mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-21 01:12:32 +08:00
cf16ab724a
On aarch64-linux, with test-case gdb.base/watch-bitfields.exp I run into: ... (gdb) continue^M Continuing.^M ^M Hardware watchpoint 2: -location q.a^M ^M Old value = 1^M New value = 0^M main () at watch-bitfields.c:42^M 42 q.h--;^M (gdb) FAIL: $exp: -location watch against bitfields: q.e: 0->5: continue ... In a minimal form, if we step past line 37 which sets q.e, and we have a watchpoint set on q.e, it triggers: ... $ gdb -q -batch watch-bitfields -ex "b 37" -ex run -ex "watch q.e" -ex step Breakpoint 1 at 0x410204: file watch-bitfields.c, line 37. Breakpoint 1, main () at watch-bitfields.c:37 37 q.e = 5; Hardware watchpoint 2: q.e Hardware watchpoint 2: q.e Old value = 0 New value = 5 main () at /home/vries/gdb/src/gdb/testsuite/gdb.base/watch-bitfields.c:38 38 q.f = 6; ... However, if we set in addition a watchpoint on q.a, the watchpoint on q.e doesn't trigger. How does this happen? Bitfield q.a is just bit 0 of byte 0, and bitfield q.e is bit 4..7 of byte 1 and bit 1 of byte 2. So, watch q.a should watch byte 0, and watch q.e should watch bytes 1 and 2. Using "maint set show-debug-regs on" (and some more detailed debug prints) we get: ... WP2: addr=0x440028 (orig=0x440029), ctrl=0x000000d5, ref.count=1 ctrl: enabled=1, offset=1, len=2 WP3: addr=0x440028 (orig=0x440028), ctrl=0x00000035, ref.count=1 ctrl: enabled=1, offset=0, len=1 ... which matches that. When executing line 37, a hardware watchpoint trap triggers and we hit aarch64_stopped_data_address with addr_trap == 0x440028: ... (gdb) p /x addr_trap $1 = 0x440028 .... and since the loop in aarch64_stopped_data_address walks backward, we check WP3 first, which matches, and consequently target_stopped_by_watchpoint returns true in watchpoints_triggered. Likewise for target_stopped_data_address, which also returns addr == 0x440028. Watchpoints_triggered matches watchpoint q.a to that address, and sets watch_triggered_yes. However, subsequently the value of q.a is checked, and it's the same value as before (becase the insn in line 37 didn't change q.a), so the watchpoint hardware trap is not reported to the user. The problem originates from that fact that aarch64_stopped_data_address picked WP3 instead of WP2. There's something we can do about this. In the example above, both target_stopped_by_watchpoint and target_stopped_data_address returned true. Instead we can return true in target_stopped_by_watchpoint but false in target_stopped_data_address. This lets watchpoints_triggered known that a watchpoint was triggered, but we don't know where, and both watchpoints get set to watch_triggered_unknown. Subsequently, the values of both q.a and q.e are checked, and since q.e is not the same value as before, the watchpoint hardware trap is reported to the user. Note that this works well for regular (write) watchpoints (watch command), but not for read watchpoints (rwatch command), because for those no value is checked. Likewise for access watchpoints (awatch command). So, fix this by: - passing a nullptr in aarch64_fbsd_nat_target::stopped_by_watchpoint and aarch64_linux_nat_target::stopped_by_watchpoint to make clear we're not interested in the stop address, - introducing a two-phase approach in aarch64_stopped_data_address, where: - phase one handles access and read watchpoints, as before, and - phase two handles write watchpoints, where multiple matches cause: - return true if addr_p == null, and - return false if addr_p != null. Tested on aarch64-linux. Approved-By: Luis Machado <luis.machado@arm.com> PR tdep/31214 Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=31214
1085 lines
32 KiB
C
1085 lines
32 KiB
C
/* Native-dependent code for GNU/Linux AArch64.
|
||
|
||
Copyright (C) 2011-2024 Free Software Foundation, Inc.
|
||
Contributed by ARM Ltd.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
|
||
#include "inferior.h"
|
||
#include "gdbcore.h"
|
||
#include "regcache.h"
|
||
#include "linux-nat.h"
|
||
#include "target-descriptions.h"
|
||
#include "auxv.h"
|
||
#include "gdbcmd.h"
|
||
#include "aarch64-nat.h"
|
||
#include "aarch64-tdep.h"
|
||
#include "aarch64-linux-tdep.h"
|
||
#include "aarch32-linux-nat.h"
|
||
#include "aarch32-tdep.h"
|
||
#include "arch/arm.h"
|
||
#include "nat/aarch64-linux.h"
|
||
#include "nat/aarch64-linux-hw-point.h"
|
||
#include "nat/aarch64-scalable-linux-ptrace.h"
|
||
|
||
#include "elf/external.h"
|
||
#include "elf/common.h"
|
||
|
||
#include "nat/gdb_ptrace.h"
|
||
#include <sys/utsname.h>
|
||
#include <asm/ptrace.h>
|
||
|
||
#include "gregset.h"
|
||
#include "linux-tdep.h"
|
||
#include "arm-tdep.h"
|
||
|
||
/* Defines ps_err_e, struct ps_prochandle. */
|
||
#include "gdb_proc_service.h"
|
||
#include "arch-utils.h"
|
||
|
||
#include "arch/aarch64-mte-linux.h"
|
||
|
||
#include "nat/aarch64-mte-linux-ptrace.h"
|
||
#include "arch/aarch64-scalable-linux.h"
|
||
|
||
#include <string.h>
|
||
|
||
#ifndef TRAP_HWBKPT
|
||
#define TRAP_HWBKPT 0x0004
|
||
#endif
|
||
|
||
class aarch64_linux_nat_target final
|
||
: public aarch64_nat_target<linux_nat_target>
|
||
{
|
||
public:
|
||
/* Add our register access methods. */
|
||
void fetch_registers (struct regcache *, int) override;
|
||
void store_registers (struct regcache *, int) override;
|
||
|
||
const struct target_desc *read_description () override;
|
||
|
||
/* Add our hardware breakpoint and watchpoint implementation. */
|
||
bool stopped_by_watchpoint () override;
|
||
bool stopped_data_address (CORE_ADDR *) override;
|
||
|
||
int can_do_single_step () override;
|
||
|
||
/* Override the GNU/Linux inferior startup hook. */
|
||
void post_startup_inferior (ptid_t) override;
|
||
|
||
/* Override the GNU/Linux post attach hook. */
|
||
void post_attach (int pid) override;
|
||
|
||
/* These three defer to common nat/ code. */
|
||
void low_new_thread (struct lwp_info *lp) override
|
||
{ aarch64_linux_new_thread (lp); }
|
||
void low_delete_thread (struct arch_lwp_info *lp) override
|
||
{ aarch64_linux_delete_thread (lp); }
|
||
void low_prepare_to_resume (struct lwp_info *lp) override
|
||
{ aarch64_linux_prepare_to_resume (lp); }
|
||
|
||
void low_new_fork (struct lwp_info *parent, pid_t child_pid) override;
|
||
void low_forget_process (pid_t pid) override;
|
||
|
||
/* Add our siginfo layout converter. */
|
||
bool low_siginfo_fixup (siginfo_t *ptrace, gdb_byte *inf, int direction)
|
||
override;
|
||
|
||
struct gdbarch *thread_architecture (ptid_t) override;
|
||
|
||
bool supports_memory_tagging () override;
|
||
|
||
/* Read memory allocation tags from memory via PTRACE. */
|
||
bool fetch_memtags (CORE_ADDR address, size_t len,
|
||
gdb::byte_vector &tags, int type) override;
|
||
|
||
/* Write allocation tags to memory via PTRACE. */
|
||
bool store_memtags (CORE_ADDR address, size_t len,
|
||
const gdb::byte_vector &tags, int type) override;
|
||
};
|
||
|
||
static aarch64_linux_nat_target the_aarch64_linux_nat_target;
|
||
|
||
/* Called whenever GDB is no longer debugging process PID. It deletes
|
||
data structures that keep track of debug register state. */
|
||
|
||
void
|
||
aarch64_linux_nat_target::low_forget_process (pid_t pid)
|
||
{
|
||
aarch64_remove_debug_reg_state (pid);
|
||
}
|
||
|
||
/* Fill GDB's register array with the general-purpose register values
|
||
from the current thread. */
|
||
|
||
static void
|
||
fetch_gregs_from_thread (struct regcache *regcache)
|
||
{
|
||
int ret, tid;
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
elf_gregset_t regs;
|
||
struct iovec iovec;
|
||
|
||
/* Make sure REGS can hold all registers contents on both aarch64
|
||
and arm. */
|
||
static_assert (sizeof (regs) >= 18 * 4);
|
||
|
||
tid = regcache->ptid ().lwp ();
|
||
|
||
iovec.iov_base = ®s;
|
||
if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
|
||
iovec.iov_len = 18 * 4;
|
||
else
|
||
iovec.iov_len = sizeof (regs);
|
||
|
||
ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iovec);
|
||
if (ret < 0)
|
||
perror_with_name (_("Unable to fetch general registers"));
|
||
|
||
if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
|
||
aarch32_gp_regcache_supply (regcache, (uint32_t *) regs, 1);
|
||
else
|
||
{
|
||
int regno;
|
||
|
||
for (regno = AARCH64_X0_REGNUM; regno <= AARCH64_CPSR_REGNUM; regno++)
|
||
regcache->raw_supply (regno, ®s[regno - AARCH64_X0_REGNUM]);
|
||
}
|
||
}
|
||
|
||
/* Store to the current thread the valid general-purpose register
|
||
values in the GDB's register array. */
|
||
|
||
static void
|
||
store_gregs_to_thread (const struct regcache *regcache)
|
||
{
|
||
int ret, tid;
|
||
elf_gregset_t regs;
|
||
struct iovec iovec;
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
|
||
/* Make sure REGS can hold all registers contents on both aarch64
|
||
and arm. */
|
||
static_assert (sizeof (regs) >= 18 * 4);
|
||
tid = regcache->ptid ().lwp ();
|
||
|
||
iovec.iov_base = ®s;
|
||
if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
|
||
iovec.iov_len = 18 * 4;
|
||
else
|
||
iovec.iov_len = sizeof (regs);
|
||
|
||
ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iovec);
|
||
if (ret < 0)
|
||
perror_with_name (_("Unable to fetch general registers"));
|
||
|
||
if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
|
||
aarch32_gp_regcache_collect (regcache, (uint32_t *) regs, 1);
|
||
else
|
||
{
|
||
int regno;
|
||
|
||
for (regno = AARCH64_X0_REGNUM; regno <= AARCH64_CPSR_REGNUM; regno++)
|
||
if (REG_VALID == regcache->get_register_status (regno))
|
||
regcache->raw_collect (regno, ®s[regno - AARCH64_X0_REGNUM]);
|
||
}
|
||
|
||
ret = ptrace (PTRACE_SETREGSET, tid, NT_PRSTATUS, &iovec);
|
||
if (ret < 0)
|
||
perror_with_name (_("Unable to store general registers"));
|
||
}
|
||
|
||
/* Fill GDB's register array with the fp/simd register values
|
||
from the current thread. */
|
||
|
||
static void
|
||
fetch_fpregs_from_thread (struct regcache *regcache)
|
||
{
|
||
int ret, tid;
|
||
elf_fpregset_t regs;
|
||
struct iovec iovec;
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
|
||
/* Make sure REGS can hold all VFP registers contents on both aarch64
|
||
and arm. */
|
||
static_assert (sizeof regs >= ARM_VFP3_REGS_SIZE);
|
||
|
||
tid = regcache->ptid ().lwp ();
|
||
|
||
iovec.iov_base = ®s;
|
||
|
||
if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
|
||
{
|
||
iovec.iov_len = ARM_VFP3_REGS_SIZE;
|
||
|
||
ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iovec);
|
||
if (ret < 0)
|
||
perror_with_name (_("Unable to fetch VFP registers"));
|
||
|
||
aarch32_vfp_regcache_supply (regcache, (gdb_byte *) ®s, 32);
|
||
}
|
||
else
|
||
{
|
||
int regno;
|
||
|
||
iovec.iov_len = sizeof (regs);
|
||
|
||
ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iovec);
|
||
if (ret < 0)
|
||
perror_with_name (_("Unable to fetch vFP/SIMD registers"));
|
||
|
||
for (regno = AARCH64_V0_REGNUM; regno <= AARCH64_V31_REGNUM; regno++)
|
||
regcache->raw_supply (regno, ®s.vregs[regno - AARCH64_V0_REGNUM]);
|
||
|
||
regcache->raw_supply (AARCH64_FPSR_REGNUM, ®s.fpsr);
|
||
regcache->raw_supply (AARCH64_FPCR_REGNUM, ®s.fpcr);
|
||
}
|
||
}
|
||
|
||
/* Store to the current thread the valid fp/simd register
|
||
values in the GDB's register array. */
|
||
|
||
static void
|
||
store_fpregs_to_thread (const struct regcache *regcache)
|
||
{
|
||
int ret, tid;
|
||
elf_fpregset_t regs;
|
||
struct iovec iovec;
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
|
||
/* Make sure REGS can hold all VFP registers contents on both aarch64
|
||
and arm. */
|
||
static_assert (sizeof regs >= ARM_VFP3_REGS_SIZE);
|
||
tid = regcache->ptid ().lwp ();
|
||
|
||
iovec.iov_base = ®s;
|
||
|
||
if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
|
||
{
|
||
iovec.iov_len = ARM_VFP3_REGS_SIZE;
|
||
|
||
ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iovec);
|
||
if (ret < 0)
|
||
perror_with_name (_("Unable to fetch VFP registers"));
|
||
|
||
aarch32_vfp_regcache_collect (regcache, (gdb_byte *) ®s, 32);
|
||
}
|
||
else
|
||
{
|
||
int regno;
|
||
|
||
iovec.iov_len = sizeof (regs);
|
||
|
||
ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iovec);
|
||
if (ret < 0)
|
||
perror_with_name (_("Unable to fetch FP/SIMD registers"));
|
||
|
||
for (regno = AARCH64_V0_REGNUM; regno <= AARCH64_V31_REGNUM; regno++)
|
||
if (REG_VALID == regcache->get_register_status (regno))
|
||
regcache->raw_collect
|
||
(regno, (char *) ®s.vregs[regno - AARCH64_V0_REGNUM]);
|
||
|
||
if (REG_VALID == regcache->get_register_status (AARCH64_FPSR_REGNUM))
|
||
regcache->raw_collect (AARCH64_FPSR_REGNUM, (char *) ®s.fpsr);
|
||
if (REG_VALID == regcache->get_register_status (AARCH64_FPCR_REGNUM))
|
||
regcache->raw_collect (AARCH64_FPCR_REGNUM, (char *) ®s.fpcr);
|
||
}
|
||
|
||
if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
|
||
{
|
||
ret = ptrace (PTRACE_SETREGSET, tid, NT_ARM_VFP, &iovec);
|
||
if (ret < 0)
|
||
perror_with_name (_("Unable to store VFP registers"));
|
||
}
|
||
else
|
||
{
|
||
ret = ptrace (PTRACE_SETREGSET, tid, NT_FPREGSET, &iovec);
|
||
if (ret < 0)
|
||
perror_with_name (_("Unable to store FP/SIMD registers"));
|
||
}
|
||
}
|
||
|
||
/* Fill GDB's REGCACHE with the valid SVE register values from the thread
|
||
associated with REGCACHE.
|
||
|
||
This function handles reading data from SVE or SSVE states, depending
|
||
on which state is active at the moment. */
|
||
|
||
static void
|
||
fetch_sveregs_from_thread (struct regcache *regcache)
|
||
{
|
||
/* Fetch SVE state from the thread and copy it into the register cache. */
|
||
aarch64_sve_regs_copy_to_reg_buf (regcache->ptid ().lwp (), regcache);
|
||
}
|
||
|
||
/* Store the valid SVE register values from GDB's REGCACHE to the thread
|
||
associated with REGCACHE.
|
||
|
||
This function handles writing data to SVE or SSVE states, depending
|
||
on which state is active at the moment. */
|
||
|
||
static void
|
||
store_sveregs_to_thread (struct regcache *regcache)
|
||
{
|
||
/* Fetch SVE state from the register cache and update the thread TID with
|
||
it. */
|
||
aarch64_sve_regs_copy_from_reg_buf (regcache->ptid ().lwp (), regcache);
|
||
}
|
||
|
||
/* Fill GDB's REGCACHE with the ZA register set contents from the
|
||
thread associated with REGCACHE. If there is no active ZA register state,
|
||
make the ZA register contents zero. */
|
||
|
||
static void
|
||
fetch_za_from_thread (struct regcache *regcache)
|
||
{
|
||
aarch64_gdbarch_tdep *tdep
|
||
= gdbarch_tdep<aarch64_gdbarch_tdep> (regcache->arch ());
|
||
|
||
/* Read ZA state from the thread to the register cache. */
|
||
aarch64_za_regs_copy_to_reg_buf (regcache->ptid ().lwp (),
|
||
regcache,
|
||
tdep->sme_za_regnum,
|
||
tdep->sme_svg_regnum,
|
||
tdep->sme_svcr_regnum);
|
||
}
|
||
|
||
/* Store the NT_ARM_ZA register set contents from GDB's REGCACHE to the thread
|
||
associated with REGCACHE. */
|
||
|
||
static void
|
||
store_za_to_thread (struct regcache *regcache)
|
||
{
|
||
aarch64_gdbarch_tdep *tdep
|
||
= gdbarch_tdep<aarch64_gdbarch_tdep> (regcache->arch ());
|
||
|
||
/* Write ZA state from the register cache to the thread. */
|
||
aarch64_za_regs_copy_from_reg_buf (regcache->ptid ().lwp (),
|
||
regcache,
|
||
tdep->sme_za_regnum,
|
||
tdep->sme_svg_regnum,
|
||
tdep->sme_svcr_regnum);
|
||
}
|
||
|
||
/* Fill GDB's REGCACHE with the ZT register set contents from the
|
||
thread associated with REGCACHE. If there is no active ZA register state,
|
||
make the ZT register contents zero. */
|
||
|
||
static void
|
||
fetch_zt_from_thread (struct regcache *regcache)
|
||
{
|
||
aarch64_gdbarch_tdep *tdep
|
||
= gdbarch_tdep<aarch64_gdbarch_tdep> (regcache->arch ());
|
||
|
||
/* Read ZT state from the thread to the register cache. */
|
||
aarch64_zt_regs_copy_to_reg_buf (regcache->ptid ().lwp (),
|
||
regcache,
|
||
tdep->sme2_zt0_regnum);
|
||
}
|
||
|
||
/* Store the NT_ARM_ZT register set contents from GDB's REGCACHE to the
|
||
thread associated with REGCACHE. */
|
||
|
||
static void
|
||
store_zt_to_thread (struct regcache *regcache)
|
||
{
|
||
aarch64_gdbarch_tdep *tdep
|
||
= gdbarch_tdep<aarch64_gdbarch_tdep> (regcache->arch ());
|
||
|
||
/* Write ZT state from the register cache to the thread. */
|
||
aarch64_zt_regs_copy_from_reg_buf (regcache->ptid ().lwp (),
|
||
regcache,
|
||
tdep->sme2_zt0_regnum);
|
||
}
|
||
|
||
/* Fill GDB's register array with the pointer authentication mask values from
|
||
the current thread. */
|
||
|
||
static void
|
||
fetch_pauth_masks_from_thread (struct regcache *regcache)
|
||
{
|
||
aarch64_gdbarch_tdep *tdep
|
||
= gdbarch_tdep<aarch64_gdbarch_tdep> (regcache->arch ());
|
||
int ret;
|
||
struct iovec iovec;
|
||
uint64_t pauth_regset[2] = {0, 0};
|
||
int tid = regcache->ptid ().lwp ();
|
||
|
||
iovec.iov_base = &pauth_regset;
|
||
iovec.iov_len = sizeof (pauth_regset);
|
||
|
||
ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_PAC_MASK, &iovec);
|
||
if (ret != 0)
|
||
perror_with_name (_("unable to fetch pauth registers"));
|
||
|
||
regcache->raw_supply (AARCH64_PAUTH_DMASK_REGNUM (tdep->pauth_reg_base),
|
||
&pauth_regset[0]);
|
||
regcache->raw_supply (AARCH64_PAUTH_CMASK_REGNUM (tdep->pauth_reg_base),
|
||
&pauth_regset[1]);
|
||
}
|
||
|
||
/* Fill GDB's register array with the MTE register values from
|
||
the current thread. */
|
||
|
||
static void
|
||
fetch_mteregs_from_thread (struct regcache *regcache)
|
||
{
|
||
aarch64_gdbarch_tdep *tdep
|
||
= gdbarch_tdep<aarch64_gdbarch_tdep> (regcache->arch ());
|
||
int regno = tdep->mte_reg_base;
|
||
|
||
gdb_assert (regno != -1);
|
||
|
||
uint64_t tag_ctl = 0;
|
||
struct iovec iovec;
|
||
|
||
iovec.iov_base = &tag_ctl;
|
||
iovec.iov_len = sizeof (tag_ctl);
|
||
|
||
int tid = get_ptrace_pid (regcache->ptid ());
|
||
if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_TAGGED_ADDR_CTRL, &iovec) != 0)
|
||
perror_with_name (_("unable to fetch MTE registers"));
|
||
|
||
regcache->raw_supply (regno, &tag_ctl);
|
||
}
|
||
|
||
/* Store to the current thread the valid MTE register set in the GDB's
|
||
register array. */
|
||
|
||
static void
|
||
store_mteregs_to_thread (struct regcache *regcache)
|
||
{
|
||
aarch64_gdbarch_tdep *tdep
|
||
= gdbarch_tdep<aarch64_gdbarch_tdep> (regcache->arch ());
|
||
int regno = tdep->mte_reg_base;
|
||
|
||
gdb_assert (regno != -1);
|
||
|
||
uint64_t tag_ctl = 0;
|
||
|
||
if (REG_VALID != regcache->get_register_status (regno))
|
||
return;
|
||
|
||
regcache->raw_collect (regno, (char *) &tag_ctl);
|
||
|
||
struct iovec iovec;
|
||
|
||
iovec.iov_base = &tag_ctl;
|
||
iovec.iov_len = sizeof (tag_ctl);
|
||
|
||
int tid = get_ptrace_pid (regcache->ptid ());
|
||
if (ptrace (PTRACE_SETREGSET, tid, NT_ARM_TAGGED_ADDR_CTRL, &iovec) != 0)
|
||
perror_with_name (_("unable to store MTE registers"));
|
||
}
|
||
|
||
/* Fill GDB's register array with the TLS register values from
|
||
the current thread. */
|
||
|
||
static void
|
||
fetch_tlsregs_from_thread (struct regcache *regcache)
|
||
{
|
||
aarch64_gdbarch_tdep *tdep
|
||
= gdbarch_tdep<aarch64_gdbarch_tdep> (regcache->arch ());
|
||
int regno = tdep->tls_regnum_base;
|
||
|
||
gdb_assert (regno != -1);
|
||
gdb_assert (tdep->tls_register_count > 0);
|
||
|
||
uint64_t tpidrs[tdep->tls_register_count];
|
||
memset(tpidrs, 0, sizeof(tpidrs));
|
||
|
||
struct iovec iovec;
|
||
iovec.iov_base = tpidrs;
|
||
iovec.iov_len = sizeof (tpidrs);
|
||
|
||
int tid = get_ptrace_pid (regcache->ptid ());
|
||
if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_TLS, &iovec) != 0)
|
||
perror_with_name (_("unable to fetch TLS registers"));
|
||
|
||
for (int i = 0; i < tdep->tls_register_count; i++)
|
||
regcache->raw_supply (regno + i, &tpidrs[i]);
|
||
}
|
||
|
||
/* Store to the current thread the valid TLS register set in GDB's
|
||
register array. */
|
||
|
||
static void
|
||
store_tlsregs_to_thread (struct regcache *regcache)
|
||
{
|
||
aarch64_gdbarch_tdep *tdep
|
||
= gdbarch_tdep<aarch64_gdbarch_tdep> (regcache->arch ());
|
||
int regno = tdep->tls_regnum_base;
|
||
|
||
gdb_assert (regno != -1);
|
||
gdb_assert (tdep->tls_register_count > 0);
|
||
|
||
uint64_t tpidrs[tdep->tls_register_count];
|
||
memset(tpidrs, 0, sizeof(tpidrs));
|
||
|
||
for (int i = 0; i < tdep->tls_register_count; i++)
|
||
{
|
||
if (REG_VALID != regcache->get_register_status (regno + i))
|
||
continue;
|
||
|
||
regcache->raw_collect (regno + i, (char *) &tpidrs[i]);
|
||
}
|
||
|
||
struct iovec iovec;
|
||
iovec.iov_base = &tpidrs;
|
||
iovec.iov_len = sizeof (tpidrs);
|
||
|
||
int tid = get_ptrace_pid (regcache->ptid ());
|
||
if (ptrace (PTRACE_SETREGSET, tid, NT_ARM_TLS, &iovec) != 0)
|
||
perror_with_name (_("unable to store TLS register"));
|
||
}
|
||
|
||
/* The AArch64 version of the "fetch_registers" target_ops method. Fetch
|
||
REGNO from the target and place the result into REGCACHE. */
|
||
|
||
static void
|
||
aarch64_fetch_registers (struct regcache *regcache, int regno)
|
||
{
|
||
aarch64_gdbarch_tdep *tdep
|
||
= gdbarch_tdep<aarch64_gdbarch_tdep> (regcache->arch ());
|
||
|
||
/* Do we need to fetch all registers? */
|
||
if (regno == -1)
|
||
{
|
||
fetch_gregs_from_thread (regcache);
|
||
|
||
/* We attempt to fetch SVE registers if there is support for either
|
||
SVE or SME (due to the SSVE state of SME). */
|
||
if (tdep->has_sve () || tdep->has_sme ())
|
||
fetch_sveregs_from_thread (regcache);
|
||
else
|
||
fetch_fpregs_from_thread (regcache);
|
||
|
||
if (tdep->has_pauth ())
|
||
fetch_pauth_masks_from_thread (regcache);
|
||
|
||
if (tdep->has_mte ())
|
||
fetch_mteregs_from_thread (regcache);
|
||
|
||
if (tdep->has_tls ())
|
||
fetch_tlsregs_from_thread (regcache);
|
||
|
||
if (tdep->has_sme ())
|
||
fetch_za_from_thread (regcache);
|
||
|
||
if (tdep->has_sme2 ())
|
||
fetch_zt_from_thread (regcache);
|
||
}
|
||
/* General purpose register? */
|
||
else if (regno < AARCH64_V0_REGNUM)
|
||
fetch_gregs_from_thread (regcache);
|
||
/* SVE register? */
|
||
else if ((tdep->has_sve () || tdep->has_sme ())
|
||
&& regno <= AARCH64_SVE_VG_REGNUM)
|
||
fetch_sveregs_from_thread (regcache);
|
||
/* FPSIMD register? */
|
||
else if (regno <= AARCH64_FPCR_REGNUM)
|
||
fetch_fpregs_from_thread (regcache);
|
||
/* PAuth register? */
|
||
else if (tdep->has_pauth ()
|
||
&& (regno == AARCH64_PAUTH_DMASK_REGNUM (tdep->pauth_reg_base)
|
||
|| regno == AARCH64_PAUTH_CMASK_REGNUM (tdep->pauth_reg_base)))
|
||
fetch_pauth_masks_from_thread (regcache);
|
||
/* SME register? */
|
||
else if (tdep->has_sme () && regno >= tdep->sme_reg_base
|
||
&& regno < tdep->sme_reg_base + 3)
|
||
fetch_za_from_thread (regcache);
|
||
/* SME2 register? */
|
||
else if (tdep->has_sme2 () && regno == tdep->sme2_zt0_regnum)
|
||
fetch_zt_from_thread (regcache);
|
||
/* MTE register? */
|
||
else if (tdep->has_mte ()
|
||
&& (regno == tdep->mte_reg_base))
|
||
fetch_mteregs_from_thread (regcache);
|
||
/* TLS register? */
|
||
else if (tdep->has_tls ()
|
||
&& regno >= tdep->tls_regnum_base
|
||
&& regno < tdep->tls_regnum_base + tdep->tls_register_count)
|
||
fetch_tlsregs_from_thread (regcache);
|
||
}
|
||
|
||
/* A version of the "fetch_registers" target_ops method used when running
|
||
32-bit ARM code on an AArch64 target. Fetch REGNO from the target and
|
||
place the result into REGCACHE. */
|
||
|
||
static void
|
||
aarch32_fetch_registers (struct regcache *regcache, int regno)
|
||
{
|
||
arm_gdbarch_tdep *tdep
|
||
= gdbarch_tdep<arm_gdbarch_tdep> (regcache->arch ());
|
||
|
||
if (regno == -1)
|
||
{
|
||
fetch_gregs_from_thread (regcache);
|
||
if (tdep->vfp_register_count > 0)
|
||
fetch_fpregs_from_thread (regcache);
|
||
}
|
||
else if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM)
|
||
fetch_gregs_from_thread (regcache);
|
||
else if (tdep->vfp_register_count > 0
|
||
&& regno >= ARM_D0_REGNUM
|
||
&& (regno < ARM_D0_REGNUM + tdep->vfp_register_count
|
||
|| regno == ARM_FPSCR_REGNUM))
|
||
fetch_fpregs_from_thread (regcache);
|
||
}
|
||
|
||
/* Implement the "fetch_registers" target_ops method. */
|
||
|
||
void
|
||
aarch64_linux_nat_target::fetch_registers (struct regcache *regcache,
|
||
int regno)
|
||
{
|
||
if (gdbarch_bfd_arch_info (regcache->arch ())->bits_per_word == 32)
|
||
aarch32_fetch_registers (regcache, regno);
|
||
else
|
||
aarch64_fetch_registers (regcache, regno);
|
||
}
|
||
|
||
/* The AArch64 version of the "store_registers" target_ops method. Copy
|
||
the value of register REGNO from REGCACHE into the the target. */
|
||
|
||
static void
|
||
aarch64_store_registers (struct regcache *regcache, int regno)
|
||
{
|
||
aarch64_gdbarch_tdep *tdep
|
||
= gdbarch_tdep<aarch64_gdbarch_tdep> (regcache->arch ());
|
||
|
||
/* Do we need to store all registers? */
|
||
if (regno == -1)
|
||
{
|
||
store_gregs_to_thread (regcache);
|
||
|
||
/* We attempt to store SVE registers if there is support for either
|
||
SVE or SME (due to the SSVE state of SME). */
|
||
if (tdep->has_sve () || tdep->has_sme ())
|
||
store_sveregs_to_thread (regcache);
|
||
else
|
||
store_fpregs_to_thread (regcache);
|
||
|
||
if (tdep->has_mte ())
|
||
store_mteregs_to_thread (regcache);
|
||
|
||
if (tdep->has_tls ())
|
||
store_tlsregs_to_thread (regcache);
|
||
|
||
if (tdep->has_sme ())
|
||
store_za_to_thread (regcache);
|
||
|
||
if (tdep->has_sme2 ())
|
||
store_zt_to_thread (regcache);
|
||
}
|
||
/* General purpose register? */
|
||
else if (regno < AARCH64_V0_REGNUM)
|
||
store_gregs_to_thread (regcache);
|
||
/* SVE register? */
|
||
else if ((tdep->has_sve () || tdep->has_sme ())
|
||
&& regno <= AARCH64_SVE_VG_REGNUM)
|
||
store_sveregs_to_thread (regcache);
|
||
/* FPSIMD register? */
|
||
else if (regno <= AARCH64_FPCR_REGNUM)
|
||
store_fpregs_to_thread (regcache);
|
||
/* SME register? */
|
||
else if (tdep->has_sme () && regno >= tdep->sme_reg_base
|
||
&& regno < tdep->sme_reg_base + 3)
|
||
store_za_to_thread (regcache);
|
||
else if (tdep->has_sme2 () && regno == tdep->sme2_zt0_regnum)
|
||
store_zt_to_thread (regcache);
|
||
/* MTE register? */
|
||
else if (tdep->has_mte ()
|
||
&& (regno == tdep->mte_reg_base))
|
||
store_mteregs_to_thread (regcache);
|
||
/* TLS register? */
|
||
else if (tdep->has_tls ()
|
||
&& regno >= tdep->tls_regnum_base
|
||
&& regno < tdep->tls_regnum_base + tdep->tls_register_count)
|
||
store_tlsregs_to_thread (regcache);
|
||
|
||
/* PAuth registers are read-only. */
|
||
}
|
||
|
||
/* A version of the "store_registers" target_ops method used when running
|
||
32-bit ARM code on an AArch64 target. Copy the value of register REGNO
|
||
from REGCACHE into the the target. */
|
||
|
||
static void
|
||
aarch32_store_registers (struct regcache *regcache, int regno)
|
||
{
|
||
arm_gdbarch_tdep *tdep
|
||
= gdbarch_tdep<arm_gdbarch_tdep> (regcache->arch ());
|
||
|
||
if (regno == -1)
|
||
{
|
||
store_gregs_to_thread (regcache);
|
||
if (tdep->vfp_register_count > 0)
|
||
store_fpregs_to_thread (regcache);
|
||
}
|
||
else if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM)
|
||
store_gregs_to_thread (regcache);
|
||
else if (tdep->vfp_register_count > 0
|
||
&& regno >= ARM_D0_REGNUM
|
||
&& (regno < ARM_D0_REGNUM + tdep->vfp_register_count
|
||
|| regno == ARM_FPSCR_REGNUM))
|
||
store_fpregs_to_thread (regcache);
|
||
}
|
||
|
||
/* Implement the "store_registers" target_ops method. */
|
||
|
||
void
|
||
aarch64_linux_nat_target::store_registers (struct regcache *regcache,
|
||
int regno)
|
||
{
|
||
if (gdbarch_bfd_arch_info (regcache->arch ())->bits_per_word == 32)
|
||
aarch32_store_registers (regcache, regno);
|
||
else
|
||
aarch64_store_registers (regcache, regno);
|
||
}
|
||
|
||
/* Fill register REGNO (if it is a general-purpose register) in
|
||
*GREGSETPS with the value in GDB's register array. If REGNO is -1,
|
||
do this for all registers. */
|
||
|
||
void
|
||
fill_gregset (const struct regcache *regcache,
|
||
gdb_gregset_t *gregsetp, int regno)
|
||
{
|
||
regcache_collect_regset (&aarch64_linux_gregset, regcache,
|
||
regno, (gdb_byte *) gregsetp,
|
||
AARCH64_LINUX_SIZEOF_GREGSET);
|
||
}
|
||
|
||
/* Fill GDB's register array with the general-purpose register values
|
||
in *GREGSETP. */
|
||
|
||
void
|
||
supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
|
||
{
|
||
regcache_supply_regset (&aarch64_linux_gregset, regcache, -1,
|
||
(const gdb_byte *) gregsetp,
|
||
AARCH64_LINUX_SIZEOF_GREGSET);
|
||
}
|
||
|
||
/* Fill register REGNO (if it is a floating-point register) in
|
||
*FPREGSETP with the value in GDB's register array. If REGNO is -1,
|
||
do this for all registers. */
|
||
|
||
void
|
||
fill_fpregset (const struct regcache *regcache,
|
||
gdb_fpregset_t *fpregsetp, int regno)
|
||
{
|
||
regcache_collect_regset (&aarch64_linux_fpregset, regcache,
|
||
regno, (gdb_byte *) fpregsetp,
|
||
AARCH64_LINUX_SIZEOF_FPREGSET);
|
||
}
|
||
|
||
/* Fill GDB's register array with the floating-point register values
|
||
in *FPREGSETP. */
|
||
|
||
void
|
||
supply_fpregset (struct regcache *regcache, const gdb_fpregset_t *fpregsetp)
|
||
{
|
||
regcache_supply_regset (&aarch64_linux_fpregset, regcache, -1,
|
||
(const gdb_byte *) fpregsetp,
|
||
AARCH64_LINUX_SIZEOF_FPREGSET);
|
||
}
|
||
|
||
/* linux_nat_new_fork hook. */
|
||
|
||
void
|
||
aarch64_linux_nat_target::low_new_fork (struct lwp_info *parent,
|
||
pid_t child_pid)
|
||
{
|
||
pid_t parent_pid;
|
||
struct aarch64_debug_reg_state *parent_state;
|
||
struct aarch64_debug_reg_state *child_state;
|
||
|
||
/* NULL means no watchpoint has ever been set in the parent. In
|
||
that case, there's nothing to do. */
|
||
if (parent->arch_private == NULL)
|
||
return;
|
||
|
||
/* GDB core assumes the child inherits the watchpoints/hw
|
||
breakpoints of the parent, and will remove them all from the
|
||
forked off process. Copy the debug registers mirrors into the
|
||
new process so that all breakpoints and watchpoints can be
|
||
removed together. */
|
||
|
||
parent_pid = parent->ptid.pid ();
|
||
parent_state = aarch64_get_debug_reg_state (parent_pid);
|
||
child_state = aarch64_get_debug_reg_state (child_pid);
|
||
*child_state = *parent_state;
|
||
}
|
||
|
||
|
||
/* Called by libthread_db. Returns a pointer to the thread local
|
||
storage (or its descriptor). */
|
||
|
||
ps_err_e
|
||
ps_get_thread_area (struct ps_prochandle *ph,
|
||
lwpid_t lwpid, int idx, void **base)
|
||
{
|
||
gdbarch *arch = current_inferior ()->arch ();
|
||
int is_64bit_p = (gdbarch_bfd_arch_info (arch)->bits_per_word == 64);
|
||
|
||
return aarch64_ps_get_thread_area (ph, lwpid, idx, base, is_64bit_p);
|
||
}
|
||
|
||
|
||
/* Implement the virtual inf_ptrace_target::post_startup_inferior method. */
|
||
|
||
void
|
||
aarch64_linux_nat_target::post_startup_inferior (ptid_t ptid)
|
||
{
|
||
low_forget_process (ptid.pid ());
|
||
aarch64_linux_get_debug_reg_capacity (ptid.pid ());
|
||
linux_nat_target::post_startup_inferior (ptid);
|
||
}
|
||
|
||
/* Implement the "post_attach" target_ops method. */
|
||
|
||
void
|
||
aarch64_linux_nat_target::post_attach (int pid)
|
||
{
|
||
low_forget_process (pid);
|
||
/* Set the hardware debug register capacity. If
|
||
aarch64_linux_get_debug_reg_capacity is not called
|
||
(as it is in aarch64_linux_child_post_startup_inferior) then
|
||
software watchpoints will be used instead of hardware
|
||
watchpoints when attaching to a target. */
|
||
aarch64_linux_get_debug_reg_capacity (pid);
|
||
linux_nat_target::post_attach (pid);
|
||
}
|
||
|
||
/* Implement the "read_description" target_ops method. */
|
||
|
||
const struct target_desc *
|
||
aarch64_linux_nat_target::read_description ()
|
||
{
|
||
int ret, tid;
|
||
gdb_byte regbuf[ARM_VFP3_REGS_SIZE];
|
||
struct iovec iovec;
|
||
|
||
if (inferior_ptid == null_ptid)
|
||
return this->beneath ()->read_description ();
|
||
|
||
tid = inferior_ptid.pid ();
|
||
|
||
iovec.iov_base = regbuf;
|
||
iovec.iov_len = ARM_VFP3_REGS_SIZE;
|
||
|
||
ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iovec);
|
||
if (ret == 0)
|
||
return aarch32_read_description (false);
|
||
|
||
CORE_ADDR hwcap = linux_get_hwcap ();
|
||
CORE_ADDR hwcap2 = linux_get_hwcap2 ();
|
||
|
||
aarch64_features features;
|
||
/* SVE/SSVE check. Reading VQ may return either the regular vector length
|
||
or the streaming vector length, depending on whether streaming mode is
|
||
active or not. */
|
||
features.vq = aarch64_sve_get_vq (tid);
|
||
features.pauth = hwcap & AARCH64_HWCAP_PACA;
|
||
features.mte = hwcap2 & HWCAP2_MTE;
|
||
features.tls = aarch64_tls_register_count (tid);
|
||
/* SME feature check. */
|
||
features.svq = aarch64_za_get_svq (tid);
|
||
|
||
/* Check for SME2 support. */
|
||
if ((hwcap2 & HWCAP2_SME2) || (hwcap2 & HWCAP2_SME2P1))
|
||
features.sme2 = supports_zt_registers (tid);
|
||
|
||
return aarch64_read_description (features);
|
||
}
|
||
|
||
/* Convert a native/host siginfo object, into/from the siginfo in the
|
||
layout of the inferiors' architecture. Returns true if any
|
||
conversion was done; false otherwise. If DIRECTION is 1, then copy
|
||
from INF to NATIVE. If DIRECTION is 0, copy from NATIVE to
|
||
INF. */
|
||
|
||
bool
|
||
aarch64_linux_nat_target::low_siginfo_fixup (siginfo_t *native, gdb_byte *inf,
|
||
int direction)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
|
||
|
||
/* Is the inferior 32-bit? If so, then do fixup the siginfo
|
||
object. */
|
||
if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
|
||
{
|
||
if (direction == 0)
|
||
aarch64_compat_siginfo_from_siginfo ((struct compat_siginfo *) inf,
|
||
native);
|
||
else
|
||
aarch64_siginfo_from_compat_siginfo (native,
|
||
(struct compat_siginfo *) inf);
|
||
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Implement the "stopped_data_address" target_ops method. */
|
||
|
||
bool
|
||
aarch64_linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
|
||
{
|
||
siginfo_t siginfo;
|
||
struct aarch64_debug_reg_state *state;
|
||
|
||
if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
|
||
return false;
|
||
|
||
/* This must be a hardware breakpoint. */
|
||
if (siginfo.si_signo != SIGTRAP
|
||
|| (siginfo.si_code & 0xffff) != TRAP_HWBKPT)
|
||
return false;
|
||
|
||
/* Make sure to ignore the top byte, otherwise we may not recognize a
|
||
hardware watchpoint hit. The stopped data addresses coming from the
|
||
kernel can potentially be tagged addresses. */
|
||
struct gdbarch *gdbarch = thread_architecture (inferior_ptid);
|
||
const CORE_ADDR addr_trap
|
||
= gdbarch_remove_non_address_bits (gdbarch, (CORE_ADDR) siginfo.si_addr);
|
||
|
||
/* Check if the address matches any watched address. */
|
||
state = aarch64_get_debug_reg_state (inferior_ptid.pid ());
|
||
return aarch64_stopped_data_address (state, addr_trap, addr_p);
|
||
}
|
||
|
||
/* Implement the "stopped_by_watchpoint" target_ops method. */
|
||
|
||
bool
|
||
aarch64_linux_nat_target::stopped_by_watchpoint ()
|
||
{
|
||
return stopped_data_address (nullptr);
|
||
}
|
||
|
||
/* Implement the "can_do_single_step" target_ops method. */
|
||
|
||
int
|
||
aarch64_linux_nat_target::can_do_single_step ()
|
||
{
|
||
return 1;
|
||
}
|
||
|
||
/* Implement the "thread_architecture" target_ops method.
|
||
|
||
Returns the gdbarch for the thread identified by PTID. If the thread in
|
||
question is a 32-bit ARM thread, then the architecture returned will be
|
||
that of the process itself.
|
||
|
||
If the thread is an AArch64 thread then we need to check the current
|
||
vector length; if the vector length has changed then we need to lookup a
|
||
new gdbarch that matches the new vector length. */
|
||
|
||
struct gdbarch *
|
||
aarch64_linux_nat_target::thread_architecture (ptid_t ptid)
|
||
{
|
||
/* Find the current gdbarch the same way as process_stratum_target. */
|
||
inferior *inf = find_inferior_ptid (this, ptid);
|
||
gdb_assert (inf != NULL);
|
||
|
||
/* If this is a 32-bit architecture, then this is ARM, not AArch64.
|
||
There's no SVE vectors here, so just return the inferior
|
||
architecture. */
|
||
if (gdbarch_bfd_arch_info (inf->arch ())->bits_per_word == 32)
|
||
return inf->arch ();
|
||
|
||
/* Only return the inferior's gdbarch if both vq and svq match the ones in
|
||
the tdep. */
|
||
aarch64_gdbarch_tdep *tdep
|
||
= gdbarch_tdep<aarch64_gdbarch_tdep> (inf->arch ());
|
||
uint64_t vq = aarch64_sve_get_vq (ptid.lwp ());
|
||
uint64_t svq = aarch64_za_get_svq (ptid.lwp ());
|
||
if (vq == tdep->vq && svq == tdep->sme_svq)
|
||
return inf->arch ();
|
||
|
||
/* We reach here if any vector length for the thread is different from its
|
||
value at process start. Lookup gdbarch via info (potentially creating a
|
||
new one) by using a target description that corresponds to the new vq/svq
|
||
value and the current architecture features. */
|
||
|
||
const struct target_desc *tdesc = gdbarch_target_desc (inf->arch ());
|
||
aarch64_features features = aarch64_features_from_target_desc (tdesc);
|
||
features.vq = vq;
|
||
features.svq = svq;
|
||
|
||
/* Check for the SME2 feature. */
|
||
features.sme2 = supports_zt_registers (ptid.lwp ());
|
||
|
||
struct gdbarch_info info;
|
||
info.bfd_arch_info = bfd_lookup_arch (bfd_arch_aarch64, bfd_mach_aarch64);
|
||
info.target_desc = aarch64_read_description (features);
|
||
return gdbarch_find_by_info (info);
|
||
}
|
||
|
||
/* Implement the "supports_memory_tagging" target_ops method. */
|
||
|
||
bool
|
||
aarch64_linux_nat_target::supports_memory_tagging ()
|
||
{
|
||
return (linux_get_hwcap2 () & HWCAP2_MTE) != 0;
|
||
}
|
||
|
||
/* Implement the "fetch_memtags" target_ops method. */
|
||
|
||
bool
|
||
aarch64_linux_nat_target::fetch_memtags (CORE_ADDR address, size_t len,
|
||
gdb::byte_vector &tags, int type)
|
||
{
|
||
int tid = get_ptrace_pid (inferior_ptid);
|
||
|
||
/* Allocation tags? */
|
||
if (type == static_cast<int> (aarch64_memtag_type::mte_allocation))
|
||
return aarch64_mte_fetch_memtags (tid, address, len, tags);
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Implement the "store_memtags" target_ops method. */
|
||
|
||
bool
|
||
aarch64_linux_nat_target::store_memtags (CORE_ADDR address, size_t len,
|
||
const gdb::byte_vector &tags, int type)
|
||
{
|
||
int tid = get_ptrace_pid (inferior_ptid);
|
||
|
||
/* Allocation tags? */
|
||
if (type == static_cast<int> (aarch64_memtag_type::mte_allocation))
|
||
return aarch64_mte_store_memtags (tid, address, len, tags);
|
||
|
||
return false;
|
||
}
|
||
|
||
void _initialize_aarch64_linux_nat ();
|
||
void
|
||
_initialize_aarch64_linux_nat ()
|
||
{
|
||
aarch64_initialize_hw_point ();
|
||
|
||
/* Register the target. */
|
||
linux_target = &the_aarch64_linux_nat_target;
|
||
add_inf_child_target (&the_aarch64_linux_nat_target);
|
||
}
|