binutils-gdb/gdb/rust-parse.c
Tom Tromey 974b36c2ae Use the new symbol domains
This patch changes the DWARF reader to use the new symbol domains.  It
also adjusts many bits of associated code to adapt to this change.

The non-DWARF readers are updated on a best-effort basis.  This is
somewhat simpler since most of them only support C and C++.  I have no
way to test a few of these.

I went back and forth a few times on how to handle the "tag"
situation.  The basic problem is that C has a special namespace for
tags, which is separate from the type namespace.  Other languages
don't do this.  So, the question is, should a DW_TAG_structure_type
end up in the tag domain, or the type domain, or should it be
language-dependent?

I settled on making it language-dependent using a thought experiment.
Suppose there was a Rust compiler that only emitted nameless
DW_TAG_structure_type objects, and specified all structure type names
using DW_TAG_typedef.  This DWARF would be correct, in that it
faithfully represents the source language -- but would not work with a
purely struct-domain implementation in gdb.  Therefore gdb would be
wrong.

Now, this approach is a little tricky for C++, which uses tags but
also enters a typedef for them.  I notice that some other readers --
like stabsread -- actually emit a typedef symbol as well.  And, I
think this is a reasonable approach.  It uses more memory, but it
makes the internals simpler.  However, DWARF never did this for
whatever reason, and so in the interest of keeping the series slightly
shorter, I've left some C++-specific hacks in place here.

Note that this patch includes language_minimal as a language that uses
tags.  I did this to avoid regressing gdb.dwarf2/debug-names-tu.exp,
which doesn't specify the language for a type unit.  Arguably this
test case is wrong.

Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=30164
2024-01-28 10:58:16 -07:00

2433 lines
59 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Rust expression parsing for GDB, the GNU debugger.
Copyright (C) 2016-2024 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "block.h"
#include "charset.h"
#include "cp-support.h"
#include "gdbsupport/gdb_obstack.h"
#include "gdbsupport/gdb_regex.h"
#include "rust-lang.h"
#include "parser-defs.h"
#include "gdbsupport/selftest.h"
#include "value.h"
#include "gdbarch.h"
#include "rust-exp.h"
#include "inferior.h"
using namespace expr;
/* A regular expression for matching Rust numbers. This is split up
since it is very long and this gives us a way to comment the
sections. */
static const char number_regex_text[] =
/* subexpression 1: allows use of alternation, otherwise uninteresting */
"^("
/* First comes floating point. */
/* Recognize number after the decimal point, with optional
exponent and optional type suffix.
subexpression 2: allows "?", otherwise uninteresting
subexpression 3: if present, type suffix
*/
"[0-9][0-9_]*\\.[0-9][0-9_]*([eE][-+]?[0-9][0-9_]*)?(f32|f64)?"
#define FLOAT_TYPE1 3
"|"
/* Recognize exponent without decimal point, with optional type
suffix.
subexpression 4: if present, type suffix
*/
#define FLOAT_TYPE2 4
"[0-9][0-9_]*[eE][-+]?[0-9][0-9_]*(f32|f64)?"
"|"
/* "23." is a valid floating point number, but "23.e5" and
"23.f32" are not. So, handle the trailing-. case
separately. */
"[0-9][0-9_]*\\."
"|"
/* Finally come integers.
subexpression 5: text of integer
subexpression 6: if present, type suffix
subexpression 7: allows use of alternation, otherwise uninteresting
*/
#define INT_TEXT 5
#define INT_TYPE 6
"(0x[a-fA-F0-9_]+|0o[0-7_]+|0b[01_]+|[0-9][0-9_]*)"
"([iu](size|8|16|32|64|128))?"
")";
/* The number of subexpressions to allocate space for, including the
"0th" whole match subexpression. */
#define NUM_SUBEXPRESSIONS 8
/* The compiled number-matching regex. */
static regex_t number_regex;
/* The kinds of tokens. Note that single-character tokens are
represented by themselves, so for instance '[' is a token. */
enum token_type : int
{
/* Make sure to start after any ASCII character. */
GDBVAR = 256,
IDENT,
COMPLETE,
INTEGER,
DECIMAL_INTEGER,
STRING,
BYTESTRING,
FLOAT,
COMPOUND_ASSIGN,
/* Keyword tokens. */
KW_AS,
KW_IF,
KW_TRUE,
KW_FALSE,
KW_SUPER,
KW_SELF,
KW_MUT,
KW_EXTERN,
KW_CONST,
KW_FN,
KW_SIZEOF,
/* Operator tokens. */
DOTDOT,
DOTDOTEQ,
OROR,
ANDAND,
EQEQ,
NOTEQ,
LTEQ,
GTEQ,
LSH,
RSH,
COLONCOLON,
ARROW,
};
/* A typed integer constant. */
struct typed_val_int
{
gdb_mpz val;
struct type *type;
};
/* A typed floating point constant. */
struct typed_val_float
{
float_data val;
struct type *type;
};
/* A struct of this type is used to describe a token. */
struct token_info
{
const char *name;
int value;
enum exp_opcode opcode;
};
/* Identifier tokens. */
static const struct token_info identifier_tokens[] =
{
{ "as", KW_AS, OP_NULL },
{ "false", KW_FALSE, OP_NULL },
{ "if", 0, OP_NULL },
{ "mut", KW_MUT, OP_NULL },
{ "const", KW_CONST, OP_NULL },
{ "self", KW_SELF, OP_NULL },
{ "super", KW_SUPER, OP_NULL },
{ "true", KW_TRUE, OP_NULL },
{ "extern", KW_EXTERN, OP_NULL },
{ "fn", KW_FN, OP_NULL },
{ "sizeof", KW_SIZEOF, OP_NULL },
};
/* Operator tokens, sorted longest first. */
static const struct token_info operator_tokens[] =
{
{ ">>=", COMPOUND_ASSIGN, BINOP_RSH },
{ "<<=", COMPOUND_ASSIGN, BINOP_LSH },
{ "<<", LSH, OP_NULL },
{ ">>", RSH, OP_NULL },
{ "&&", ANDAND, OP_NULL },
{ "||", OROR, OP_NULL },
{ "==", EQEQ, OP_NULL },
{ "!=", NOTEQ, OP_NULL },
{ "<=", LTEQ, OP_NULL },
{ ">=", GTEQ, OP_NULL },
{ "+=", COMPOUND_ASSIGN, BINOP_ADD },
{ "-=", COMPOUND_ASSIGN, BINOP_SUB },
{ "*=", COMPOUND_ASSIGN, BINOP_MUL },
{ "/=", COMPOUND_ASSIGN, BINOP_DIV },
{ "%=", COMPOUND_ASSIGN, BINOP_REM },
{ "&=", COMPOUND_ASSIGN, BINOP_BITWISE_AND },
{ "|=", COMPOUND_ASSIGN, BINOP_BITWISE_IOR },
{ "^=", COMPOUND_ASSIGN, BINOP_BITWISE_XOR },
{ "..=", DOTDOTEQ, OP_NULL },
{ "::", COLONCOLON, OP_NULL },
{ "..", DOTDOT, OP_NULL },
{ "->", ARROW, OP_NULL }
};
/* An instance of this is created before parsing, and destroyed when
parsing is finished. */
struct rust_parser
{
explicit rust_parser (struct parser_state *state)
: pstate (state)
{
}
DISABLE_COPY_AND_ASSIGN (rust_parser);
/* Return the parser's language. */
const struct language_defn *language () const
{
return pstate->language ();
}
/* Return the parser's gdbarch. */
struct gdbarch *arch () const
{
return pstate->gdbarch ();
}
/* A helper to look up a Rust type, or fail. This only works for
types defined by rust_language_arch_info. */
struct type *get_type (const char *name)
{
struct type *type;
type = language_lookup_primitive_type (language (), arch (), name);
if (type == NULL)
error (_("Could not find Rust type %s"), name);
return type;
}
std::string crate_name (const std::string &name);
std::string super_name (const std::string &ident, unsigned int n_supers);
int lex_character ();
int lex_number ();
int lex_string ();
int lex_identifier ();
uint32_t lex_hex (int min, int max);
uint32_t lex_escape (int is_byte);
int lex_operator ();
int lex_one_token ();
void push_back (char c);
/* The main interface to lexing. Lexes one token and updates the
internal state. */
void lex ()
{
current_token = lex_one_token ();
}
/* Assuming the current token is TYPE, lex the next token. */
void assume (int type)
{
gdb_assert (current_token == type);
lex ();
}
/* Require the single-character token C, and lex the next token; or
throw an exception. */
void require (char type)
{
if (current_token != type)
error (_("'%c' expected"), type);
lex ();
}
/* Entry point for all parsing. */
operation_up parse_entry_point ()
{
lex ();
operation_up result = parse_expr ();
if (current_token != 0)
error (_("Syntax error near '%s'"), pstate->prev_lexptr);
return result;
}
operation_up parse_tuple ();
operation_up parse_array ();
operation_up name_to_operation (const std::string &name);
operation_up parse_struct_expr (struct type *type);
operation_up parse_binop (bool required);
operation_up parse_range ();
operation_up parse_expr ();
operation_up parse_sizeof ();
operation_up parse_addr ();
operation_up parse_field (operation_up &&);
operation_up parse_index (operation_up &&);
std::vector<operation_up> parse_paren_args ();
operation_up parse_call (operation_up &&);
std::vector<struct type *> parse_type_list ();
std::vector<struct type *> parse_maybe_type_list ();
struct type *parse_array_type ();
struct type *parse_slice_type ();
struct type *parse_pointer_type ();
struct type *parse_function_type ();
struct type *parse_tuple_type ();
struct type *parse_type ();
std::string parse_path (bool for_expr);
operation_up parse_string ();
operation_up parse_tuple_struct (struct type *type);
operation_up parse_path_expr ();
operation_up parse_atom (bool required);
void update_innermost_block (struct block_symbol sym);
struct block_symbol lookup_symbol (const char *name,
const struct block *block,
const domain_search_flags domain);
struct type *rust_lookup_type (const char *name);
/* Clear some state. This is only used for testing. */
#if GDB_SELF_TEST
void reset (const char *input)
{
pstate->prev_lexptr = nullptr;
pstate->lexptr = input;
paren_depth = 0;
current_token = 0;
current_int_val = {};
current_float_val = {};
current_string_val = {};
current_opcode = OP_NULL;
}
#endif /* GDB_SELF_TEST */
/* Return the token's string value as a string. */
std::string get_string () const
{
return std::string (current_string_val.ptr, current_string_val.length);
}
/* A pointer to this is installed globally. */
auto_obstack obstack;
/* The parser state gdb gave us. */
struct parser_state *pstate;
/* Depth of parentheses. */
int paren_depth = 0;
/* The current token's type. */
int current_token = 0;
/* The current token's payload, if any. */
typed_val_int current_int_val {};
typed_val_float current_float_val {};
struct stoken current_string_val {};
enum exp_opcode current_opcode = OP_NULL;
/* When completing, this may be set to the field operation to
complete. */
operation_up completion_op;
};
/* Return an string referring to NAME, but relative to the crate's
name. */
std::string
rust_parser::crate_name (const std::string &name)
{
std::string crate = rust_crate_for_block (pstate->expression_context_block);
if (crate.empty ())
error (_("Could not find crate for current location"));
return "::" + crate + "::" + name;
}
/* Return a string referring to a "super::" qualified name. IDENT is
the base name and N_SUPERS is how many "super::"s were provided.
N_SUPERS can be zero. */
std::string
rust_parser::super_name (const std::string &ident, unsigned int n_supers)
{
const char *scope = "";
if (pstate->expression_context_block != nullptr)
scope = pstate->expression_context_block->scope ();
int offset;
if (scope[0] == '\0')
error (_("Couldn't find namespace scope for self::"));
if (n_supers > 0)
{
int len;
std::vector<int> offsets;
unsigned int current_len;
current_len = cp_find_first_component (scope);
while (scope[current_len] != '\0')
{
offsets.push_back (current_len);
gdb_assert (scope[current_len] == ':');
/* The "::". */
current_len += 2;
current_len += cp_find_first_component (scope
+ current_len);
}
len = offsets.size ();
if (n_supers >= len)
error (_("Too many super:: uses from '%s'"), scope);
offset = offsets[len - n_supers];
}
else
offset = strlen (scope);
return "::" + std::string (scope, offset) + "::" + ident;
}
/* A helper to appropriately munge NAME and BLOCK depending on the
presence of a leading "::". */
static void
munge_name_and_block (const char **name, const struct block **block)
{
/* If it is a global reference, skip the current block in favor of
the static block. */
if (startswith (*name, "::"))
{
*name += 2;
*block = (*block)->static_block ();
}
}
/* Like lookup_symbol, but handles Rust namespace conventions, and
doesn't require field_of_this_result. */
struct block_symbol
rust_parser::lookup_symbol (const char *name, const struct block *block,
const domain_search_flags domain)
{
struct block_symbol result;
munge_name_and_block (&name, &block);
result = ::lookup_symbol (name, block, domain, NULL);
if (result.symbol != NULL)
update_innermost_block (result);
return result;
}
/* Look up a type, following Rust namespace conventions. */
struct type *
rust_parser::rust_lookup_type (const char *name)
{
struct block_symbol result;
struct type *type;
const struct block *block = pstate->expression_context_block;
munge_name_and_block (&name, &block);
result = ::lookup_symbol (name, block, SEARCH_TYPE_DOMAIN, nullptr);
if (result.symbol != NULL)
{
update_innermost_block (result);
return result.symbol->type ();
}
type = lookup_typename (language (), name, NULL, 1);
if (type != NULL)
return type;
/* Last chance, try a built-in type. */
return language_lookup_primitive_type (language (), arch (), name);
}
/* A helper that updates the innermost block as appropriate. */
void
rust_parser::update_innermost_block (struct block_symbol sym)
{
if (symbol_read_needs_frame (sym.symbol))
pstate->block_tracker->update (sym);
}
/* Lex a hex number with at least MIN digits and at most MAX
digits. */
uint32_t
rust_parser::lex_hex (int min, int max)
{
uint32_t result = 0;
int len = 0;
/* We only want to stop at MAX if we're lexing a byte escape. */
int check_max = min == max;
while ((check_max ? len <= max : 1)
&& ((pstate->lexptr[0] >= 'a' && pstate->lexptr[0] <= 'f')
|| (pstate->lexptr[0] >= 'A' && pstate->lexptr[0] <= 'F')
|| (pstate->lexptr[0] >= '0' && pstate->lexptr[0] <= '9')))
{
result *= 16;
if (pstate->lexptr[0] >= 'a' && pstate->lexptr[0] <= 'f')
result = result + 10 + pstate->lexptr[0] - 'a';
else if (pstate->lexptr[0] >= 'A' && pstate->lexptr[0] <= 'F')
result = result + 10 + pstate->lexptr[0] - 'A';
else
result = result + pstate->lexptr[0] - '0';
++pstate->lexptr;
++len;
}
if (len < min)
error (_("Not enough hex digits seen"));
if (len > max)
{
gdb_assert (min != max);
error (_("Overlong hex escape"));
}
return result;
}
/* Lex an escape. IS_BYTE is true if we're lexing a byte escape;
otherwise we're lexing a character escape. */
uint32_t
rust_parser::lex_escape (int is_byte)
{
uint32_t result;
gdb_assert (pstate->lexptr[0] == '\\');
++pstate->lexptr;
switch (pstate->lexptr[0])
{
case 'x':
++pstate->lexptr;
result = lex_hex (2, 2);
break;
case 'u':
if (is_byte)
error (_("Unicode escape in byte literal"));
++pstate->lexptr;
if (pstate->lexptr[0] != '{')
error (_("Missing '{' in Unicode escape"));
++pstate->lexptr;
result = lex_hex (1, 6);
/* Could do range checks here. */
if (pstate->lexptr[0] != '}')
error (_("Missing '}' in Unicode escape"));
++pstate->lexptr;
break;
case 'n':
result = '\n';
++pstate->lexptr;
break;
case 'r':
result = '\r';
++pstate->lexptr;
break;
case 't':
result = '\t';
++pstate->lexptr;
break;
case '\\':
result = '\\';
++pstate->lexptr;
break;
case '0':
result = '\0';
++pstate->lexptr;
break;
case '\'':
result = '\'';
++pstate->lexptr;
break;
case '"':
result = '"';
++pstate->lexptr;
break;
default:
error (_("Invalid escape \\%c in literal"), pstate->lexptr[0]);
}
return result;
}
/* A helper for lex_character. Search forward for the closing single
quote, then convert the bytes from the host charset to UTF-32. */
static uint32_t
lex_multibyte_char (const char *text, int *len)
{
/* Only look a maximum of 5 bytes for the closing quote. This is
the maximum for UTF-8. */
int quote;
gdb_assert (text[0] != '\'');
for (quote = 1; text[quote] != '\0' && text[quote] != '\''; ++quote)
;
*len = quote;
/* The caller will issue an error. */
if (text[quote] == '\0')
return 0;
auto_obstack result;
convert_between_encodings (host_charset (), HOST_UTF32,
(const gdb_byte *) text,
quote, 1, &result, translit_none);
int size = obstack_object_size (&result);
if (size > 4)
error (_("overlong character literal"));
uint32_t value;
memcpy (&value, obstack_finish (&result), size);
return value;
}
/* Lex a character constant. */
int
rust_parser::lex_character ()
{
int is_byte = 0;
uint32_t value;
if (pstate->lexptr[0] == 'b')
{
is_byte = 1;
++pstate->lexptr;
}
gdb_assert (pstate->lexptr[0] == '\'');
++pstate->lexptr;
if (pstate->lexptr[0] == '\'')
error (_("empty character literal"));
else if (pstate->lexptr[0] == '\\')
value = lex_escape (is_byte);
else
{
int len;
value = lex_multibyte_char (&pstate->lexptr[0], &len);
pstate->lexptr += len;
}
if (pstate->lexptr[0] != '\'')
error (_("Unterminated character literal"));
++pstate->lexptr;
current_int_val.val = value;
current_int_val.type = get_type (is_byte ? "u8" : "char");
return INTEGER;
}
/* Return the offset of the double quote if STR looks like the start
of a raw string, or 0 if STR does not start a raw string. */
static int
starts_raw_string (const char *str)
{
const char *save = str;
if (str[0] != 'r')
return 0;
++str;
while (str[0] == '#')
++str;
if (str[0] == '"')
return str - save;
return 0;
}
/* Return true if STR looks like the end of a raw string that had N
hashes at the start. */
static bool
ends_raw_string (const char *str, int n)
{
int i;
gdb_assert (str[0] == '"');
for (i = 0; i < n; ++i)
if (str[i + 1] != '#')
return false;
return true;
}
/* Lex a string constant. */
int
rust_parser::lex_string ()
{
int is_byte = pstate->lexptr[0] == 'b';
int raw_length;
if (is_byte)
++pstate->lexptr;
raw_length = starts_raw_string (pstate->lexptr);
pstate->lexptr += raw_length;
gdb_assert (pstate->lexptr[0] == '"');
++pstate->lexptr;
while (1)
{
uint32_t value;
if (raw_length > 0)
{
if (pstate->lexptr[0] == '"' && ends_raw_string (pstate->lexptr,
raw_length - 1))
{
/* Exit with lexptr pointing after the final "#". */
pstate->lexptr += raw_length;
break;
}
else if (pstate->lexptr[0] == '\0')
error (_("Unexpected EOF in string"));
value = pstate->lexptr[0] & 0xff;
if (is_byte && value > 127)
error (_("Non-ASCII value in raw byte string"));
obstack_1grow (&obstack, value);
++pstate->lexptr;
}
else if (pstate->lexptr[0] == '"')
{
/* Make sure to skip the quote. */
++pstate->lexptr;
break;
}
else if (pstate->lexptr[0] == '\\')
{
value = lex_escape (is_byte);
if (is_byte)
obstack_1grow (&obstack, value);
else
convert_between_encodings (HOST_UTF32, "UTF-8",
(gdb_byte *) &value,
sizeof (value), sizeof (value),
&obstack, translit_none);
}
else if (pstate->lexptr[0] == '\0')
error (_("Unexpected EOF in string"));
else
{
value = pstate->lexptr[0] & 0xff;
if (is_byte && value > 127)
error (_("Non-ASCII value in byte string"));
obstack_1grow (&obstack, value);
++pstate->lexptr;
}
}
current_string_val.length = obstack_object_size (&obstack);
current_string_val.ptr = (const char *) obstack_finish (&obstack);
return is_byte ? BYTESTRING : STRING;
}
/* Return true if STRING starts with whitespace followed by a digit. */
static bool
space_then_number (const char *string)
{
const char *p = string;
while (p[0] == ' ' || p[0] == '\t')
++p;
if (p == string)
return false;
return *p >= '0' && *p <= '9';
}
/* Return true if C can start an identifier. */
static bool
rust_identifier_start_p (char c)
{
return ((c >= 'a' && c <= 'z')
|| (c >= 'A' && c <= 'Z')
|| c == '_'
|| c == '$'
/* Allow any non-ASCII character as an identifier. There
doesn't seem to be a need to be picky about this. */
|| (c & 0x80) != 0);
}
/* Lex an identifier. */
int
rust_parser::lex_identifier ()
{
unsigned int length;
const struct token_info *token;
int is_gdb_var = pstate->lexptr[0] == '$';
bool is_raw = false;
if (pstate->lexptr[0] == 'r'
&& pstate->lexptr[1] == '#'
&& rust_identifier_start_p (pstate->lexptr[2]))
{
is_raw = true;
pstate->lexptr += 2;
}
const char *start = pstate->lexptr;
gdb_assert (rust_identifier_start_p (pstate->lexptr[0]));
++pstate->lexptr;
/* Allow any non-ASCII character here. This "handles" UTF-8 by
passing it through. */
while ((pstate->lexptr[0] >= 'a' && pstate->lexptr[0] <= 'z')
|| (pstate->lexptr[0] >= 'A' && pstate->lexptr[0] <= 'Z')
|| pstate->lexptr[0] == '_'
|| (is_gdb_var && pstate->lexptr[0] == '$')
|| (pstate->lexptr[0] >= '0' && pstate->lexptr[0] <= '9')
|| (pstate->lexptr[0] & 0x80) != 0)
++pstate->lexptr;
length = pstate->lexptr - start;
token = NULL;
if (!is_raw)
{
for (const auto &candidate : identifier_tokens)
{
if (length == strlen (candidate.name)
&& strncmp (candidate.name, start, length) == 0)
{
token = &candidate;
break;
}
}
}
if (token != NULL)
{
if (token->value == 0)
{
/* Leave the terminating token alone. */
pstate->lexptr = start;
return 0;
}
}
else if (token == NULL
&& !is_raw
&& (strncmp (start, "thread", length) == 0
|| strncmp (start, "task", length) == 0)
&& space_then_number (pstate->lexptr))
{
/* "task" or "thread" followed by a number terminates the
parse, per gdb rules. */
pstate->lexptr = start;
return 0;
}
if (token == NULL || (pstate->parse_completion && pstate->lexptr[0] == '\0'))
{
current_string_val.length = length;
current_string_val.ptr = start;
}
if (pstate->parse_completion && pstate->lexptr[0] == '\0')
{
/* Prevent rustyylex from returning two COMPLETE tokens. */
pstate->prev_lexptr = pstate->lexptr;
return COMPLETE;
}
if (token != NULL)
return token->value;
if (is_gdb_var)
return GDBVAR;
return IDENT;
}
/* Lex an operator. */
int
rust_parser::lex_operator ()
{
const struct token_info *token = NULL;
for (const auto &candidate : operator_tokens)
{
if (strncmp (candidate.name, pstate->lexptr,
strlen (candidate.name)) == 0)
{
pstate->lexptr += strlen (candidate.name);
token = &candidate;
break;
}
}
if (token != NULL)
{
current_opcode = token->opcode;
return token->value;
}
return *pstate->lexptr++;
}
/* Lex a number. */
int
rust_parser::lex_number ()
{
regmatch_t subexps[NUM_SUBEXPRESSIONS];
int match;
int is_integer = 0;
int could_be_decimal = 1;
int implicit_i32 = 0;
const char *type_name = NULL;
struct type *type;
int end_index;
int type_index = -1;
int i;
match = regexec (&number_regex, pstate->lexptr, ARRAY_SIZE (subexps),
subexps, 0);
/* Failure means the regexp is broken. */
gdb_assert (match == 0);
if (subexps[INT_TEXT].rm_so != -1)
{
/* Integer part matched. */
is_integer = 1;
end_index = subexps[INT_TEXT].rm_eo;
if (subexps[INT_TYPE].rm_so == -1)
{
type_name = "i32";
implicit_i32 = 1;
}
else
{
type_index = INT_TYPE;
could_be_decimal = 0;
}
}
else if (subexps[FLOAT_TYPE1].rm_so != -1)
{
/* Found floating point type suffix. */
end_index = subexps[FLOAT_TYPE1].rm_so;
type_index = FLOAT_TYPE1;
}
else if (subexps[FLOAT_TYPE2].rm_so != -1)
{
/* Found floating point type suffix. */
end_index = subexps[FLOAT_TYPE2].rm_so;
type_index = FLOAT_TYPE2;
}
else
{
/* Any other floating point match. */
end_index = subexps[0].rm_eo;
type_name = "f64";
}
/* We need a special case if the final character is ".". In this
case we might need to parse an integer. For example, "23.f()" is
a request for a trait method call, not a syntax error involving
the floating point number "23.". */
gdb_assert (subexps[0].rm_eo > 0);
if (pstate->lexptr[subexps[0].rm_eo - 1] == '.')
{
const char *next = skip_spaces (&pstate->lexptr[subexps[0].rm_eo]);
if (rust_identifier_start_p (*next) || *next == '.')
{
--subexps[0].rm_eo;
is_integer = 1;
end_index = subexps[0].rm_eo;
type_name = "i32";
could_be_decimal = 1;
implicit_i32 = 1;
}
}
/* Compute the type name if we haven't already. */
std::string type_name_holder;
if (type_name == NULL)
{
gdb_assert (type_index != -1);
type_name_holder = std::string ((pstate->lexptr
+ subexps[type_index].rm_so),
(subexps[type_index].rm_eo
- subexps[type_index].rm_so));
type_name = type_name_holder.c_str ();
}
/* Look up the type. */
type = get_type (type_name);
/* Copy the text of the number and remove the "_"s. */
std::string number;
for (i = 0; i < end_index && pstate->lexptr[i]; ++i)
{
if (pstate->lexptr[i] == '_')
could_be_decimal = 0;
else
number.push_back (pstate->lexptr[i]);
}
/* Advance past the match. */
pstate->lexptr += subexps[0].rm_eo;
/* Parse the number. */
if (is_integer)
{
int radix = 10;
int offset = 0;
if (number[0] == '0')
{
if (number[1] == 'x')
radix = 16;
else if (number[1] == 'o')
radix = 8;
else if (number[1] == 'b')
radix = 2;
if (radix != 10)
{
offset = 2;
could_be_decimal = 0;
}
}
if (!current_int_val.val.set (number.c_str () + offset, radix))
{
/* Shouldn't be possible. */
error (_("Invalid integer"));
}
if (implicit_i32)
{
static gdb_mpz sixty_three_bit = gdb_mpz::pow (2, 63);
static gdb_mpz thirty_one_bit = gdb_mpz::pow (2, 31);
if (current_int_val.val >= sixty_three_bit)
type = get_type ("i128");
else if (current_int_val.val >= thirty_one_bit)
type = get_type ("i64");
}
current_int_val.type = type;
}
else
{
current_float_val.type = type;
bool parsed = parse_float (number.c_str (), number.length (),
current_float_val.type,
current_float_val.val.data ());
gdb_assert (parsed);
}
return is_integer ? (could_be_decimal ? DECIMAL_INTEGER : INTEGER) : FLOAT;
}
/* The lexer. */
int
rust_parser::lex_one_token ()
{
/* Skip all leading whitespace. */
while (pstate->lexptr[0] == ' '
|| pstate->lexptr[0] == '\t'
|| pstate->lexptr[0] == '\r'
|| pstate->lexptr[0] == '\n')
++pstate->lexptr;
/* If we hit EOF and we're completing, then return COMPLETE -- maybe
we're completing an empty string at the end of a field_expr.
But, we don't want to return two COMPLETE tokens in a row. */
if (pstate->lexptr[0] == '\0' && pstate->lexptr == pstate->prev_lexptr)
return 0;
pstate->prev_lexptr = pstate->lexptr;
if (pstate->lexptr[0] == '\0')
{
if (pstate->parse_completion)
{
current_string_val.length =0;
current_string_val.ptr = "";
return COMPLETE;
}
return 0;
}
if (pstate->lexptr[0] >= '0' && pstate->lexptr[0] <= '9')
return lex_number ();
else if (pstate->lexptr[0] == 'b' && pstate->lexptr[1] == '\'')
return lex_character ();
else if (pstate->lexptr[0] == 'b' && pstate->lexptr[1] == '"')
return lex_string ();
else if (pstate->lexptr[0] == 'b' && starts_raw_string (pstate->lexptr + 1))
return lex_string ();
else if (starts_raw_string (pstate->lexptr))
return lex_string ();
else if (rust_identifier_start_p (pstate->lexptr[0]))
return lex_identifier ();
else if (pstate->lexptr[0] == '"')
return lex_string ();
else if (pstate->lexptr[0] == '\'')
return lex_character ();
else if (pstate->lexptr[0] == '}' || pstate->lexptr[0] == ']')
{
/* Falls through to lex_operator. */
--paren_depth;
}
else if (pstate->lexptr[0] == '(' || pstate->lexptr[0] == '{')
{
/* Falls through to lex_operator. */
++paren_depth;
}
else if (pstate->lexptr[0] == ',' && pstate->comma_terminates
&& paren_depth == 0)
return 0;
return lex_operator ();
}
/* Push back a single character to be re-lexed. */
void
rust_parser::push_back (char c)
{
/* Can't be called before any lexing. */
gdb_assert (pstate->prev_lexptr != NULL);
--pstate->lexptr;
gdb_assert (*pstate->lexptr == c);
}
/* Parse a tuple or paren expression. */
operation_up
rust_parser::parse_tuple ()
{
assume ('(');
if (current_token == ')')
{
lex ();
struct type *unit = get_type ("()");
return make_operation<long_const_operation> (unit, 0);
}
operation_up expr = parse_expr ();
if (current_token == ')')
{
/* Parenthesized expression. */
lex ();
return make_operation<rust_parenthesized_operation> (std::move (expr));
}
std::vector<operation_up> ops;
ops.push_back (std::move (expr));
while (current_token != ')')
{
if (current_token != ',')
error (_("',' or ')' expected"));
lex ();
/* A trailing "," is ok. */
if (current_token != ')')
ops.push_back (parse_expr ());
}
assume (')');
error (_("Tuple expressions not supported yet"));
}
/* Parse an array expression. */
operation_up
rust_parser::parse_array ()
{
assume ('[');
if (current_token == KW_MUT)
lex ();
operation_up result;
operation_up expr = parse_expr ();
if (current_token == ';')
{
lex ();
operation_up rhs = parse_expr ();
result = make_operation<rust_array_operation> (std::move (expr),
std::move (rhs));
}
else if (current_token == ',' || current_token == ']')
{
std::vector<operation_up> ops;
ops.push_back (std::move (expr));
while (current_token != ']')
{
if (current_token != ',')
error (_("',' or ']' expected"));
lex ();
ops.push_back (parse_expr ());
}
ops.shrink_to_fit ();
int len = ops.size () - 1;
result = make_operation<array_operation> (0, len, std::move (ops));
}
else
error (_("',', ';', or ']' expected"));
require (']');
return result;
}
/* Turn a name into an operation. */
operation_up
rust_parser::name_to_operation (const std::string &name)
{
struct block_symbol sym = lookup_symbol (name.c_str (),
pstate->expression_context_block,
SEARCH_VFT);
if (sym.symbol != nullptr && sym.symbol->aclass () != LOC_TYPEDEF)
return make_operation<var_value_operation> (sym);
struct type *type = nullptr;
if (sym.symbol != nullptr)
{
gdb_assert (sym.symbol->aclass () == LOC_TYPEDEF);
type = sym.symbol->type ();
}
if (type == nullptr)
type = rust_lookup_type (name.c_str ());
if (type == nullptr)
error (_("No symbol '%s' in current context"), name.c_str ());
if (type->code () == TYPE_CODE_STRUCT && type->num_fields () == 0)
{
/* A unit-like struct. */
operation_up result (new rust_aggregate_operation (type, {}, {}));
return result;
}
else
return make_operation<type_operation> (type);
}
/* Parse a struct expression. */
operation_up
rust_parser::parse_struct_expr (struct type *type)
{
assume ('{');
if (type->code () != TYPE_CODE_STRUCT
|| rust_tuple_type_p (type)
|| rust_tuple_struct_type_p (type))
error (_("Struct expression applied to non-struct type"));
std::vector<std::pair<std::string, operation_up>> field_v;
while (current_token != '}' && current_token != DOTDOT)
{
if (current_token != IDENT)
error (_("'}', '..', or identifier expected"));
std::string name = get_string ();
lex ();
operation_up expr;
if (current_token == ',' || current_token == '}'
|| current_token == DOTDOT)
expr = name_to_operation (name);
else
{
require (':');
expr = parse_expr ();
}
field_v.emplace_back (std::move (name), std::move (expr));
/* A trailing "," is ok. */
if (current_token == ',')
lex ();
}
operation_up others;
if (current_token == DOTDOT)
{
lex ();
others = parse_expr ();
}
require ('}');
return make_operation<rust_aggregate_operation> (type,
std::move (others),
std::move (field_v));
}
/* Used by the operator precedence parser. */
struct rustop_item
{
rustop_item (int token_, int precedence_, enum exp_opcode opcode_,
operation_up &&op_)
: token (token_),
precedence (precedence_),
opcode (opcode_),
op (std::move (op_))
{
}
/* The token value. */
int token;
/* Precedence of this operator. */
int precedence;
/* This is used only for assign-modify. */
enum exp_opcode opcode;
/* The right hand side of this operation. */
operation_up op;
};
/* An operator precedence parser for binary operations, including
"as". */
operation_up
rust_parser::parse_binop (bool required)
{
/* All the binary operators. Each one is of the form
OPERATION(TOKEN, PRECEDENCE, TYPE)
TOKEN is the corresponding operator token.
PRECEDENCE is a value indicating relative precedence.
TYPE is the operation type corresponding to the operator.
Assignment operations are handled specially, not via this
table; they have precedence 0. */
#define ALL_OPS \
OPERATION ('*', 10, mul_operation) \
OPERATION ('/', 10, div_operation) \
OPERATION ('%', 10, rem_operation) \
OPERATION ('@', 9, repeat_operation) \
OPERATION ('+', 8, add_operation) \
OPERATION ('-', 8, sub_operation) \
OPERATION (LSH, 7, lsh_operation) \
OPERATION (RSH, 7, rsh_operation) \
OPERATION ('&', 6, bitwise_and_operation) \
OPERATION ('^', 5, bitwise_xor_operation) \
OPERATION ('|', 4, bitwise_ior_operation) \
OPERATION (EQEQ, 3, equal_operation) \
OPERATION (NOTEQ, 3, notequal_operation) \
OPERATION ('<', 3, less_operation) \
OPERATION (LTEQ, 3, leq_operation) \
OPERATION ('>', 3, gtr_operation) \
OPERATION (GTEQ, 3, geq_operation) \
OPERATION (ANDAND, 2, logical_and_operation) \
OPERATION (OROR, 1, logical_or_operation)
#define ASSIGN_PREC 0
operation_up start = parse_atom (required);
if (start == nullptr)
{
gdb_assert (!required);
return start;
}
std::vector<rustop_item> operator_stack;
operator_stack.emplace_back (0, -1, OP_NULL, std::move (start));
while (true)
{
int this_token = current_token;
enum exp_opcode compound_assign_op = OP_NULL;
int precedence = -2;
switch (this_token)
{
#define OPERATION(TOKEN, PRECEDENCE, TYPE) \
case TOKEN: \
precedence = PRECEDENCE; \
lex (); \
break;
ALL_OPS
#undef OPERATION
case COMPOUND_ASSIGN:
compound_assign_op = current_opcode;
[[fallthrough]];
case '=':
precedence = ASSIGN_PREC;
lex ();
break;
/* "as" must be handled specially. */
case KW_AS:
{
lex ();
rustop_item &lhs = operator_stack.back ();
struct type *type = parse_type ();
lhs.op = make_operation<unop_cast_operation> (std::move (lhs.op),
type);
}
/* Bypass the rest of the loop. */
continue;
default:
/* Arrange to pop the entire stack. */
precedence = -2;
break;
}
/* Make sure that assignments are right-associative while other
operations are left-associative. */
while ((precedence == ASSIGN_PREC
? precedence < operator_stack.back ().precedence
: precedence <= operator_stack.back ().precedence)
&& operator_stack.size () > 1)
{
rustop_item rhs = std::move (operator_stack.back ());
operator_stack.pop_back ();
rustop_item &lhs = operator_stack.back ();
switch (rhs.token)
{
#define OPERATION(TOKEN, PRECEDENCE, TYPE) \
case TOKEN: \
lhs.op = make_operation<TYPE> (std::move (lhs.op), \
std::move (rhs.op)); \
break;
ALL_OPS
#undef OPERATION
case '=':
case COMPOUND_ASSIGN:
{
if (rhs.token == '=')
lhs.op = (make_operation<assign_operation>
(std::move (lhs.op), std::move (rhs.op)));
else
lhs.op = (make_operation<assign_modify_operation>
(rhs.opcode, std::move (lhs.op),
std::move (rhs.op)));
struct type *unit_type = get_type ("()");
operation_up nil (new long_const_operation (unit_type, 0));
lhs.op = (make_operation<comma_operation>
(std::move (lhs.op), std::move (nil)));
}
break;
default:
gdb_assert_not_reached ("bad binary operator");
}
}
if (precedence == -2)
break;
operator_stack.emplace_back (this_token, precedence, compound_assign_op,
parse_atom (true));
}
gdb_assert (operator_stack.size () == 1);
return std::move (operator_stack[0].op);
#undef ALL_OPS
}
/* Parse a range expression. */
operation_up
rust_parser::parse_range ()
{
enum range_flag kind = (RANGE_HIGH_BOUND_DEFAULT
| RANGE_LOW_BOUND_DEFAULT);
operation_up lhs;
if (current_token != DOTDOT && current_token != DOTDOTEQ)
{
lhs = parse_binop (true);
kind &= ~RANGE_LOW_BOUND_DEFAULT;
}
if (current_token == DOTDOT)
kind |= RANGE_HIGH_BOUND_EXCLUSIVE;
else if (current_token != DOTDOTEQ)
return lhs;
lex ();
/* A "..=" range requires a high bound, but otherwise it is
optional. */
operation_up rhs = parse_binop ((kind & RANGE_HIGH_BOUND_EXCLUSIVE) == 0);
if (rhs != nullptr)
kind &= ~RANGE_HIGH_BOUND_DEFAULT;
return make_operation<rust_range_operation> (kind,
std::move (lhs),
std::move (rhs));
}
/* Parse an expression. */
operation_up
rust_parser::parse_expr ()
{
return parse_range ();
}
/* Parse a sizeof expression. */
operation_up
rust_parser::parse_sizeof ()
{
assume (KW_SIZEOF);
require ('(');
operation_up result = make_operation<unop_sizeof_operation> (parse_expr ());
require (')');
return result;
}
/* Parse an address-of operation. */
operation_up
rust_parser::parse_addr ()
{
assume ('&');
if (current_token == KW_MUT)
lex ();
return make_operation<rust_unop_addr_operation> (parse_atom (true));
}
/* Parse a field expression. */
operation_up
rust_parser::parse_field (operation_up &&lhs)
{
assume ('.');
operation_up result;
switch (current_token)
{
case IDENT:
case COMPLETE:
{
bool is_complete = current_token == COMPLETE;
auto struct_op = new rust_structop (std::move (lhs), get_string ());
lex ();
if (is_complete)
{
completion_op.reset (struct_op);
pstate->mark_struct_expression (struct_op);
/* Throw to the outermost level of the parser. */
error (_("not really an error"));
}
result.reset (struct_op);
}
break;
case DECIMAL_INTEGER:
{
int idx = current_int_val.val.as_integer<int> ();
result = make_operation<rust_struct_anon> (idx, std::move (lhs));
lex ();
}
break;
case INTEGER:
error (_("'_' not allowed in integers in anonymous field references"));
default:
error (_("field name expected"));
}
return result;
}
/* Parse an index expression. */
operation_up
rust_parser::parse_index (operation_up &&lhs)
{
assume ('[');
operation_up rhs = parse_expr ();
require (']');
return make_operation<rust_subscript_operation> (std::move (lhs),
std::move (rhs));
}
/* Parse a sequence of comma-separated expressions in parens. */
std::vector<operation_up>
rust_parser::parse_paren_args ()
{
assume ('(');
std::vector<operation_up> args;
while (current_token != ')')
{
if (!args.empty ())
{
if (current_token != ',')
error (_("',' or ')' expected"));
lex ();
}
args.push_back (parse_expr ());
}
assume (')');
return args;
}
/* Parse the parenthesized part of a function call. */
operation_up
rust_parser::parse_call (operation_up &&lhs)
{
std::vector<operation_up> args = parse_paren_args ();
return make_operation<funcall_operation> (std::move (lhs),
std::move (args));
}
/* Parse a list of types. */
std::vector<struct type *>
rust_parser::parse_type_list ()
{
std::vector<struct type *> result;
result.push_back (parse_type ());
while (current_token == ',')
{
lex ();
result.push_back (parse_type ());
}
return result;
}
/* Parse a possibly-empty list of types, surrounded in parens. */
std::vector<struct type *>
rust_parser::parse_maybe_type_list ()
{
assume ('(');
std::vector<struct type *> types;
if (current_token != ')')
types = parse_type_list ();
require (')');
return types;
}
/* Parse an array type. */
struct type *
rust_parser::parse_array_type ()
{
assume ('[');
struct type *elt_type = parse_type ();
require (';');
if (current_token != INTEGER && current_token != DECIMAL_INTEGER)
error (_("integer expected"));
ULONGEST val = current_int_val.val.as_integer<ULONGEST> ();
lex ();
require (']');
return lookup_array_range_type (elt_type, 0, val - 1);
}
/* Parse a slice type. */
struct type *
rust_parser::parse_slice_type ()
{
assume ('&');
/* Handle &str specially. This is an important type in Rust. While
the compiler does emit the "&str" type in the DWARF, just "str"
itself isn't always available -- but it's handy if this works
seamlessly. */
if (current_token == IDENT && get_string () == "str")
{
lex ();
return rust_slice_type ("&str", get_type ("u8"), get_type ("usize"));
}
bool is_slice = current_token == '[';
if (is_slice)
lex ();
struct type *target = parse_type ();
if (is_slice)
{
require (']');
return rust_slice_type ("&[*gdb*]", target, get_type ("usize"));
}
/* For now we treat &x and *x identically. */
return lookup_pointer_type (target);
}
/* Parse a pointer type. */
struct type *
rust_parser::parse_pointer_type ()
{
assume ('*');
if (current_token == KW_MUT || current_token == KW_CONST)
lex ();
struct type *target = parse_type ();
/* For the time being we ignore mut/const. */
return lookup_pointer_type (target);
}
/* Parse a function type. */
struct type *
rust_parser::parse_function_type ()
{
assume (KW_FN);
if (current_token != '(')
error (_("'(' expected"));
std::vector<struct type *> types = parse_maybe_type_list ();
if (current_token != ARROW)
error (_("'->' expected"));
lex ();
struct type *result_type = parse_type ();
struct type **argtypes = nullptr;
if (!types.empty ())
argtypes = types.data ();
result_type = lookup_function_type_with_arguments (result_type,
types.size (),
argtypes);
return lookup_pointer_type (result_type);
}
/* Parse a tuple type. */
struct type *
rust_parser::parse_tuple_type ()
{
std::vector<struct type *> types = parse_maybe_type_list ();
auto_obstack obstack;
obstack_1grow (&obstack, '(');
for (int i = 0; i < types.size (); ++i)
{
std::string type_name = type_to_string (types[i]);
if (i > 0)
obstack_1grow (&obstack, ',');
obstack_grow_str (&obstack, type_name.c_str ());
}
obstack_grow_str0 (&obstack, ")");
const char *name = (const char *) obstack_finish (&obstack);
/* We don't allow creating new tuple types (yet), but we do allow
looking up existing tuple types. */
struct type *result = rust_lookup_type (name);
if (result == nullptr)
error (_("could not find tuple type '%s'"), name);
return result;
}
/* Parse a type. */
struct type *
rust_parser::parse_type ()
{
switch (current_token)
{
case '[':
return parse_array_type ();
case '&':
return parse_slice_type ();
case '*':
return parse_pointer_type ();
case KW_FN:
return parse_function_type ();
case '(':
return parse_tuple_type ();
case KW_SELF:
case KW_SUPER:
case COLONCOLON:
case KW_EXTERN:
case IDENT:
{
std::string path = parse_path (false);
struct type *result = rust_lookup_type (path.c_str ());
if (result == nullptr)
error (_("No type name '%s' in current context"), path.c_str ());
return result;
}
default:
error (_("type expected"));
}
}
/* Parse a path. */
std::string
rust_parser::parse_path (bool for_expr)
{
unsigned n_supers = 0;
int first_token = current_token;
switch (current_token)
{
case KW_SELF:
lex ();
if (current_token != COLONCOLON)
return "self";
lex ();
[[fallthrough]];
case KW_SUPER:
while (current_token == KW_SUPER)
{
++n_supers;
lex ();
if (current_token != COLONCOLON)
error (_("'::' expected"));
lex ();
}
break;
case COLONCOLON:
lex ();
break;
case KW_EXTERN:
/* This is a gdb extension to make it possible to refer to items
in other crates. It just bypasses adding the current crate
to the front of the name. */
lex ();
break;
}
if (current_token != IDENT)
error (_("identifier expected"));
std::string path = get_string ();
bool saw_ident = true;
lex ();
/* The condition here lets us enter the loop even if we see
"ident<...>". */
while (current_token == COLONCOLON || current_token == '<')
{
if (current_token == COLONCOLON)
{
lex ();
saw_ident = false;
if (current_token == IDENT)
{
path = path + "::" + get_string ();
lex ();
saw_ident = true;
}
else if (current_token == COLONCOLON)
{
/* The code below won't detect this scenario. */
error (_("unexpected '::'"));
}
}
if (current_token != '<')
continue;
/* Expression use name::<...>, whereas types use name<...>. */
if (for_expr)
{
/* Expressions use "name::<...>", so if we saw an identifier
after the "::", we ignore the "<" here. */
if (saw_ident)
break;
}
else
{
/* Types use "name<...>", so we need to have seen the
identifier. */
if (!saw_ident)
break;
}
lex ();
std::vector<struct type *> types = parse_type_list ();
if (current_token == '>')
lex ();
else if (current_token == RSH)
{
push_back ('>');
lex ();
}
else
error (_("'>' expected"));
path += "<";
for (int i = 0; i < types.size (); ++i)
{
if (i > 0)
path += ",";
path += type_to_string (types[i]);
}
path += ">";
break;
}
switch (first_token)
{
case KW_SELF:
case KW_SUPER:
return super_name (path, n_supers);
case COLONCOLON:
return crate_name (path);
case KW_EXTERN:
return "::" + path;
case IDENT:
return path;
default:
gdb_assert_not_reached ("missing case in path parsing");
}
}
/* Handle the parsing for a string expression. */
operation_up
rust_parser::parse_string ()
{
gdb_assert (current_token == STRING);
/* Wrap the raw string in the &str struct. */
struct type *type = rust_lookup_type ("&str");
if (type == nullptr)
error (_("Could not find type '&str'"));
std::vector<std::pair<std::string, operation_up>> field_v;
size_t len = current_string_val.length;
operation_up str = make_operation<string_operation> (get_string ());
operation_up addr
= make_operation<rust_unop_addr_operation> (std::move (str));
field_v.emplace_back ("data_ptr", std::move (addr));
struct type *valtype = get_type ("usize");
operation_up lenop = make_operation<long_const_operation> (valtype, len);
field_v.emplace_back ("length", std::move (lenop));
return make_operation<rust_aggregate_operation> (type,
operation_up (),
std::move (field_v));
}
/* Parse a tuple struct expression. */
operation_up
rust_parser::parse_tuple_struct (struct type *type)
{
std::vector<operation_up> args = parse_paren_args ();
std::vector<std::pair<std::string, operation_up>> field_v (args.size ());
for (int i = 0; i < args.size (); ++i)
field_v[i] = { string_printf ("__%d", i), std::move (args[i]) };
return (make_operation<rust_aggregate_operation>
(type, operation_up (), std::move (field_v)));
}
/* Parse a path expression. */
operation_up
rust_parser::parse_path_expr ()
{
std::string path = parse_path (true);
if (current_token == '{')
{
struct type *type = rust_lookup_type (path.c_str ());
if (type == nullptr)
error (_("Could not find type '%s'"), path.c_str ());
return parse_struct_expr (type);
}
else if (current_token == '(')
{
struct type *type = rust_lookup_type (path.c_str ());
/* If this is actually a tuple struct expression, handle it
here. If it is a call, it will be handled elsewhere. */
if (type != nullptr)
{
if (!rust_tuple_struct_type_p (type))
error (_("Type %s is not a tuple struct"), path.c_str ());
return parse_tuple_struct (type);
}
}
return name_to_operation (path);
}
/* Parse an atom. "Atom" isn't a Rust term, but this refers to a
single unitary item in the grammar; but here including some unary
prefix and postfix expressions. */
operation_up
rust_parser::parse_atom (bool required)
{
operation_up result;
switch (current_token)
{
case '(':
result = parse_tuple ();
break;
case '[':
result = parse_array ();
break;
case INTEGER:
case DECIMAL_INTEGER:
result = make_operation<long_const_operation> (current_int_val.type,
current_int_val.val);
lex ();
break;
case FLOAT:
result = make_operation<float_const_operation> (current_float_val.type,
current_float_val.val);
lex ();
break;
case STRING:
result = parse_string ();
lex ();
break;
case BYTESTRING:
result = make_operation<string_operation> (get_string ());
lex ();
break;
case KW_TRUE:
case KW_FALSE:
result = make_operation<bool_operation> (current_token == KW_TRUE);
lex ();
break;
case GDBVAR:
/* This is kind of a hacky approach. */
{
pstate->push_dollar (current_string_val);
result = pstate->pop ();
lex ();
}
break;
case KW_SELF:
case KW_SUPER:
case COLONCOLON:
case KW_EXTERN:
case IDENT:
result = parse_path_expr ();
break;
case '*':
lex ();
result = make_operation<rust_unop_ind_operation> (parse_atom (true));
break;
case '+':
lex ();
result = make_operation<unary_plus_operation> (parse_atom (true));
break;
case '-':
lex ();
result = make_operation<unary_neg_operation> (parse_atom (true));
break;
case '!':
lex ();
result = make_operation<rust_unop_compl_operation> (parse_atom (true));
break;
case KW_SIZEOF:
result = parse_sizeof ();
break;
case '&':
result = parse_addr ();
break;
default:
if (!required)
return {};
error (_("unexpected token"));
}
/* Now parse suffixes. */
while (true)
{
switch (current_token)
{
case '.':
result = parse_field (std::move (result));
break;
case '[':
result = parse_index (std::move (result));
break;
case '(':
result = parse_call (std::move (result));
break;
default:
return result;
}
}
}
/* The parser as exposed to gdb. */
int
rust_language::parser (struct parser_state *state) const
{
rust_parser parser (state);
operation_up result;
try
{
result = parser.parse_entry_point ();
}
catch (const gdb_exception &exc)
{
if (state->parse_completion)
{
result = std::move (parser.completion_op);
if (result == nullptr)
throw;
}
else
throw;
}
state->set_operation (std::move (result));
return 0;
}
#if GDB_SELF_TEST
/* A test helper that lexes a string, expecting a single token. */
static void
rust_lex_test_one (rust_parser *parser, const char *input, int expected)
{
int token;
parser->reset (input);
token = parser->lex_one_token ();
SELF_CHECK (token == expected);
if (token)
{
token = parser->lex_one_token ();
SELF_CHECK (token == 0);
}
}
/* Test that INPUT lexes as the integer VALUE. */
static void
rust_lex_int_test (rust_parser *parser, const char *input,
ULONGEST value, int kind)
{
rust_lex_test_one (parser, input, kind);
SELF_CHECK (parser->current_int_val.val == value);
}
/* Test that INPUT throws an exception with text ERR. */
static void
rust_lex_exception_test (rust_parser *parser, const char *input,
const char *err)
{
try
{
/* The "kind" doesn't matter. */
rust_lex_test_one (parser, input, DECIMAL_INTEGER);
SELF_CHECK (0);
}
catch (const gdb_exception_error &except)
{
SELF_CHECK (strcmp (except.what (), err) == 0);
}
}
/* Test that INPUT lexes as the identifier, string, or byte-string
VALUE. KIND holds the expected token kind. */
static void
rust_lex_stringish_test (rust_parser *parser, const char *input,
const char *value, int kind)
{
rust_lex_test_one (parser, input, kind);
SELF_CHECK (parser->get_string () == value);
}
/* Helper to test that a string parses as a given token sequence. */
static void
rust_lex_test_sequence (rust_parser *parser, const char *input, int len,
const int expected[])
{
int i;
parser->reset (input);
for (i = 0; i < len; ++i)
{
int token = parser->lex_one_token ();
SELF_CHECK (token == expected[i]);
}
}
/* Tests for an integer-parsing corner case. */
static void
rust_lex_test_trailing_dot (rust_parser *parser)
{
const int expected1[] = { DECIMAL_INTEGER, '.', IDENT, '(', ')', 0 };
const int expected2[] = { INTEGER, '.', IDENT, '(', ')', 0 };
const int expected3[] = { FLOAT, EQEQ, '(', ')', 0 };
const int expected4[] = { DECIMAL_INTEGER, DOTDOT, DECIMAL_INTEGER, 0 };
rust_lex_test_sequence (parser, "23.g()", ARRAY_SIZE (expected1), expected1);
rust_lex_test_sequence (parser, "23_0.g()", ARRAY_SIZE (expected2),
expected2);
rust_lex_test_sequence (parser, "23.==()", ARRAY_SIZE (expected3),
expected3);
rust_lex_test_sequence (parser, "23..25", ARRAY_SIZE (expected4), expected4);
}
/* Tests of completion. */
static void
rust_lex_test_completion (rust_parser *parser)
{
const int expected[] = { IDENT, '.', COMPLETE, 0 };
parser->pstate->parse_completion = 1;
rust_lex_test_sequence (parser, "something.wha", ARRAY_SIZE (expected),
expected);
rust_lex_test_sequence (parser, "something.", ARRAY_SIZE (expected),
expected);
parser->pstate->parse_completion = 0;
}
/* Test pushback. */
static void
rust_lex_test_push_back (rust_parser *parser)
{
int token;
parser->reset (">>=");
token = parser->lex_one_token ();
SELF_CHECK (token == COMPOUND_ASSIGN);
SELF_CHECK (parser->current_opcode == BINOP_RSH);
parser->push_back ('=');
token = parser->lex_one_token ();
SELF_CHECK (token == '=');
token = parser->lex_one_token ();
SELF_CHECK (token == 0);
}
/* Unit test the lexer. */
static void
rust_lex_tests (void)
{
/* Set up dummy "parser", so that rust_type works. */
parser_state ps (language_def (language_rust), current_inferior ()->arch (),
nullptr, 0, 0, nullptr, 0, nullptr);
rust_parser parser (&ps);
rust_lex_test_one (&parser, "", 0);
rust_lex_test_one (&parser, " \t \n \r ", 0);
rust_lex_test_one (&parser, "thread 23", 0);
rust_lex_test_one (&parser, "task 23", 0);
rust_lex_test_one (&parser, "th 104", 0);
rust_lex_test_one (&parser, "ta 97", 0);
rust_lex_int_test (&parser, "'z'", 'z', INTEGER);
rust_lex_int_test (&parser, "'\\xff'", 0xff, INTEGER);
rust_lex_int_test (&parser, "'\\u{1016f}'", 0x1016f, INTEGER);
rust_lex_int_test (&parser, "b'z'", 'z', INTEGER);
rust_lex_int_test (&parser, "b'\\xfe'", 0xfe, INTEGER);
rust_lex_int_test (&parser, "b'\\xFE'", 0xfe, INTEGER);
rust_lex_int_test (&parser, "b'\\xfE'", 0xfe, INTEGER);
/* Test all escapes in both modes. */
rust_lex_int_test (&parser, "'\\n'", '\n', INTEGER);
rust_lex_int_test (&parser, "'\\r'", '\r', INTEGER);
rust_lex_int_test (&parser, "'\\t'", '\t', INTEGER);
rust_lex_int_test (&parser, "'\\\\'", '\\', INTEGER);
rust_lex_int_test (&parser, "'\\0'", '\0', INTEGER);
rust_lex_int_test (&parser, "'\\''", '\'', INTEGER);
rust_lex_int_test (&parser, "'\\\"'", '"', INTEGER);
rust_lex_int_test (&parser, "b'\\n'", '\n', INTEGER);
rust_lex_int_test (&parser, "b'\\r'", '\r', INTEGER);
rust_lex_int_test (&parser, "b'\\t'", '\t', INTEGER);
rust_lex_int_test (&parser, "b'\\\\'", '\\', INTEGER);
rust_lex_int_test (&parser, "b'\\0'", '\0', INTEGER);
rust_lex_int_test (&parser, "b'\\''", '\'', INTEGER);
rust_lex_int_test (&parser, "b'\\\"'", '"', INTEGER);
rust_lex_exception_test (&parser, "'z", "Unterminated character literal");
rust_lex_exception_test (&parser, "b'\\x0'", "Not enough hex digits seen");
rust_lex_exception_test (&parser, "b'\\u{0}'",
"Unicode escape in byte literal");
rust_lex_exception_test (&parser, "'\\x0'", "Not enough hex digits seen");
rust_lex_exception_test (&parser, "'\\u0'", "Missing '{' in Unicode escape");
rust_lex_exception_test (&parser, "'\\u{0", "Missing '}' in Unicode escape");
rust_lex_exception_test (&parser, "'\\u{0000007}", "Overlong hex escape");
rust_lex_exception_test (&parser, "'\\u{}", "Not enough hex digits seen");
rust_lex_exception_test (&parser, "'\\Q'", "Invalid escape \\Q in literal");
rust_lex_exception_test (&parser, "b'\\Q'", "Invalid escape \\Q in literal");
rust_lex_int_test (&parser, "23", 23, DECIMAL_INTEGER);
rust_lex_int_test (&parser, "2_344__29", 234429, INTEGER);
rust_lex_int_test (&parser, "0x1f", 0x1f, INTEGER);
rust_lex_int_test (&parser, "23usize", 23, INTEGER);
rust_lex_int_test (&parser, "23i32", 23, INTEGER);
rust_lex_int_test (&parser, "0x1_f", 0x1f, INTEGER);
rust_lex_int_test (&parser, "0b1_101011__", 0x6b, INTEGER);
rust_lex_int_test (&parser, "0o001177i64", 639, INTEGER);
rust_lex_int_test (&parser, "0x123456789u64", 0x123456789ull, INTEGER);
rust_lex_test_trailing_dot (&parser);
rust_lex_test_one (&parser, "23.", FLOAT);
rust_lex_test_one (&parser, "23.99f32", FLOAT);
rust_lex_test_one (&parser, "23e7", FLOAT);
rust_lex_test_one (&parser, "23E-7", FLOAT);
rust_lex_test_one (&parser, "23e+7", FLOAT);
rust_lex_test_one (&parser, "23.99e+7f64", FLOAT);
rust_lex_test_one (&parser, "23.82f32", FLOAT);
rust_lex_stringish_test (&parser, "hibob", "hibob", IDENT);
rust_lex_stringish_test (&parser, "hibob__93", "hibob__93", IDENT);
rust_lex_stringish_test (&parser, "thread", "thread", IDENT);
rust_lex_stringish_test (&parser, "r#true", "true", IDENT);
const int expected1[] = { IDENT, DECIMAL_INTEGER, 0 };
rust_lex_test_sequence (&parser, "r#thread 23", ARRAY_SIZE (expected1),
expected1);
const int expected2[] = { IDENT, '#', 0 };
rust_lex_test_sequence (&parser, "r#", ARRAY_SIZE (expected2), expected2);
rust_lex_stringish_test (&parser, "\"string\"", "string", STRING);
rust_lex_stringish_test (&parser, "\"str\\ting\"", "str\ting", STRING);
rust_lex_stringish_test (&parser, "\"str\\\"ing\"", "str\"ing", STRING);
rust_lex_stringish_test (&parser, "r\"str\\ing\"", "str\\ing", STRING);
rust_lex_stringish_test (&parser, "r#\"str\\ting\"#", "str\\ting", STRING);
rust_lex_stringish_test (&parser, "r###\"str\\\"ing\"###", "str\\\"ing",
STRING);
rust_lex_stringish_test (&parser, "b\"string\"", "string", BYTESTRING);
rust_lex_stringish_test (&parser, "b\"\x73tring\"", "string", BYTESTRING);
rust_lex_stringish_test (&parser, "b\"str\\\"ing\"", "str\"ing", BYTESTRING);
rust_lex_stringish_test (&parser, "br####\"\\x73tring\"####", "\\x73tring",
BYTESTRING);
for (const auto &candidate : identifier_tokens)
rust_lex_test_one (&parser, candidate.name, candidate.value);
for (const auto &candidate : operator_tokens)
rust_lex_test_one (&parser, candidate.name, candidate.value);
rust_lex_test_completion (&parser);
rust_lex_test_push_back (&parser);
}
#endif /* GDB_SELF_TEST */
void _initialize_rust_exp ();
void
_initialize_rust_exp ()
{
int code = regcomp (&number_regex, number_regex_text, REG_EXTENDED);
/* If the regular expression was incorrect, it was a programming
error. */
gdb_assert (code == 0);
#if GDB_SELF_TEST
selftests::register_test ("rust-lex", rust_lex_tests);
#endif
}