|
|
These can be implemented by the same underlying hashmap if you wish. */
|
|
|
|
/* The helem is used for general key/value mappings in the ctf_dynhash: the
|
|
owner may not have space allocated for it, and will be garbage (not
|
|
NULL!) in that case. */
|
|
|
|
typedef struct ctf_helem
|
|
{
|
|
void *key; /* Either a pointer, or a coerced ctf_id_t. */
|
|
void *value; /* The value (possibly a coerced int). */
|
|
ctf_dynhash_t *owner; /* The hash that owns us. */
|
|
} ctf_helem_t;
|
|
|
|
/* Equally, the key_free and value_free may not exist. */
|
|
|
|
struct ctf_dynhash
|
|
{
|
|
struct htab *htab;
|
|
ctf_hash_free_fun key_free;
|
|
ctf_hash_free_fun value_free;
|
|
};
|
|
|
|
/* Hash and eq functions for the dynhash and hash. */
|
|
|
|
unsigned int
|
|
ctf_hash_integer (const void *ptr)
|
|
{
|
|
ctf_helem_t *hep = (ctf_helem_t *) ptr;
|
|
|
|
return htab_hash_pointer (hep->key);
|
|
}
|
|
|
|
int
|
|
ctf_hash_eq_integer (const void *a, const void *b)
|
|
{
|
|
ctf_helem_t *hep_a = (ctf_helem_t *) a;
|
|
ctf_helem_t *hep_b = (ctf_helem_t *) b;
|
|
|
|
return htab_eq_pointer (hep_a->key, hep_b->key);
|
|
}
|
|
|
|
unsigned int
|
|
ctf_hash_string (const void *ptr)
|
|
{
|
|
ctf_helem_t *hep = (ctf_helem_t *) ptr;
|
|
|
|
return htab_hash_string (hep->key);
|
|
}
|
|
|
|
int
|
|
ctf_hash_eq_string (const void *a, const void *b)
|
|
{
|
|
ctf_helem_t *hep_a = (ctf_helem_t *) a;
|
|
ctf_helem_t *hep_b = (ctf_helem_t *) b;
|
|
|
|
return !strcmp((const char *) hep_a->key, (const char *) hep_b->key);
|
|
}
|
|
|
|
/* Hash a type_key. */
|
|
unsigned int
|
|
ctf_hash_type_key (const void *ptr)
|
|
{
|
|
ctf_helem_t *hep = (ctf_helem_t *) ptr;
|
|
ctf_link_type_key_t *k = (ctf_link_type_key_t *) hep->key;
|
|
|
|
return htab_hash_pointer (k->cltk_fp) + 59
|
|
* htab_hash_pointer ((void *) (uintptr_t) k->cltk_idx);
|
|
}
|
|
|
|
int
|
|
ctf_hash_eq_type_key (const void *a, const void *b)
|
|
{
|
|
ctf_helem_t *hep_a = (ctf_helem_t *) a;
|
|
ctf_helem_t *hep_b = (ctf_helem_t *) b;
|
|
ctf_link_type_key_t *key_a = (ctf_link_type_key_t *) hep_a->key;
|
|
ctf_link_type_key_t *key_b = (ctf_link_type_key_t *) hep_b->key;
|
|
|
|
return (key_a->cltk_fp == key_b->cltk_fp)
|
|
&& (key_a->cltk_idx == key_b->cltk_idx);
|
|
}
|
|
|
|
/* Hash a type_id_key. */
|
|
unsigned int
|
|
ctf_hash_type_id_key (const void *ptr)
|
|
{
|
|
ctf_helem_t *hep = (ctf_helem_t *) ptr;
|
|
ctf_type_id_key_t *k = (ctf_type_id_key_t *) hep->key;
|
|
|
|
return htab_hash_pointer ((void *) (uintptr_t) k->ctii_input_num)
|
|
+ 59 * htab_hash_pointer ((void *) (uintptr_t) k->ctii_type);
|
|
}
|
|
|
|
int
|
|
ctf_hash_eq_type_id_key (const void *a, const void *b)
|
|
{
|
|
ctf_helem_t *hep_a = (ctf_helem_t *) a;
|
|
ctf_helem_t *hep_b = (ctf_helem_t *) b;
|
|
ctf_type_id_key_t *key_a = (ctf_type_id_key_t *) hep_a->key;
|
|
ctf_type_id_key_t *key_b = (ctf_type_id_key_t *) hep_b->key;
|
|
|
|
return (key_a->ctii_input_num == key_b->ctii_input_num)
|
|
&& (key_a->ctii_type == key_b->ctii_type);
|
|
}
|
|
|
|
/* The dynhash, used for hashes whose size is not known at creation time. */
|
|
|
|
/* Free a single ctf_helem with arbitrary key/value functions. */
|
|
|
|
static void
|
|
ctf_dynhash_item_free (void *item)
|
|
{
|
|
ctf_helem_t *helem = item;
|
|
|
|
if (helem->owner->key_free && helem->key)
|
|
helem->owner->key_free (helem->key);
|
|
if (helem->owner->value_free && helem->value)
|
|
helem->owner->value_free (helem->value);
|
|
free (helem);
|
|
}
|
|
|
|
ctf_dynhash_t *
|
|
ctf_dynhash_create_sized (unsigned long nelems, ctf_hash_fun hash_fun,
|
|
ctf_hash_eq_fun eq_fun, ctf_hash_free_fun key_free,
|
|
ctf_hash_free_fun value_free)
|
|
{
|
|
ctf_dynhash_t *dynhash;
|
|
htab_del del = ctf_dynhash_item_free;
|
|
|
|
if (key_free || value_free)
|
|
dynhash = malloc (sizeof (ctf_dynhash_t));
|
|
else
|
|
dynhash = malloc (offsetof (ctf_dynhash_t, key_free));
|
|
if (!dynhash)
|
|
return NULL;
|
|
|
|
if (key_free == NULL && value_free == NULL)
|
|
del = free;
|
|
|
|
if ((dynhash->htab = htab_create_alloc (nelems, (htab_hash) hash_fun, eq_fun,
|
|
del, xcalloc, free)) == NULL)
|
|
{
|
|
free (dynhash);
|
|
return NULL;
|
|
}
|
|
|
|
if (key_free || value_free)
|
|
{
|
|
dynhash->key_free = key_free;
|
|
dynhash->value_free = value_free;
|
|
}
|
|
|
|
return dynhash;
|
|
}
|
|
|
|
ctf_dynhash_t *
|
|
ctf_dynhash_create (ctf_hash_fun hash_fun, ctf_hash_eq_fun eq_fun,
|
|
ctf_hash_free_fun key_free, ctf_hash_free_fun value_free)
|
|
{
|
|
/* 7 is arbitrary and not benchmarked yet. */
|
|
|
|
return ctf_dynhash_create_sized (7, hash_fun, eq_fun, key_free, value_free);
|
|
}
|
|
|
|
static ctf_helem_t **
|
|
ctf_hashtab_lookup (struct htab *htab, const void *key, enum insert_option insert)
|
|
{
|
|
ctf_helem_t tmp = { .key = (void *) key };
|
|
return (ctf_helem_t **) htab_find_slot (htab, &tmp, insert);
|
|
}
|
|
|
|
static ctf_helem_t *
|
|
ctf_hashtab_insert (struct htab *htab, void *key, void *value,
|
|
ctf_hash_free_fun key_free,
|
|
ctf_hash_free_fun value_free)
|
|
{
|
|
ctf_helem_t **slot;
|
|
|
|
slot = ctf_hashtab_lookup (htab, key, INSERT);
|
|
|
|
if (!slot)
|
|
{
|
|
errno = ENOMEM;
|
|
return NULL;
|
|
}
|
|
|
|
if (!*slot)
|
|
{
|
|
/* Only spend space on the owner if we're going to use it: if there is a
|
|
key or value freeing function. */
|
|
if (key_free || value_free)
|
|
*slot = malloc (sizeof (ctf_helem_t));
|
|
else
|
|
*slot = malloc (offsetof (ctf_helem_t, owner));
|
|
if (!*slot)
|
|
return NULL;
|
|
(*slot)->key = key;
|
|
}
|
|
else
|
|
{
|
|
if (key_free)
|
|
key_free (key);
|
|
if (value_free)
|
|
value_free ((*slot)->value);
|
|
}
|
|
(*slot)->value = value;
|
|
return *slot;
|
|
}
|
|
|
|
int
|
|
ctf_dynhash_insert (ctf_dynhash_t *hp, void *key, void *value)
|
|
{
|
|
ctf_helem_t *slot;
|
|
ctf_hash_free_fun key_free = NULL, value_free = NULL;
|
|
|
|
if (hp->htab->del_f == ctf_dynhash_item_free)
|
|
{
|
|
key_free = hp->key_free;
|
|
value_free = hp->value_free;
|
|
}
|
|
slot = ctf_hashtab_insert (hp->htab, key, value,
|
|
key_free, value_free);
|
|
|
|
if (!slot)
|
|
return errno;
|
|
|
|
/* Keep track of the owner, so that the del function can get at the key_free
|
|
and value_free functions. Only do this if one of those functions is set:
|
|
if not, the owner is not even present in the helem. */
|
|
|
|
if (key_free || value_free)
|
|
slot->owner = hp;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
ctf_dynhash_remove (ctf_dynhash_t *hp, const void *key)
|
|
{
|
|
ctf_helem_t hep = { (void *) key, NULL, NULL };
|
|
htab_remove_elt (hp->htab, &hep);
|
|
}
|
|
|
|
void
|
|
ctf_dynhash_empty (ctf_dynhash_t *hp)
|
|
{
|
|
htab_empty (hp->htab);
|
|
}
|
|
|
|
size_t
|
|
ctf_dynhash_elements (ctf_dynhash_t *hp)
|
|
{
|
|
return htab_elements (hp->htab);
|
|
}
|
|
|
|
void *
|
|
ctf_dynhash_lookup (ctf_dynhash_t *hp, const void *key)
|
|
{
|
|
ctf_helem_t **slot;
|
|
|
|
slot = ctf_hashtab_lookup (hp->htab, key, NO_INSERT);
|
|
|
|
if (slot)
|
|
return (*slot)->value;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* TRUE/FALSE return. */
|
|
int
|
|
ctf_dynhash_lookup_kv (ctf_dynhash_t *hp, const void *key,
|
|
const void **orig_key, void **value)
|
|
{
|
|
ctf_helem_t **slot;
|
|
|
|
slot = ctf_hashtab_lookup (hp->htab, key, NO_INSERT);
|
|
|
|
if (slot)
|
|
{
|
|
if (orig_key)
|
|
*orig_key = (*slot)->key;
|
|
if (value)
|
|
*value = (*slot)->value;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
typedef struct ctf_traverse_cb_arg
|
|
{
|
|
ctf_hash_iter_f fun;
|
|
void *arg;
|
|
} ctf_traverse_cb_arg_t;
|
|
|
|
static int
|
|
ctf_hashtab_traverse (void **slot, void *arg_)
|
|
{
|
|
ctf_helem_t *helem = *((ctf_helem_t **) slot);
|
|
ctf_traverse_cb_arg_t *arg = (ctf_traverse_cb_arg_t *) arg_;
|
|
|
|
arg->fun (helem->key, helem->value, arg->arg);
|
|
return 1;
|
|
}
|
|
|
|
void
|
|
ctf_dynhash_iter (ctf_dynhash_t *hp, ctf_hash_iter_f fun, void *arg_)
|
|
{
|
|
ctf_traverse_cb_arg_t arg = { fun, arg_ };
|
|
htab_traverse (hp->htab, ctf_hashtab_traverse, &arg);
|
|
}
|
|
|
|
typedef struct ctf_traverse_find_cb_arg
|
|
{
|
|
ctf_hash_iter_find_f fun;
|
|
void *arg;
|
|
void *found_key;
|
|
} ctf_traverse_find_cb_arg_t;
|
|
|
|
static int
|
|
ctf_hashtab_traverse_find (void **slot, void *arg_)
|
|
{
|
|
ctf_helem_t *helem = *((ctf_helem_t **) slot);
|
|
ctf_traverse_find_cb_arg_t *arg = (ctf_traverse_find_cb_arg_t *) arg_;
|
|
|
|
if (arg->fun (helem->key, helem->value, arg->arg))
|
|
{
|
|
arg->found_key = helem->key;
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
void *
|
|
ctf_dynhash_iter_find (ctf_dynhash_t *hp, ctf_hash_iter_find_f fun, void *arg_)
|
|
{
|
|
ctf_traverse_find_cb_arg_t arg = { fun, arg_, NULL };
|
|
htab_traverse (hp->htab, ctf_hashtab_traverse_find, &arg);
|
|
return arg.found_key;
|
|
}
|
|
|
|
typedef struct ctf_traverse_remove_cb_arg
|
|
{
|
|
struct htab *htab;
|
|
ctf_hash_iter_remove_f fun;
|
|
void *arg;
|
|
} ctf_traverse_remove_cb_arg_t;
|
|
|
|
static int
|
|
ctf_hashtab_traverse_remove (void **slot, void *arg_)
|
|
{
|
|
ctf_helem_t *helem = *((ctf_helem_t **) slot);
|
|
ctf_traverse_remove_cb_arg_t *arg = (ctf_traverse_remove_cb_arg_t *) arg_;
|
|
|
|
if (arg->fun (helem->key, helem->value, arg->arg))
|
|
htab_clear_slot (arg->htab, slot);
|
|
return 1;
|
|
}
|
|
|
|
void
|
|
ctf_dynhash_iter_remove (ctf_dynhash_t *hp, ctf_hash_iter_remove_f fun,
|
|
void *arg_)
|
|
{
|
|
ctf_traverse_remove_cb_arg_t arg = { hp->htab, fun, arg_ };
|
|
htab_traverse (hp->htab, ctf_hashtab_traverse_remove, &arg);
|
|
}
|
|
|
|
/* Traverse a dynhash in arbitrary order, in _next iterator form.
|
|
|
|
Mutating the dynhash while iterating is not supported (just as it isn't for
|
|
htab_traverse).
|
|
|
|
Note: unusually, this returns zero on success and a *positive* value on
|
|
error, because it does not take an fp, taking an error pointer would be
|
|
incredibly clunky, and nearly all error-handling ends up stuffing the result
|
|
of this into some sort of errno or ctf_errno, which is invariably
|
|
positive. So doing this simplifies essentially all callers. */
|
|
int
|
|
ctf_dynhash_next (ctf_dynhash_t *h, ctf_next_t **it, void **key, void **value)
|
|
{
|
|
ctf_next_t *i = *it;
|
|
ctf_helem_t *slot;
|
|
|
|
if (!i)
|
|
{
|
|
size_t size = htab_size (h->htab);
|
|
|
|
/* If the table has too many entries to fit in an ssize_t, just give up.
|
|
This might be spurious, but if any type-related hashtable has ever been
|
|
nearly as large as that then something very odd is going on. */
|
|
if (((ssize_t) size) < 0)
|
|
return EDOM;
|
|
|
|
if ((i = ctf_next_create ()) == NULL)
|
|
return ENOMEM;
|
|
|
|
i->u.ctn_hash_slot = h->htab->entries;
|
|
i->cu.ctn_h = h;
|
|
i->ctn_n = 0;
|
|
i->ctn_size = (ssize_t) size;
|
|
i->ctn_iter_fun = (void (*) (void)) ctf_dynhash_next;
|
|
*it = i;
|
|
}
|
|
|
|
if ((void (*) (void)) ctf_dynhash_next != i->ctn_iter_fun)
|
|
return ECTF_NEXT_WRONGFUN;
|
|
|
|
if (h != i->cu.ctn_h)
|
|
return ECTF_NEXT_WRONGFP;
|
|
|
|
if ((ssize_t) i->ctn_n == i->ctn_size)
|
|
goto hash_end;
|
|
|
|
while ((ssize_t) i->ctn_n < i->ctn_size
|
|
&& (*i->u.ctn_hash_slot == HTAB_EMPTY_ENTRY
|
|
|| *i->u.ctn_hash_slot == HTAB_DELETED_ENTRY))
|
|
{
|
|
i->u.ctn_hash_slot++;
|
|
i->ctn_n++;
|
|
}
|
|
|
|
if ((ssize_t) i->ctn_n == i->ctn_size)
|
|
goto hash_end;
|
|
|
|
slot = *i->u.ctn_hash_slot;
|
|
|
|
if (key)
|
|
*key = slot->key;
|
|
if (value)
|
|
*value = slot->value;
|
|
|
|
i->u.ctn_hash_slot++;
|
|
i->ctn_n++;
|
|
|
|
return 0;
|
|
|
|
hash_end:
|
|
ctf_next_destroy (i);
|
|
*it = NULL;
|
|
return ECTF_NEXT_END;
|
|
}
|
|
|
|
int
|
|
ctf_dynhash_sort_by_name (const ctf_next_hkv_t *one, const ctf_next_hkv_t *two,
|
|
void *unused _libctf_unused_)
|
|
{
|
|
return strcmp ((char *) one->hkv_key, (char *) two->hkv_key);
|
|
}
|
|
|
|
/* Traverse a sorted dynhash, in _next iterator form.
|
|
|
|
See ctf_dynhash_next for notes on error returns, etc.
|
|
|
|
Sort keys before iterating over them using the SORT_FUN and SORT_ARG.
|
|
|
|
If SORT_FUN is null, thunks to ctf_dynhash_next. */
|
|
int
|
|
ctf_dynhash_next_sorted (ctf_dynhash_t *h, ctf_next_t **it, void **key,
|
|
void **value, ctf_hash_sort_f sort_fun, void *sort_arg)
|
|
{
|
|
ctf_next_t *i = *it;
|
|
|
|
if (sort_fun == NULL)
|
|
return ctf_dynhash_next (h, it, key, value);
|
|
|
|
if (!i)
|
|
{
|
|
size_t els = ctf_dynhash_elements (h);
|
|
ctf_next_t *accum_i = NULL;
|
|
void *key, *value;
|
|
int err;
|
|
ctf_next_hkv_t *walk;
|
|
|
|
if (((ssize_t) els) < 0)
|
|
return EDOM;
|
|
|
|
if ((i = ctf_next_create ()) == NULL)
|
|
return ENOMEM;
|
|
|
|
if ((i->u.ctn_sorted_hkv = calloc (els, sizeof (ctf_next_hkv_t))) == NULL)
|
|
{
|
|
ctf_next_destroy (i);
|
|
return ENOMEM;
|
|
}
|
|
walk = i->u.ctn_sorted_hkv;
|
|
|
|
i->cu.ctn_h = h;
|
|
|
|
while ((err = ctf_dynhash_next (h, &accum_i, &key, &value)) == 0)
|
|
{
|
|
walk->hkv_key = key;
|
|
walk->hkv_value = value;
|
|
walk++;
|
|
}
|
|
if (err != ECTF_NEXT_END)
|
|
{
|
|
ctf_next_destroy (i);
|
|
return err;
|
|
}
|
|
|
|
if (sort_fun)
|
|
ctf_qsort_r (i->u.ctn_sorted_hkv, els, sizeof (ctf_next_hkv_t),
|
|
(int (*) (const void *, const void *, void *)) sort_fun,
|
|
sort_arg);
|
|
i->ctn_n = 0;
|
|
i->ctn_size = (ssize_t) els;
|
|
i->ctn_iter_fun = (void (*) (void)) ctf_dynhash_next_sorted;
|
|
*it = i;
|
|
}
|
|
|
|
if ((void (*) (void)) ctf_dynhash_next_sorted != i->ctn_iter_fun)
|
|
return ECTF_NEXT_WRONGFUN;
|
|
|
|
if (h != i->cu.ctn_h)
|
|
return ECTF_NEXT_WRONGFP;
|
|
|
|
if ((ssize_t) i->ctn_n == i->ctn_size)
|
|
{
|
|
ctf_next_destroy (i);
|
|
*it = NULL;
|
|
return ECTF_NEXT_END;
|
|
}
|
|
|
|
if (key)
|
|
*key = i->u.ctn_sorted_hkv[i->ctn_n].hkv_key;
|
|
if (value)
|
|
*value = i->u.ctn_sorted_hkv[i->ctn_n].hkv_value;
|
|
i->ctn_n++;
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
ctf_dynhash_destroy (ctf_dynhash_t *hp)
|
|
{
|
|
if (hp != NULL)
|
|
htab_delete (hp->htab);
|
|
free (hp);
|
|
}
|
|
|
|
/* The dynset, used for sets of keys with no value. The implementation of this
|
|
can be much simpler, because without a value the slot can simply be the
|
|
stored key, which means we don't need to store the freeing functions and the
|
|
dynset itself is just a htab. */
|
|
|
|
ctf_dynset_t *
|
|
ctf_dynset_create (htab_hash hash_fun, htab_eq eq_fun,
|
|
ctf_hash_free_fun key_free)
|
|
{
|
|
/* 7 is arbitrary and untested for now. */
|
|
return (ctf_dynset_t *) htab_create_alloc (7, (htab_hash) hash_fun, eq_fun,
|
|
key_free, xcalloc, free);
|
|
}
|
|
|
|
/* The dynset has one complexity: the underlying implementation reserves two
|
|
values for internal hash table implementation details (empty versus deleted
|
|
entries). These values are otherwise very useful for pointers cast to ints,
|
|
so transform the ctf_dynset_inserted value to allow for it. (This
|
|
introduces an ambiguity in that one can no longer store these two values in
|
|
the dynset, but if we pick high enough values this is very unlikely to be a
|
|
problem.)
|
|
|
|
We leak this implementation detail to the freeing functions on the grounds
|
|
that any use of these functions is overwhelmingly likely to be in sets using
|
|
real pointers, which will be unaffected. */
|
|
|
|
#define DYNSET_EMPTY_ENTRY_REPLACEMENT ((void *) (uintptr_t) -64)
|
|
#define DYNSET_DELETED_ENTRY_REPLACEMENT ((void *) (uintptr_t) -63)
|
|
|
|
static void *
|
|
key_to_internal (const void *key)
|
|
{
|
|
if (key == HTAB_EMPTY_ENTRY)
|
|
return DYNSET_EMPTY_ENTRY_REPLACEMENT;
|
|
else if (key == HTAB_DELETED_ENTRY)
|
|
return DYNSET_DELETED_ENTRY_REPLACEMENT;
|
|
|
|
return (void *) key;
|
|
}
|
|
|
|
static void *
|
|
internal_to_key (const void *internal)
|
|
{
|
|
if (internal == DYNSET_EMPTY_ENTRY_REPLACEMENT)
|
|
return HTAB_EMPTY_ENTRY;
|
|
else if (internal == DYNSET_DELETED_ENTRY_REPLACEMENT)
|
|
return HTAB_DELETED_ENTRY;
|
|
return (void *) internal;
|
|
}
|
|
|
|
int
|
|
ctf_dynset_insert (ctf_dynset_t *hp, void *key)
|
|
{
|
|
struct htab *htab = (struct htab *) hp;
|
|
void **slot;
|
|
|
|
slot = htab_find_slot (htab, key, INSERT);
|
|
|
|
if (!slot)
|
|
{
|
|
errno = ENOMEM;
|
|
return -errno;
|
|
}
|
|
|
|
if (*slot)
|
|
{
|
|
if (htab->del_f)
|
|
(*htab->del_f) (*slot);
|
|
}
|
|
|
|
*slot = key_to_internal (key);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
ctf_dynset_remove (ctf_dynset_t *hp, const void *key)
|
|
{
|
|
htab_remove_elt ((struct htab *) hp, key_to_internal (key));
|
|
}
|
|
|
|
size_t
|
|
ctf_dynset_elements (ctf_dynset_t *hp)
|
|
{
|
|
return htab_elements ((struct htab *) hp);
|
|
}
|
|
|
|
void
|
|
ctf_dynset_destroy (ctf_dynset_t *hp)
|
|
{
|
|
if (hp != NULL)
|
|
htab_delete ((struct htab *) hp);
|
|
}
|
|
|
|
void *
|
|
ctf_dynset_lookup (ctf_dynset_t *hp, const void *key)
|
|
{
|
|
void **slot = htab_find_slot ((struct htab *) hp,
|
|
key_to_internal (key), NO_INSERT);
|
|
|
|
if (slot)
|
|
return internal_to_key (*slot);
|
|
return NULL;
|
|
}
|
|
|
|
/* TRUE/FALSE return. */
|
|
int
|
|
ctf_dynset_exists (ctf_dynset_t *hp, const void *key, const void **orig_key)
|
|
{
|
|
void **slot = htab_find_slot ((struct htab *) hp,
|
|
key_to_internal (key), NO_INSERT);
|
|
|
|
if (orig_key && slot)
|
|
*orig_key = internal_to_key (*slot);
|
|
return (slot != NULL);
|
|
}
|
|
|
|
/* Look up a completely random value from the set, if any exist.
|
|
Keys with value zero cannot be distinguished from a nonexistent key. */
|
|
void *
|
|
ctf_dynset_lookup_any (ctf_dynset_t *hp)
|
|
{
|
|
struct htab *htab = (struct htab *) hp;
|
|
void **slot = htab->entries;
|
|
void **limit = slot + htab_size (htab);
|
|
|
|
while (slot < limit
|
|
&& (*slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY))
|
|
slot++;
|
|
|
|
if (slot < limit)
|
|
return internal_to_key (*slot);
|
|
return NULL;
|
|
}
|
|
|
|
/* Traverse a dynset in arbitrary order, in _next iterator form.
|
|
|
|
Otherwise, just like ctf_dynhash_next. */
|
|
int
|
|
ctf_dynset_next (ctf_dynset_t *hp, ctf_next_t **it, void **key)
|
|
{
|
|
struct htab *htab = (struct htab *) hp;
|
|
ctf_next_t *i = *it;
|
|
void *slot;
|
|
|
|
if (!i)
|
|
{
|
|
size_t size = htab_size (htab);
|
|
|
|
/* If the table has too many entries to fit in an ssize_t, just give up.
|
|
This might be spurious, but if any type-related hashtable has ever been
|
|
nearly as large as that then somthing very odd is going on. */
|
|
|
|
if (((ssize_t) size) < 0)
|
|
return EDOM;
|
|
|
|
if ((i = ctf_next_create ()) == NULL)
|
|
return ENOMEM;
|
|
|
|
i->u.ctn_hash_slot = htab->entries;
|
|
i->cu.ctn_s = hp;
|
|
i->ctn_n = 0;
|
|
i->ctn_size = (ssize_t) size;
|
|
i->ctn_iter_fun = (void (*) (void)) ctf_dynset_next;
|
|
*it = i;
|
|
}
|
|
|
|
if ((void (*) (void)) ctf_dynset_next != i->ctn_iter_fun)
|
|
return ECTF_NEXT_WRONGFUN;
|
|
|
|
if (hp != i->cu.ctn_s)
|
|
return ECTF_NEXT_WRONGFP;
|
|
|
|
if ((ssize_t) i->ctn_n == i->ctn_size)
|
|
goto set_end;
|
|
|
|
while ((ssize_t) i->ctn_n < i->ctn_size
|
|
&& (*i->u.ctn_hash_slot == HTAB_EMPTY_ENTRY
|
|
|| *i->u.ctn_hash_slot == HTAB_DELETED_ENTRY))
|
|
{
|
|
i->u.ctn_hash_slot++;
|
|
i->ctn_n++;
|
|
}
|
|
|
|
if ((ssize_t) i->ctn_n == i->ctn_size)
|
|
goto set_end;
|
|
|
|
slot = *i->u.ctn_hash_slot;
|
|
|
|
if (key)
|
|
*key = internal_to_key (slot);
|
|
|
|
i->u.ctn_hash_slot++;
|
|
i->ctn_n++;
|
|
|
|
return 0;
|
|
|
|
set_end:
|
|
ctf_next_destroy (i);
|
|
*it = NULL;
|
|
return ECTF_NEXT_END;
|
|
}
|
|
|
|
/* Helper functions for insertion/removal of types. */
|
|
|
|
int
|
|
ctf_dynhash_insert_type (ctf_dict_t *fp, ctf_dynhash_t *hp, uint32_t type,
|
|
uint32_t name)
|
|
{
|
|
const char *str;
|
|
int err;
|
|
|
|
if (type == 0)
|
|
return EINVAL;
|
|
|
|
if ((str = ctf_strptr_validate (fp, name)) == NULL)
|
|
return ctf_errno (fp);
|
|
|
|
if (str[0] == '\0')
|
|
return 0; /* Just ignore empty strings on behalf of caller. */
|
|
|
|
if ((err = ctf_dynhash_insert (hp, (char *) str,
|
|
(void *) (ptrdiff_t) type)) == 0)
|
|
return 0;
|
|
|
|
return err;
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_dynhash_lookup_type (ctf_dynhash_t *hp, const char *key)
|
|
{
|
|
void *value;
|
|
|
|
if (ctf_dynhash_lookup_kv (hp, key, NULL, &value))
|
|
return (ctf_id_t) (uintptr_t) value;
|
|
|
|
return 0;
|
|
}
|