mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-12 12:16:04 +08:00
9fc501fdfe
This started with me running into the bug described in python/22748, in summary, if the frame sniffing code accessed any registers within an inline frame then GDB would crash with this error: gdb/frame.c:579: internal-error: frame_id get_frame_id(frame_info*): Assertion `fi->level == 0' failed. The problem is that, when in the Python unwinder I write this: pending_frame.read_register ("register-name") This is translated internally into a call to `value_of_register', which in turn becomes a call to `value_of_register_lazy'. Usually this isn't a problem, `value_of_register_lazy' requires the next frame (more inner) to have a valid frame_id, which will be the case (if we're sniffing frame #1, then frame #0 will have had its frame-id figured out). Unfortunately if frame #0 is inline within frame #1, then the frame-id for frame #0 can't be computed until we have the frame-id for #1. As a result we can't create a lazy register for frame #1 when frame #0 is inline. Initially I proposed a solution inline with that proposed in bugzilla, changing value_of_register to avoid creating a lazy register value. However, when this was discussed on the mailing list I got this reply: https://sourceware.org/pipermail/gdb-patches/2020-June/169633.html Which led me to look at these two patches: [1] https://sourceware.org/pipermail/gdb-patches/2020-April/167612.html [2] https://sourceware.org/pipermail/gdb-patches/2020-April/167930.html When I considered patches [1] and [2] I saw that all of the issues being addressed here were related, and that there was a single solution that could address all of these issues. First I wrote the new test gdb.opt/inline-frame-tailcall.exp, which shows that [1] and [2] regress the inline tail-call unwinder, the reason for this is that these two patches replace a call to gdbarch_unwind_pc with a call to get_frame_register, however, this is not correct. The previous call to gdbarch_unwind_pc takes THIS_FRAME and returns the $pc value in the previous frame. In contrast get_frame_register takes THIS_FRAME and returns the value of the $pc in THIS_FRAME; these calls are not equivalent. The reason these patches appear (or do) fix the regressions listed in [1] is that the tail call sniffer depends on identifying the address of a caller and a callee, GDB then looks for a tail-call sequence that takes us from the caller address to the callee, if such a series is found then tail-call frames are added. The bug that was being hit, and which was address in patch [1] is that in order to find the address of the caller, GDB ended up creating a lazy register value for an inline frame with to frame-id. The solution in patch [1] is to instead take the address of the callee and treat this as the address of the caller. Getting the address of the callee works, but we then end up looking for a tail-call series from the callee to the callee, which obviously doesn't return any sane results, so we don't insert any tail call frames. The original patch [1] did cause some breakage, so patch [2] undid patch [1] in all cases except those where we had an inline frame with no frame-id. It just so happens that there were no tests that fitted this description _and_ which required tail-call frames to be successfully spotted, as a result patch [2] appeared to work. The new test inline-frame-tailcall.exp, exposes the flaw in patch [2]. This commit undoes patch [1] and [2], and replaces them with a new solution, which is also different to the solution proposed in the python/22748 bug report. In this solution I propose that we introduce some special case logic to value_of_register_lazy. To understand what this logic is we must first look at how inline frames unwind registers, this is very simple, they do this: static struct value * inline_frame_prev_register (struct frame_info *this_frame, void **this_cache, int regnum) { return get_frame_register_value (this_frame, regnum); } And remember: struct value * get_frame_register_value (struct frame_info *frame, int regnum) { return frame_unwind_register_value (frame->next, regnum); } So in all cases, unwinding a register in an inline frame just asks the next frame to unwind the register, this makes sense, as an inline frame doesn't really exist, when we unwind a register in an inline frame, we're really just asking the next frame for the value of the register in the previous, non-inline frame. So, if we assume that we only get into the missing frame-id situation when we try to unwind a register from an inline frame during the frame sniffing process, then we can change value_of_register_lazy to not create lazy register values for an inline frame. Imagine this stack setup, where #1 is inline within #2. #3 -> #2 -> #1 -> #0 \______/ inline Now when trying to figure out the frame-id for #1, we need to compute the frame-id for #2. If the frame sniffer for #2 causes a lazy register read in #2, either due to a Python Unwinder, or for the tail-call sniffer, then we call value_of_register_lazy passing in frame #2. In value_of_register_lazy, we grab the next frame, which is #1, and we used to then ask for the frame-id of #1, which was not computed, and this was our bug. Now, I propose we spot that #1 is an inline frame, and so lookup the next frame of #1, which is #0. As #0 is not inline it will have a valid frame-id, and so we create a lazy register value using #0 as the next-frame-id. This will give us the exact same result we had previously (thanks to the code we inspected above). Encoding into value_of_register_lazy the knowledge that reading an inline frame register will always just forward to the next frame feels.... not ideal, but this seems like the cleanest solution to this recursive frame-id computation/sniffing issue that appears to crop up. The following two commits are fully reverted with this commit, these correspond to patches [1] and [2] respectively: commit5939967b35
Date: Tue Apr 14 17:26:22 2020 -0300 Fix inline frame unwinding breakage commit991a3e2e99
Date: Sat Apr 25 00:32:44 2020 -0300 Fix remaining inline/tailcall unwinding breakage for x86_64 gdb/ChangeLog: PR python/22748 * dwarf2/frame-tailcall.c (dwarf2_tailcall_sniffer_first): Remove special handling for inline frames. * findvar.c (value_of_register_lazy): Skip inline frames when creating lazy register values. * frame.c (frame_id_computed_p): Delete definition. * frame.h (frame_id_computed_p): Delete declaration. gdb/testsuite/ChangeLog: PR python/22748 * gdb.opt/inline-frame-tailcall.c: New file. * gdb.opt/inline-frame-tailcall.exp: New file. * gdb.python/py-unwind-inline.c: New file. * gdb.python/py-unwind-inline.exp: New file. * gdb.python/py-unwind-inline.py: New file.
50 lines
1.4 KiB
Plaintext
50 lines
1.4 KiB
Plaintext
# Copyright (C) 2020 Free Software Foundation, Inc.
|
|
|
|
# This program is free software; you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation; either version 3 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
# This script tests GDB's handling of using a Python unwinder in the
|
|
# presence of inlined frames.
|
|
|
|
load_lib gdb-python.exp
|
|
|
|
standard_testfile
|
|
|
|
if { [prepare_for_testing "failed to prepare" ${testfile} ${srcfile} \
|
|
debug] } {
|
|
return -1
|
|
}
|
|
|
|
# Skip all tests if Python scripting is not enabled.
|
|
if { [skip_python_tests] } { continue }
|
|
|
|
# The following tests require execution.
|
|
if ![runto_main] then {
|
|
fail "can't run to main"
|
|
return 0
|
|
}
|
|
|
|
set pyfile [gdb_remote_download host ${srcdir}/${subdir}/${testfile}.py]
|
|
|
|
gdb_breakpoint "foo"
|
|
|
|
gdb_test "source ${pyfile}" "Python script imported" \
|
|
"import python scripts"
|
|
|
|
gdb_continue_to_breakpoint "foo"
|
|
|
|
gdb_test_sequence "backtrace" "backtrace with dummy unwinder" {
|
|
"\\r\\n#0 foo \\(\\)"
|
|
"\\r\\n#1 main \\(\\)"
|
|
}
|