binutils-gdb/gdb/gdbarch.sh
Andrew Cagney 12cc2063be 2003-03-10 Andrew Cagney <cagney@redhat.com>
* gdbarch.sh (gdbarch_unwind_pc): New method.
	* gdbarch.h, gdbarch.c: Regenerate.
	* frame.c (frame_pc_unwind): Rewrite.  Prefer gdbarch_unwind_pc,
	but use read_pc and FRAME_SAVED_PC as fall backs.
	(frame_saved_regs_pc_unwind): Delete function.
	(trad_frame_unwinder): Update.
	* frame-unwind.h (frame_unwind_pc_ftype): Delete declaration.
	(struct frame_unwind): Update.
	* dummy-frame.c (dummy_frame_pc_unwind): Delete function.
	(dummy_frame_unwind): Update.
	* sentinel-frame.c (sentinel_frame_pc_unwind): Delete function.
	(sentinel_frame_unwinder): Update.
	* d10v-tdep.c (d10v_frame_pc_unwind): Delete function.
	(d10v_frame_unwind): Update.
	(d10v_unwind_pc): New function.
	(d10v_gdbarch_init): Set unwind_pc.

Index: doc/ChangeLog
2003-03-10  Andrew Cagney  <cagney@redhat.com>

	* gdbint.texinfo (Target Architecture Definition): Cross reference
	FRAME_SAVED_PC to unwind_pc.  Document unwind_pc.
2003-03-10 15:28:41 +00:00

2424 lines
82 KiB
Bash
Executable File

#!/bin/sh -u
# Architecture commands for GDB, the GNU debugger.
# Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
#
# This file is part of GDB.
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
# Make certain that the script is running in an internationalized
# environment.
LANG=c ; export LANG
LC_ALL=c ; export LC_ALL
compare_new ()
{
file=$1
if test ! -r ${file}
then
echo "${file} missing? cp new-${file} ${file}" 1>&2
elif diff -u ${file} new-${file}
then
echo "${file} unchanged" 1>&2
else
echo "${file} has changed? cp new-${file} ${file}" 1>&2
fi
}
# Format of the input table
read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
do_read ()
{
comment=""
class=""
while read line
do
if test "${line}" = ""
then
continue
elif test "${line}" = "#" -a "${comment}" = ""
then
continue
elif expr "${line}" : "#" > /dev/null
then
comment="${comment}
${line}"
else
# The semantics of IFS varies between different SH's. Some
# treat ``::' as three fields while some treat it as just too.
# Work around this by eliminating ``::'' ....
line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
OFS="${IFS}" ; IFS="[:]"
eval read ${read} <<EOF
${line}
EOF
IFS="${OFS}"
# .... and then going back through each field and strip out those
# that ended up with just that space character.
for r in ${read}
do
if eval test \"\${${r}}\" = \"\ \"
then
eval ${r}=""
fi
done
case "${level}" in
1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
"" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
* ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
esac
case "${class}" in
m ) staticdefault="${predefault}" ;;
M ) staticdefault="0" ;;
* ) test "${staticdefault}" || staticdefault=0 ;;
esac
# NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
# multi-arch defaults.
# test "${predefault}" || predefault=0
# come up with a format, use a few guesses for variables
case ":${class}:${fmt}:${print}:" in
:[vV]::: )
if [ "${returntype}" = int ]
then
fmt="%d"
print="${macro}"
elif [ "${returntype}" = long ]
then
fmt="%ld"
print="${macro}"
fi
;;
esac
test "${fmt}" || fmt="%ld"
test "${print}" || print="(long) ${macro}"
case "${class}" in
F | V | M )
case "${invalid_p}" in
"" )
if test -n "${predefault}" -a "${predefault}" != "0"
then
#invalid_p="gdbarch->${function} == ${predefault}"
predicate="gdbarch->${function} != ${predefault}"
else
# filled in later
predicate=""
fi
;;
* )
echo "Predicate function ${function} with invalid_p." 1>&2
kill $$
exit 1
;;
esac
esac
# PREDEFAULT is a valid fallback definition of MEMBER when
# multi-arch is not enabled. This ensures that the
# default value, when multi-arch is the same as the
# default value when not multi-arch. POSTDEFAULT is
# always a valid definition of MEMBER as this again
# ensures consistency.
if [ -n "${postdefault}" ]
then
fallbackdefault="${postdefault}"
elif [ -n "${predefault}" ]
then
fallbackdefault="${predefault}"
else
fallbackdefault="0"
fi
#NOT YET: See gdbarch.log for basic verification of
# database
break
fi
done
if [ -n "${class}" ]
then
true
else
false
fi
}
fallback_default_p ()
{
[ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
|| [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
}
class_is_variable_p ()
{
case "${class}" in
*v* | *V* ) true ;;
* ) false ;;
esac
}
class_is_function_p ()
{
case "${class}" in
*f* | *F* | *m* | *M* ) true ;;
* ) false ;;
esac
}
class_is_multiarch_p ()
{
case "${class}" in
*m* | *M* ) true ;;
* ) false ;;
esac
}
class_is_predicate_p ()
{
case "${class}" in
*F* | *V* | *M* ) true ;;
* ) false ;;
esac
}
class_is_info_p ()
{
case "${class}" in
*i* ) true ;;
* ) false ;;
esac
}
# dump out/verify the doco
for field in ${read}
do
case ${field} in
class ) : ;;
# # -> line disable
# f -> function
# hiding a function
# F -> function + predicate
# hiding a function + predicate to test function validity
# v -> variable
# hiding a variable
# V -> variable + predicate
# hiding a variable + predicate to test variables validity
# i -> set from info
# hiding something from the ``struct info'' object
# m -> multi-arch function
# hiding a multi-arch function (parameterised with the architecture)
# M -> multi-arch function + predicate
# hiding a multi-arch function + predicate to test function validity
level ) : ;;
# See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
# LEVEL is a predicate on checking that a given method is
# initialized (using INVALID_P).
macro ) : ;;
# The name of the MACRO that this method is to be accessed by.
returntype ) : ;;
# For functions, the return type; for variables, the data type
function ) : ;;
# For functions, the member function name; for variables, the
# variable name. Member function names are always prefixed with
# ``gdbarch_'' for name-space purity.
formal ) : ;;
# The formal argument list. It is assumed that the formal
# argument list includes the actual name of each list element.
# A function with no arguments shall have ``void'' as the
# formal argument list.
actual ) : ;;
# The list of actual arguments. The arguments specified shall
# match the FORMAL list given above. Functions with out
# arguments leave this blank.
attrib ) : ;;
# Any GCC attributes that should be attached to the function
# declaration. At present this field is unused.
staticdefault ) : ;;
# To help with the GDB startup a static gdbarch object is
# created. STATICDEFAULT is the value to insert into that
# static gdbarch object. Since this a static object only
# simple expressions can be used.
# If STATICDEFAULT is empty, zero is used.
predefault ) : ;;
# An initial value to assign to MEMBER of the freshly
# malloc()ed gdbarch object. After initialization, the
# freshly malloc()ed object is passed to the target
# architecture code for further updates.
# If PREDEFAULT is empty, zero is used.
# A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
# INVALID_P are specified, PREDEFAULT will be used as the
# default for the non- multi-arch target.
# A zero PREDEFAULT function will force the fallback to call
# internal_error().
# Variable declarations can refer to ``gdbarch'' which will
# contain the current architecture. Care should be taken.
postdefault ) : ;;
# A value to assign to MEMBER of the new gdbarch object should
# the target architecture code fail to change the PREDEFAULT
# value.
# If POSTDEFAULT is empty, no post update is performed.
# If both INVALID_P and POSTDEFAULT are non-empty then
# INVALID_P will be used to determine if MEMBER should be
# changed to POSTDEFAULT.
# If a non-empty POSTDEFAULT and a zero INVALID_P are
# specified, POSTDEFAULT will be used as the default for the
# non- multi-arch target (regardless of the value of
# PREDEFAULT).
# You cannot specify both a zero INVALID_P and a POSTDEFAULT.
# Variable declarations can refer to ``gdbarch'' which will
# contain the current architecture. Care should be taken.
invalid_p ) : ;;
# A predicate equation that validates MEMBER. Non-zero is
# returned if the code creating the new architecture failed to
# initialize MEMBER or the initialized the member is invalid.
# If POSTDEFAULT is non-empty then MEMBER will be updated to
# that value. If POSTDEFAULT is empty then internal_error()
# is called.
# If INVALID_P is empty, a check that MEMBER is no longer
# equal to PREDEFAULT is used.
# The expression ``0'' disables the INVALID_P check making
# PREDEFAULT a legitimate value.
# See also PREDEFAULT and POSTDEFAULT.
fmt ) : ;;
# printf style format string that can be used to print out the
# MEMBER. Sometimes "%s" is useful. For functions, this is
# ignored and the function address is printed.
# If FMT is empty, ``%ld'' is used.
print ) : ;;
# An optional equation that casts MEMBER to a value suitable
# for formatting by FMT.
# If PRINT is empty, ``(long)'' is used.
print_p ) : ;;
# An optional indicator for any predicte to wrap around the
# print member code.
# () -> Call a custom function to do the dump.
# exp -> Wrap print up in ``if (${print_p}) ...
# ``'' -> No predicate
# If PRINT_P is empty, ``1'' is always used.
description ) : ;;
# Currently unused.
*)
echo "Bad field ${field}"
exit 1;;
esac
done
function_list ()
{
# See below (DOCO) for description of each field
cat <<EOF
i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
#
i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
#
i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
# Number of bits in a char or unsigned char for the target machine.
# Just like CHAR_BIT in <limits.h> but describes the target machine.
# v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
#
# Number of bits in a short or unsigned short for the target machine.
v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
# Number of bits in an int or unsigned int for the target machine.
v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
# Number of bits in a long or unsigned long for the target machine.
v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
# Number of bits in a long long or unsigned long long for the target
# machine.
v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
# Number of bits in a float for the target machine.
v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
# Number of bits in a double for the target machine.
v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
# Number of bits in a long double for the target machine.
v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
# For most targets, a pointer on the target and its representation as an
# address in GDB have the same size and "look the same". For such a
# target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
# / addr_bit will be set from it.
#
# If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
# also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
#
# ptr_bit is the size of a pointer on the target
v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
# addr_bit is the size of a target address as represented in gdb
v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
# Number of bits in a BFD_VMA for the target object file format.
v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
#
# One if \`char' acts like \`signed char', zero if \`unsigned char'.
v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
#
f:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
f:2:TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
f:2:TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
f:2:TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
# Function for getting target's idea of a frame pointer. FIXME: GDB's
# whole scheme for dealing with "frames" and "frame pointers" needs a
# serious shakedown.
f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
#
M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf:
M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf:
#
v:2:NUM_REGS:int:num_regs::::0:-1
# This macro gives the number of pseudo-registers that live in the
# register namespace but do not get fetched or stored on the target.
# These pseudo-registers may be aliases for other registers,
# combinations of other registers, or they may be computed by GDB.
v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
# GDB's standard (or well known) register numbers. These can map onto
# a real register or a pseudo (computed) register or not be defined at
# all (-1).
v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
v:2:FP_REGNUM:int:fp_regnum::::-1:-1::0
v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
# Provide a default mapping from a ecoff register number to a gdb REGNUM.
f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
# Provide a default mapping from a DWARF register number to a gdb REGNUM.
f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
# Convert from an sdb register number to an internal gdb register number.
# This should be defined in tm.h, if REGISTER_NAMES is not set up
# to map one to one onto the sdb register numbers.
f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
v:2:REGISTER_SIZE:int:register_size::::0:-1
v:2:REGISTER_BYTES:int:register_bytes::::0:-1
f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte::0
# The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
# MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
# REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
# by REGISTER_TYPE.
f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
# The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
# MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
# REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
# by REGISTER_TYPE.
V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
# The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
# MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
# REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
# by REGISTER_TYPE.
f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
# The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
# MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
# REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
# by REGISTER_TYPE.
V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
# The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
# MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
# REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE have all being replaced
# by REGISTER_TYPE.
F:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr::0:
#
F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
# MAP a GDB RAW register number onto a simulator register number. See
# also include/...-sim.h.
f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
# setjmp/longjmp support.
F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
#
# Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
# much better but at least they are vaguely consistent). The headers
# and body contain convoluted #if/#else sequences for determine how
# things should be compiled. Instead of trying to mimic that
# behaviour here (and hence entrench it further) gdbarch simply
# reqires that these methods be set up from the word go. This also
# avoids any potential problems with moving beyond multi-arch partial.
v:1:DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
v:1:CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::gdbarch->call_dummy_length >= 0
# NOTE: cagney/2002-11-24: This function with predicate has a valid
# (callable) initial value. As a consequence, even when the predicate
# is false, the corresponding function works. This simplifies the
# migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
# doesn't need to be modified.
F:1:DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
#
v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
F:2:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
#
f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
#
f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum:regnum::0:legacy_convert_register_p::0
f:1:REGISTER_TO_VALUE:void:register_to_value:int regnum, struct type *type, char *from, char *to:regnum, type, from, to::0:legacy_register_to_value::0
f:1:VALUE_TO_REGISTER:void:value_to_register:struct type *type, int regnum, char *from, char *to:type, regnum, from, to::0:legacy_value_to_register::0
#
f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
#
f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
f:2:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr:::default_push_arguments::0
F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-:::0
F:2:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
F:2:POP_FRAME:void:pop_frame:void:-:::0
#
f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
#
f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
#
F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
#
F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame:::0
F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
#
f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
f:2:BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
f:2:PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
#
f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
#
v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
F:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
F:2:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
# NOTE: FRAME_SAVED_PC is replaced by UNWIND_PC
F:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame:
f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:get_frame_base::0
f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:get_frame_base::0
f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
#
F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
M:::CORE_ADDR:frame_align:CORE_ADDR address:address
v:2:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
# FIXME: kettenis/2003-03-08: This should be replaced by a function
# parametrized with (at least) the regcache.
F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info::0:0
v:2:PARM_BOUNDARY:int:parm_boundary
#
v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
# On some machines there are bits in addresses which are not really
# part of the address, but are used by the kernel, the hardware, etc.
# for special purposes. ADDR_BITS_REMOVE takes out any such bits so
# we get a "real" address such as one would find in a symbol table.
# This is used only for addresses of instructions, and even then I'm
# not sure it's used in all contexts. It exists to deal with there
# being a few stray bits in the PC which would mislead us, not as some
# sort of generic thing to handle alignment or segmentation (it's
# possible it should be in TARGET_READ_PC instead).
f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
# It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
# ADDR_BITS_REMOVE.
f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
# FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
# the target needs software single step. An ISA method to implement it.
#
# FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
# using the breakpoint system instead of blatting memory directly (as with rs6000).
#
# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
# single step. If not, then implement single step using breakpoints.
F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
# For SVR4 shared libraries, each call goes through a small piece of
# trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
# to nonzero if we are currently stopped in one of these.
f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
# Some systems also have trampoline code for returning from shared libs.
f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
# Sigtramp is a routine that the kernel calls (which then calls the
# signal handler). On most machines it is a library routine that is
# linked into the executable.
#
# This macro, given a program counter value and the name of the
# function in which that PC resides (which can be null if the name is
# not known), returns nonzero if the PC and name show that we are in
# sigtramp.
#
# On most machines just see if the name is sigtramp (and if we have
# no name, assume we are not in sigtramp).
#
# FIXME: cagney/2002-04-21: The function find_pc_partial_function
# calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
# This means PC_IN_SIGTRAMP function can't be implemented by doing its
# own local NAME lookup.
#
# FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
# Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
# does not.
f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
# A target might have problems with watchpoints as soon as the stack
# frame of the current function has been destroyed. This mostly happens
# as the first action in a funtion's epilogue. in_function_epilogue_p()
# is defined to return a non-zero value if either the given addr is one
# instruction after the stack destroying instruction up to the trailing
# return instruction or if we can figure out that the stack frame has
# already been invalidated regardless of the value of addr. Targets
# which don't suffer from that problem could just let this functionality
# untouched.
m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
# Given a vector of command-line arguments, return a newly allocated
# string which, when passed to the create_inferior function, will be
# parsed (on Unix systems, by the shell) to yield the same vector.
# This function should call error() if the argument vector is not
# representable for this target or if this target does not support
# command-line arguments.
# ARGC is the number of elements in the vector.
# ARGV is an array of strings, one per argument.
m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags:
M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
# Is a register in a group
m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
EOF
}
#
# The .log file
#
exec > new-gdbarch.log
function_list | while do_read
do
cat <<EOF
${class} ${macro}(${actual})
${returntype} ${function} ($formal)${attrib}
EOF
for r in ${read}
do
eval echo \"\ \ \ \ ${r}=\${${r}}\"
done
if class_is_predicate_p && fallback_default_p
then
echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
kill $$
exit 1
fi
if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
then
echo "Error: postdefault is useless when invalid_p=0" 1>&2
kill $$
exit 1
fi
if class_is_multiarch_p
then
if class_is_predicate_p ; then :
elif test "x${predefault}" = "x"
then
echo "Error: pure multi-arch function must have a predefault" 1>&2
kill $$
exit 1
fi
fi
echo ""
done
exec 1>&2
compare_new gdbarch.log
copyright ()
{
cat <<EOF
/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
/* Dynamic architecture support for GDB, the GNU debugger.
Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* This file was created with the aid of \`\`gdbarch.sh''.
The Bourne shell script \`\`gdbarch.sh'' creates the files
\`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
against the existing \`\`gdbarch.[hc]''. Any differences found
being reported.
If editing this file, please also run gdbarch.sh and merge any
changes into that script. Conversely, when making sweeping changes
to this file, modifying gdbarch.sh and using its output may prove
easier. */
EOF
}
#
# The .h file
#
exec > new-gdbarch.h
copyright
cat <<EOF
#ifndef GDBARCH_H
#define GDBARCH_H
#include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
#if !GDB_MULTI_ARCH
/* Pull in function declarations refered to, indirectly, via macros. */
#include "inferior.h" /* For unsigned_address_to_pointer(). */
#endif
struct frame_info;
struct value;
struct objfile;
struct minimal_symbol;
struct regcache;
struct reggroup;
extern struct gdbarch *current_gdbarch;
/* If any of the following are defined, the target wasn't correctly
converted. */
#if GDB_MULTI_ARCH
#if defined (EXTRA_FRAME_INFO)
#error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
#endif
#endif
#if GDB_MULTI_ARCH
#if defined (FRAME_FIND_SAVED_REGS)
#error "FRAME_FIND_SAVED_REGS: replaced by DEPRECATED_FRAME_INIT_SAVED_REGS"
#endif
#endif
#if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
#error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
#endif
EOF
# function typedef's
printf "\n"
printf "\n"
printf "/* The following are pre-initialized by GDBARCH. */\n"
function_list | while do_read
do
if class_is_info_p
then
printf "\n"
printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
printf "#error \"Non multi-arch definition of ${macro}\"\n"
printf "#endif\n"
printf "#if GDB_MULTI_ARCH\n"
printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
printf "#endif\n"
printf "#endif\n"
fi
done
# function typedef's
printf "\n"
printf "\n"
printf "/* The following are initialized by the target dependent code. */\n"
function_list | while do_read
do
if [ -n "${comment}" ]
then
echo "${comment}" | sed \
-e '2 s,#,/*,' \
-e '3,$ s,#, ,' \
-e '$ s,$, */,'
fi
if class_is_multiarch_p
then
if class_is_predicate_p
then
printf "\n"
printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
fi
else
if class_is_predicate_p
then
printf "\n"
printf "#if defined (${macro})\n"
printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
#printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
printf "#if !defined (${macro}_P)\n"
printf "#define ${macro}_P() (1)\n"
printf "#endif\n"
printf "#endif\n"
printf "\n"
printf "/* Default predicate for non- multi-arch targets. */\n"
printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
printf "#define ${macro}_P() (0)\n"
printf "#endif\n"
printf "\n"
printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
printf "#error \"Non multi-arch definition of ${macro}\"\n"
printf "#endif\n"
printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
printf "#endif\n"
fi
fi
if class_is_variable_p
then
if fallback_default_p || class_is_predicate_p
then
printf "\n"
printf "/* Default (value) for non- multi-arch platforms. */\n"
printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
echo "#define ${macro} (${fallbackdefault})" \
| sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
printf "#endif\n"
fi
printf "\n"
printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
printf "#error \"Non multi-arch definition of ${macro}\"\n"
printf "#endif\n"
if test "${level}" = ""
then
printf "#if !defined (${macro})\n"
printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
printf "#endif\n"
else
printf "#if GDB_MULTI_ARCH\n"
printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
printf "#endif\n"
printf "#endif\n"
fi
fi
if class_is_function_p
then
if class_is_multiarch_p ; then :
elif fallback_default_p || class_is_predicate_p
then
printf "\n"
printf "/* Default (function) for non- multi-arch platforms. */\n"
printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
if [ "x${fallbackdefault}" = "x0" ]
then
if [ "x${actual}" = "x-" ]
then
printf "#define ${macro} (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
else
printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
fi
else
# FIXME: Should be passing current_gdbarch through!
echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
| sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
fi
printf "#endif\n"
fi
printf "\n"
if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
then
printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
elif class_is_multiarch_p
then
printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
else
printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
fi
if [ "x${formal}" = "xvoid" ]
then
printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
else
printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
fi
printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
if class_is_multiarch_p ; then :
else
printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
printf "#error \"Non multi-arch definition of ${macro}\"\n"
printf "#endif\n"
printf "#if GDB_MULTI_ARCH\n"
printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
if [ "x${actual}" = "x" ]
then
printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
elif [ "x${actual}" = "x-" ]
then
printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
else
printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
fi
printf "#endif\n"
printf "#endif\n"
fi
fi
done
# close it off
cat <<EOF
extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
/* Mechanism for co-ordinating the selection of a specific
architecture.
GDB targets (*-tdep.c) can register an interest in a specific
architecture. Other GDB components can register a need to maintain
per-architecture data.
The mechanisms below ensures that there is only a loose connection
between the set-architecture command and the various GDB
components. Each component can independently register their need
to maintain architecture specific data with gdbarch.
Pragmatics:
Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
didn't scale.
The more traditional mega-struct containing architecture specific
data for all the various GDB components was also considered. Since
GDB is built from a variable number of (fairly independent)
components it was determined that the global aproach was not
applicable. */
/* Register a new architectural family with GDB.
Register support for the specified ARCHITECTURE with GDB. When
gdbarch determines that the specified architecture has been
selected, the corresponding INIT function is called.
--
The INIT function takes two parameters: INFO which contains the
information available to gdbarch about the (possibly new)
architecture; ARCHES which is a list of the previously created
\`\`struct gdbarch'' for this architecture.
The INFO parameter is, as far as possible, be pre-initialized with
information obtained from INFO.ABFD or the previously selected
architecture.
The ARCHES parameter is a linked list (sorted most recently used)
of all the previously created architures for this architecture
family. The (possibly NULL) ARCHES->gdbarch can used to access
values from the previously selected architecture for this
architecture family. The global \`\`current_gdbarch'' shall not be
used.
The INIT function shall return any of: NULL - indicating that it
doesn't recognize the selected architecture; an existing \`\`struct
gdbarch'' from the ARCHES list - indicating that the new
architecture is just a synonym for an earlier architecture (see
gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
- that describes the selected architecture (see gdbarch_alloc()).
The DUMP_TDEP function shall print out all target specific values.
Care should be taken to ensure that the function works in both the
multi-arch and non- multi-arch cases. */
struct gdbarch_list
{
struct gdbarch *gdbarch;
struct gdbarch_list *next;
};
struct gdbarch_info
{
/* Use default: NULL (ZERO). */
const struct bfd_arch_info *bfd_arch_info;
/* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
int byte_order;
/* Use default: NULL (ZERO). */
bfd *abfd;
/* Use default: NULL (ZERO). */
struct gdbarch_tdep_info *tdep_info;
/* Use default: GDB_OSABI_UNINITIALIZED (-1). */
enum gdb_osabi osabi;
};
typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
/* DEPRECATED - use gdbarch_register() */
extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
extern void gdbarch_register (enum bfd_architecture architecture,
gdbarch_init_ftype *,
gdbarch_dump_tdep_ftype *);
/* Return a freshly allocated, NULL terminated, array of the valid
architecture names. Since architectures are registered during the
_initialize phase this function only returns useful information
once initialization has been completed. */
extern const char **gdbarch_printable_names (void);
/* Helper function. Search the list of ARCHES for a GDBARCH that
matches the information provided by INFO. */
extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
basic initialization using values obtained from the INFO andTDEP
parameters. set_gdbarch_*() functions are called to complete the
initialization of the object. */
extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
It is assumed that the caller freeds the \`\`struct
gdbarch_tdep''. */
extern void gdbarch_free (struct gdbarch *);
/* Helper function. Force an update of the current architecture.
The actual architecture selected is determined by INFO, \`\`(gdb) set
architecture'' et.al., the existing architecture and BFD's default
architecture. INFO should be initialized to zero and then selected
fields should be updated.
Returns non-zero if the update succeeds */
extern int gdbarch_update_p (struct gdbarch_info info);
/* Register per-architecture data-pointer.
Reserve space for a per-architecture data-pointer. An identifier
for the reserved data-pointer is returned. That identifer should
be saved in a local static variable.
The per-architecture data-pointer is either initialized explicitly
(set_gdbarch_data()) or implicitly (by INIT() via a call to
gdbarch_data()). FREE() is called to delete either an existing
data-pointer overridden by set_gdbarch_data() or when the
architecture object is being deleted.
When a previously created architecture is re-selected, the
per-architecture data-pointer for that previous architecture is
restored. INIT() is not re-called.
Multiple registrarants for any architecture are allowed (and
strongly encouraged). */
struct gdbarch_data;
typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
void *pointer);
extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
gdbarch_data_free_ftype *free);
extern void set_gdbarch_data (struct gdbarch *gdbarch,
struct gdbarch_data *data,
void *pointer);
extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
/* Register per-architecture memory region.
Provide a memory-region swap mechanism. Per-architecture memory
region are created. These memory regions are swapped whenever the
architecture is changed. For a new architecture, the memory region
is initialized with zero (0) and the INIT function is called.
Memory regions are swapped / initialized in the order that they are
registered. NULL DATA and/or INIT values can be specified.
New code should use register_gdbarch_data(). */
typedef void (gdbarch_swap_ftype) (void);
extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
#define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
/* The target-system-dependent byte order is dynamic */
extern int target_byte_order;
#ifndef TARGET_BYTE_ORDER
#define TARGET_BYTE_ORDER (target_byte_order + 0)
#endif
extern int target_byte_order_auto;
#ifndef TARGET_BYTE_ORDER_AUTO
#define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
#endif
/* The target-system-dependent BFD architecture is dynamic */
extern int target_architecture_auto;
#ifndef TARGET_ARCHITECTURE_AUTO
#define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
#endif
extern const struct bfd_arch_info *target_architecture;
#ifndef TARGET_ARCHITECTURE
#define TARGET_ARCHITECTURE (target_architecture + 0)
#endif
/* The target-system-dependent disassembler is semi-dynamic */
extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
unsigned int len, disassemble_info *info);
extern void dis_asm_memory_error (int status, bfd_vma memaddr,
disassemble_info *info);
extern void dis_asm_print_address (bfd_vma addr,
disassemble_info *info);
extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
extern disassemble_info tm_print_insn_info;
#ifndef TARGET_PRINT_INSN_INFO
#define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
#endif
/* Set the dynamic target-system-dependent parameters (architecture,
byte-order, ...) using information found in the BFD */
extern void set_gdbarch_from_file (bfd *);
/* Initialize the current architecture to the "first" one we find on
our list. */
extern void initialize_current_architecture (void);
/* For non-multiarched targets, do any initialization of the default
gdbarch object necessary after the _initialize_MODULE functions
have run. */
extern void initialize_non_multiarch (void);
/* gdbarch trace variable */
extern int gdbarch_debug;
extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
#endif
EOF
exec 1>&2
#../move-if-change new-gdbarch.h gdbarch.h
compare_new gdbarch.h
#
# C file
#
exec > new-gdbarch.c
copyright
cat <<EOF
#include "defs.h"
#include "arch-utils.h"
#if GDB_MULTI_ARCH
#include "gdbcmd.h"
#include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
#else
/* Just include everything in sight so that the every old definition
of macro is visible. */
#include "gdb_string.h"
#include <ctype.h>
#include "symtab.h"
#include "frame.h"
#include "inferior.h"
#include "breakpoint.h"
#include "gdb_wait.h"
#include "gdbcore.h"
#include "gdbcmd.h"
#include "target.h"
#include "gdbthread.h"
#include "annotate.h"
#include "symfile.h" /* for overlay functions */
#include "value.h" /* For old tm.h/nm.h macros. */
#endif
#include "symcat.h"
#include "floatformat.h"
#include "gdb_assert.h"
#include "gdb_string.h"
#include "gdb-events.h"
#include "reggroups.h"
#include "osabi.h"
/* Static function declarations */
static void verify_gdbarch (struct gdbarch *gdbarch);
static void alloc_gdbarch_data (struct gdbarch *);
static void free_gdbarch_data (struct gdbarch *);
static void init_gdbarch_swap (struct gdbarch *);
static void clear_gdbarch_swap (struct gdbarch *);
static void swapout_gdbarch_swap (struct gdbarch *);
static void swapin_gdbarch_swap (struct gdbarch *);
/* Non-zero if we want to trace architecture code. */
#ifndef GDBARCH_DEBUG
#define GDBARCH_DEBUG 0
#endif
int gdbarch_debug = GDBARCH_DEBUG;
EOF
# gdbarch open the gdbarch object
printf "\n"
printf "/* Maintain the struct gdbarch object */\n"
printf "\n"
printf "struct gdbarch\n"
printf "{\n"
printf " /* Has this architecture been fully initialized? */\n"
printf " int initialized_p;\n"
printf " /* basic architectural information */\n"
function_list | while do_read
do
if class_is_info_p
then
printf " ${returntype} ${function};\n"
fi
done
printf "\n"
printf " /* target specific vector. */\n"
printf " struct gdbarch_tdep *tdep;\n"
printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
printf "\n"
printf " /* per-architecture data-pointers */\n"
printf " unsigned nr_data;\n"
printf " void **data;\n"
printf "\n"
printf " /* per-architecture swap-regions */\n"
printf " struct gdbarch_swap *swap;\n"
printf "\n"
cat <<EOF
/* Multi-arch values.
When extending this structure you must:
Add the field below.
Declare set/get functions and define the corresponding
macro in gdbarch.h.
gdbarch_alloc(): If zero/NULL is not a suitable default,
initialize the new field.
verify_gdbarch(): Confirm that the target updated the field
correctly.
gdbarch_dump(): Add a fprintf_unfiltered call so that the new
field is dumped out
\`\`startup_gdbarch()'': Append an initial value to the static
variable (base values on the host's c-type system).
get_gdbarch(): Implement the set/get functions (probably using
the macro's as shortcuts).
*/
EOF
function_list | while do_read
do
if class_is_variable_p
then
printf " ${returntype} ${function};\n"
elif class_is_function_p
then
printf " gdbarch_${function}_ftype *${function}${attrib};\n"
fi
done
printf "};\n"
# A pre-initialized vector
printf "\n"
printf "\n"
cat <<EOF
/* The default architecture uses host values (for want of a better
choice). */
EOF
printf "\n"
printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
printf "\n"
printf "struct gdbarch startup_gdbarch =\n"
printf "{\n"
printf " 1, /* Always initialized. */\n"
printf " /* basic architecture information */\n"
function_list | while do_read
do
if class_is_info_p
then
printf " ${staticdefault},\n"
fi
done
cat <<EOF
/* target specific vector and its dump routine */
NULL, NULL,
/*per-architecture data-pointers and swap regions */
0, NULL, NULL,
/* Multi-arch values */
EOF
function_list | while do_read
do
if class_is_function_p || class_is_variable_p
then
printf " ${staticdefault},\n"
fi
done
cat <<EOF
/* startup_gdbarch() */
};
struct gdbarch *current_gdbarch = &startup_gdbarch;
/* Do any initialization needed for a non-multiarch configuration
after the _initialize_MODULE functions have been run. */
void
initialize_non_multiarch (void)
{
alloc_gdbarch_data (&startup_gdbarch);
/* Ensure that all swap areas are zeroed so that they again think
they are starting from scratch. */
clear_gdbarch_swap (&startup_gdbarch);
init_gdbarch_swap (&startup_gdbarch);
}
EOF
# Create a new gdbarch struct
printf "\n"
printf "\n"
cat <<EOF
/* Create a new \`\`struct gdbarch'' based on information provided by
\`\`struct gdbarch_info''. */
EOF
printf "\n"
cat <<EOF
struct gdbarch *
gdbarch_alloc (const struct gdbarch_info *info,
struct gdbarch_tdep *tdep)
{
/* NOTE: The new architecture variable is named \`\`current_gdbarch''
so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
the current local architecture and not the previous global
architecture. This ensures that the new architectures initial
values are not influenced by the previous architecture. Once
everything is parameterised with gdbarch, this will go away. */
struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
memset (current_gdbarch, 0, sizeof (*current_gdbarch));
alloc_gdbarch_data (current_gdbarch);
current_gdbarch->tdep = tdep;
EOF
printf "\n"
function_list | while do_read
do
if class_is_info_p
then
printf " current_gdbarch->${function} = info->${function};\n"
fi
done
printf "\n"
printf " /* Force the explicit initialization of these. */\n"
function_list | while do_read
do
if class_is_function_p || class_is_variable_p
then
if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
then
printf " current_gdbarch->${function} = ${predefault};\n"
fi
fi
done
cat <<EOF
/* gdbarch_alloc() */
return current_gdbarch;
}
EOF
# Free a gdbarch struct.
printf "\n"
printf "\n"
cat <<EOF
/* Free a gdbarch struct. This should never happen in normal
operation --- once you've created a gdbarch, you keep it around.
However, if an architecture's init function encounters an error
building the structure, it may need to clean up a partially
constructed gdbarch. */
void
gdbarch_free (struct gdbarch *arch)
{
gdb_assert (arch != NULL);
free_gdbarch_data (arch);
xfree (arch);
}
EOF
# verify a new architecture
printf "\n"
printf "\n"
printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
printf "\n"
cat <<EOF
static void
verify_gdbarch (struct gdbarch *gdbarch)
{
struct ui_file *log;
struct cleanup *cleanups;
long dummy;
char *buf;
/* Only perform sanity checks on a multi-arch target. */
if (!GDB_MULTI_ARCH)
return;
log = mem_fileopen ();
cleanups = make_cleanup_ui_file_delete (log);
/* fundamental */
if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
fprintf_unfiltered (log, "\n\tbyte-order");
if (gdbarch->bfd_arch_info == NULL)
fprintf_unfiltered (log, "\n\tbfd_arch_info");
/* Check those that need to be defined for the given multi-arch level. */
EOF
function_list | while do_read
do
if class_is_function_p || class_is_variable_p
then
if [ "x${invalid_p}" = "x0" ]
then
printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
elif class_is_predicate_p
then
printf " /* Skip verify of ${function}, has predicate */\n"
# FIXME: See do_read for potential simplification
elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
then
printf " if (${invalid_p})\n"
printf " gdbarch->${function} = ${postdefault};\n"
elif [ -n "${predefault}" -a -n "${postdefault}" ]
then
printf " if (gdbarch->${function} == ${predefault})\n"
printf " gdbarch->${function} = ${postdefault};\n"
elif [ -n "${postdefault}" ]
then
printf " if (gdbarch->${function} == 0)\n"
printf " gdbarch->${function} = ${postdefault};\n"
elif [ -n "${invalid_p}" ]
then
printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
printf " && (${invalid_p}))\n"
printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
elif [ -n "${predefault}" ]
then
printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
printf " && (gdbarch->${function} == ${predefault}))\n"
printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
fi
fi
done
cat <<EOF
buf = ui_file_xstrdup (log, &dummy);
make_cleanup (xfree, buf);
if (strlen (buf) > 0)
internal_error (__FILE__, __LINE__,
"verify_gdbarch: the following are invalid ...%s",
buf);
do_cleanups (cleanups);
}
EOF
# dump the structure
printf "\n"
printf "\n"
cat <<EOF
/* Print out the details of the current architecture. */
/* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
just happens to match the global variable \`\`current_gdbarch''. That
way macros refering to that variable get the local and not the global
version - ulgh. Once everything is parameterised with gdbarch, this
will go away. */
void
gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
{
fprintf_unfiltered (file,
"gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
GDB_MULTI_ARCH);
EOF
function_list | sort -t: -k 3 | while do_read
do
# First the predicate
if class_is_predicate_p
then
if class_is_multiarch_p
then
printf " if (GDB_MULTI_ARCH)\n"
printf " fprintf_unfiltered (file,\n"
printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
printf " gdbarch_${function}_p (current_gdbarch));\n"
else
printf "#ifdef ${macro}_P\n"
printf " fprintf_unfiltered (file,\n"
printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
printf " \"${macro}_P()\",\n"
printf " XSTRING (${macro}_P ()));\n"
printf " fprintf_unfiltered (file,\n"
printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
printf " ${macro}_P ());\n"
printf "#endif\n"
fi
fi
# multiarch functions don't have macros.
if class_is_multiarch_p
then
printf " if (GDB_MULTI_ARCH)\n"
printf " fprintf_unfiltered (file,\n"
printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
printf " (long) current_gdbarch->${function});\n"
continue
fi
# Print the macro definition.
printf "#ifdef ${macro}\n"
if [ "x${returntype}" = "xvoid" ]
then
printf "#if GDB_MULTI_ARCH\n"
printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
fi
if class_is_function_p
then
printf " fprintf_unfiltered (file,\n"
printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
printf " \"${macro}(${actual})\",\n"
printf " XSTRING (${macro} (${actual})));\n"
else
printf " fprintf_unfiltered (file,\n"
printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
printf " XSTRING (${macro}));\n"
fi
# Print the architecture vector value
if [ "x${returntype}" = "xvoid" ]
then
printf "#endif\n"
fi
if [ "x${print_p}" = "x()" ]
then
printf " gdbarch_dump_${function} (current_gdbarch);\n"
elif [ "x${print_p}" = "x0" ]
then
printf " /* skip print of ${macro}, print_p == 0. */\n"
elif [ -n "${print_p}" ]
then
printf " if (${print_p})\n"
printf " fprintf_unfiltered (file,\n"
printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
printf " ${print});\n"
elif class_is_function_p
then
printf " if (GDB_MULTI_ARCH)\n"
printf " fprintf_unfiltered (file,\n"
printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
printf " (long) current_gdbarch->${function}\n"
printf " /*${macro} ()*/);\n"
else
printf " fprintf_unfiltered (file,\n"
printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
printf " ${print});\n"
fi
printf "#endif\n"
done
cat <<EOF
if (current_gdbarch->dump_tdep != NULL)
current_gdbarch->dump_tdep (current_gdbarch, file);
}
EOF
# GET/SET
printf "\n"
cat <<EOF
struct gdbarch_tdep *
gdbarch_tdep (struct gdbarch *gdbarch)
{
if (gdbarch_debug >= 2)
fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
return gdbarch->tdep;
}
EOF
printf "\n"
function_list | while do_read
do
if class_is_predicate_p
then
printf "\n"
printf "int\n"
printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
printf "{\n"
printf " gdb_assert (gdbarch != NULL);\n"
if [ -n "${predicate}" ]
then
printf " return ${predicate};\n"
else
printf " return gdbarch->${function} != 0;\n"
fi
printf "}\n"
fi
if class_is_function_p
then
printf "\n"
printf "${returntype}\n"
if [ "x${formal}" = "xvoid" ]
then
printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
else
printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
fi
printf "{\n"
printf " gdb_assert (gdbarch != NULL);\n"
printf " if (gdbarch->${function} == 0)\n"
printf " internal_error (__FILE__, __LINE__,\n"
printf " \"gdbarch: gdbarch_${function} invalid\");\n"
if class_is_predicate_p && test -n "${predicate}"
then
# Allow a call to a function with a predicate.
printf " /* Ignore predicate (${predicate}). */\n"
fi
printf " if (gdbarch_debug >= 2)\n"
printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
then
if class_is_multiarch_p
then
params="gdbarch"
else
params=""
fi
else
if class_is_multiarch_p
then
params="gdbarch, ${actual}"
else
params="${actual}"
fi
fi
if [ "x${returntype}" = "xvoid" ]
then
printf " gdbarch->${function} (${params});\n"
else
printf " return gdbarch->${function} (${params});\n"
fi
printf "}\n"
printf "\n"
printf "void\n"
printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
printf "{\n"
printf " gdbarch->${function} = ${function};\n"
printf "}\n"
elif class_is_variable_p
then
printf "\n"
printf "${returntype}\n"
printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
printf "{\n"
printf " gdb_assert (gdbarch != NULL);\n"
if [ "x${invalid_p}" = "x0" ]
then
printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
elif [ -n "${invalid_p}" ]
then
printf " if (${invalid_p})\n"
printf " internal_error (__FILE__, __LINE__,\n"
printf " \"gdbarch: gdbarch_${function} invalid\");\n"
elif [ -n "${predefault}" ]
then
printf " if (gdbarch->${function} == ${predefault})\n"
printf " internal_error (__FILE__, __LINE__,\n"
printf " \"gdbarch: gdbarch_${function} invalid\");\n"
fi
printf " if (gdbarch_debug >= 2)\n"
printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
printf " return gdbarch->${function};\n"
printf "}\n"
printf "\n"
printf "void\n"
printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
printf "{\n"
printf " gdbarch->${function} = ${function};\n"
printf "}\n"
elif class_is_info_p
then
printf "\n"
printf "${returntype}\n"
printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
printf "{\n"
printf " gdb_assert (gdbarch != NULL);\n"
printf " if (gdbarch_debug >= 2)\n"
printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
printf " return gdbarch->${function};\n"
printf "}\n"
fi
done
# All the trailing guff
cat <<EOF
/* Keep a registry of per-architecture data-pointers required by GDB
modules. */
struct gdbarch_data
{
unsigned index;
int init_p;
gdbarch_data_init_ftype *init;
gdbarch_data_free_ftype *free;
};
struct gdbarch_data_registration
{
struct gdbarch_data *data;
struct gdbarch_data_registration *next;
};
struct gdbarch_data_registry
{
unsigned nr;
struct gdbarch_data_registration *registrations;
};
struct gdbarch_data_registry gdbarch_data_registry =
{
0, NULL,
};
struct gdbarch_data *
register_gdbarch_data (gdbarch_data_init_ftype *init,
gdbarch_data_free_ftype *free)
{
struct gdbarch_data_registration **curr;
/* Append the new registraration. */
for (curr = &gdbarch_data_registry.registrations;
(*curr) != NULL;
curr = &(*curr)->next);
(*curr) = XMALLOC (struct gdbarch_data_registration);
(*curr)->next = NULL;
(*curr)->data = XMALLOC (struct gdbarch_data);
(*curr)->data->index = gdbarch_data_registry.nr++;
(*curr)->data->init = init;
(*curr)->data->init_p = 1;
(*curr)->data->free = free;
return (*curr)->data;
}
/* Create/delete the gdbarch data vector. */
static void
alloc_gdbarch_data (struct gdbarch *gdbarch)
{
gdb_assert (gdbarch->data == NULL);
gdbarch->nr_data = gdbarch_data_registry.nr;
gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
}
static void
free_gdbarch_data (struct gdbarch *gdbarch)
{
struct gdbarch_data_registration *rego;
gdb_assert (gdbarch->data != NULL);
for (rego = gdbarch_data_registry.registrations;
rego != NULL;
rego = rego->next)
{
struct gdbarch_data *data = rego->data;
gdb_assert (data->index < gdbarch->nr_data);
if (data->free != NULL && gdbarch->data[data->index] != NULL)
{
data->free (gdbarch, gdbarch->data[data->index]);
gdbarch->data[data->index] = NULL;
}
}
xfree (gdbarch->data);
gdbarch->data = NULL;
}
/* Initialize the current value of the specified per-architecture
data-pointer. */
void
set_gdbarch_data (struct gdbarch *gdbarch,
struct gdbarch_data *data,
void *pointer)
{
gdb_assert (data->index < gdbarch->nr_data);
if (gdbarch->data[data->index] != NULL)
{
gdb_assert (data->free != NULL);
data->free (gdbarch, gdbarch->data[data->index]);
}
gdbarch->data[data->index] = pointer;
}
/* Return the current value of the specified per-architecture
data-pointer. */
void *
gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
{
gdb_assert (data->index < gdbarch->nr_data);
/* The data-pointer isn't initialized, call init() to get a value but
only if the architecture initializaiton has completed. Otherwise
punt - hope that the caller knows what they are doing. */
if (gdbarch->data[data->index] == NULL
&& gdbarch->initialized_p)
{
/* Be careful to detect an initialization cycle. */
gdb_assert (data->init_p);
data->init_p = 0;
gdb_assert (data->init != NULL);
gdbarch->data[data->index] = data->init (gdbarch);
data->init_p = 1;
gdb_assert (gdbarch->data[data->index] != NULL);
}
return gdbarch->data[data->index];
}
/* Keep a registry of swapped data required by GDB modules. */
struct gdbarch_swap
{
void *swap;
struct gdbarch_swap_registration *source;
struct gdbarch_swap *next;
};
struct gdbarch_swap_registration
{
void *data;
unsigned long sizeof_data;
gdbarch_swap_ftype *init;
struct gdbarch_swap_registration *next;
};
struct gdbarch_swap_registry
{
int nr;
struct gdbarch_swap_registration *registrations;
};
struct gdbarch_swap_registry gdbarch_swap_registry =
{
0, NULL,
};
void
register_gdbarch_swap (void *data,
unsigned long sizeof_data,
gdbarch_swap_ftype *init)
{
struct gdbarch_swap_registration **rego;
for (rego = &gdbarch_swap_registry.registrations;
(*rego) != NULL;
rego = &(*rego)->next);
(*rego) = XMALLOC (struct gdbarch_swap_registration);
(*rego)->next = NULL;
(*rego)->init = init;
(*rego)->data = data;
(*rego)->sizeof_data = sizeof_data;
}
static void
clear_gdbarch_swap (struct gdbarch *gdbarch)
{
struct gdbarch_swap *curr;
for (curr = gdbarch->swap;
curr != NULL;
curr = curr->next)
{
memset (curr->source->data, 0, curr->source->sizeof_data);
}
}
static void
init_gdbarch_swap (struct gdbarch *gdbarch)
{
struct gdbarch_swap_registration *rego;
struct gdbarch_swap **curr = &gdbarch->swap;
for (rego = gdbarch_swap_registry.registrations;
rego != NULL;
rego = rego->next)
{
if (rego->data != NULL)
{
(*curr) = XMALLOC (struct gdbarch_swap);
(*curr)->source = rego;
(*curr)->swap = xmalloc (rego->sizeof_data);
(*curr)->next = NULL;
curr = &(*curr)->next;
}
if (rego->init != NULL)
rego->init ();
}
}
static void
swapout_gdbarch_swap (struct gdbarch *gdbarch)
{
struct gdbarch_swap *curr;
for (curr = gdbarch->swap;
curr != NULL;
curr = curr->next)
memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
}
static void
swapin_gdbarch_swap (struct gdbarch *gdbarch)
{
struct gdbarch_swap *curr;
for (curr = gdbarch->swap;
curr != NULL;
curr = curr->next)
memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
}
/* Keep a registry of the architectures known by GDB. */
struct gdbarch_registration
{
enum bfd_architecture bfd_architecture;
gdbarch_init_ftype *init;
gdbarch_dump_tdep_ftype *dump_tdep;
struct gdbarch_list *arches;
struct gdbarch_registration *next;
};
static struct gdbarch_registration *gdbarch_registry = NULL;
static void
append_name (const char ***buf, int *nr, const char *name)
{
*buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
(*buf)[*nr] = name;
*nr += 1;
}
const char **
gdbarch_printable_names (void)
{
if (GDB_MULTI_ARCH)
{
/* Accumulate a list of names based on the registed list of
architectures. */
enum bfd_architecture a;
int nr_arches = 0;
const char **arches = NULL;
struct gdbarch_registration *rego;
for (rego = gdbarch_registry;
rego != NULL;
rego = rego->next)
{
const struct bfd_arch_info *ap;
ap = bfd_lookup_arch (rego->bfd_architecture, 0);
if (ap == NULL)
internal_error (__FILE__, __LINE__,
"gdbarch_architecture_names: multi-arch unknown");
do
{
append_name (&arches, &nr_arches, ap->printable_name);
ap = ap->next;
}
while (ap != NULL);
}
append_name (&arches, &nr_arches, NULL);
return arches;
}
else
/* Just return all the architectures that BFD knows. Assume that
the legacy architecture framework supports them. */
return bfd_arch_list ();
}
void
gdbarch_register (enum bfd_architecture bfd_architecture,
gdbarch_init_ftype *init,
gdbarch_dump_tdep_ftype *dump_tdep)
{
struct gdbarch_registration **curr;
const struct bfd_arch_info *bfd_arch_info;
/* Check that BFD recognizes this architecture */
bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
if (bfd_arch_info == NULL)
{
internal_error (__FILE__, __LINE__,
"gdbarch: Attempt to register unknown architecture (%d)",
bfd_architecture);
}
/* Check that we haven't seen this architecture before */
for (curr = &gdbarch_registry;
(*curr) != NULL;
curr = &(*curr)->next)
{
if (bfd_architecture == (*curr)->bfd_architecture)
internal_error (__FILE__, __LINE__,
"gdbarch: Duplicate registraration of architecture (%s)",
bfd_arch_info->printable_name);
}
/* log it */
if (gdbarch_debug)
fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
bfd_arch_info->printable_name,
(long) init);
/* Append it */
(*curr) = XMALLOC (struct gdbarch_registration);
(*curr)->bfd_architecture = bfd_architecture;
(*curr)->init = init;
(*curr)->dump_tdep = dump_tdep;
(*curr)->arches = NULL;
(*curr)->next = NULL;
/* When non- multi-arch, install whatever target dump routine we've
been provided - hopefully that routine has been written correctly
and works regardless of multi-arch. */
if (!GDB_MULTI_ARCH && dump_tdep != NULL
&& startup_gdbarch.dump_tdep == NULL)
startup_gdbarch.dump_tdep = dump_tdep;
}
void
register_gdbarch_init (enum bfd_architecture bfd_architecture,
gdbarch_init_ftype *init)
{
gdbarch_register (bfd_architecture, init, NULL);
}
/* Look for an architecture using gdbarch_info. Base search on only
BFD_ARCH_INFO and BYTE_ORDER. */
struct gdbarch_list *
gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
const struct gdbarch_info *info)
{
for (; arches != NULL; arches = arches->next)
{
if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
continue;
if (info->byte_order != arches->gdbarch->byte_order)
continue;
if (info->osabi != arches->gdbarch->osabi)
continue;
return arches;
}
return NULL;
}
/* Update the current architecture. Return ZERO if the update request
failed. */
int
gdbarch_update_p (struct gdbarch_info info)
{
struct gdbarch *new_gdbarch;
struct gdbarch *old_gdbarch;
struct gdbarch_registration *rego;
/* Fill in missing parts of the INFO struct using a number of
sources: \`\`set ...''; INFOabfd supplied; existing target. */
/* \`\`(gdb) set architecture ...'' */
if (info.bfd_arch_info == NULL
&& !TARGET_ARCHITECTURE_AUTO)
info.bfd_arch_info = TARGET_ARCHITECTURE;
if (info.bfd_arch_info == NULL
&& info.abfd != NULL
&& bfd_get_arch (info.abfd) != bfd_arch_unknown
&& bfd_get_arch (info.abfd) != bfd_arch_obscure)
info.bfd_arch_info = bfd_get_arch_info (info.abfd);
if (info.bfd_arch_info == NULL)
info.bfd_arch_info = TARGET_ARCHITECTURE;
/* \`\`(gdb) set byte-order ...'' */
if (info.byte_order == BFD_ENDIAN_UNKNOWN
&& !TARGET_BYTE_ORDER_AUTO)
info.byte_order = TARGET_BYTE_ORDER;
/* From the INFO struct. */
if (info.byte_order == BFD_ENDIAN_UNKNOWN
&& info.abfd != NULL)
info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
: bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
: BFD_ENDIAN_UNKNOWN);
/* From the current target. */
if (info.byte_order == BFD_ENDIAN_UNKNOWN)
info.byte_order = TARGET_BYTE_ORDER;
/* \`\`(gdb) set osabi ...'' is handled by gdbarch_lookup_osabi. */
if (info.osabi == GDB_OSABI_UNINITIALIZED)
info.osabi = gdbarch_lookup_osabi (info.abfd);
if (info.osabi == GDB_OSABI_UNINITIALIZED)
info.osabi = current_gdbarch->osabi;
/* Must have found some sort of architecture. */
gdb_assert (info.bfd_arch_info != NULL);
if (gdbarch_debug)
{
fprintf_unfiltered (gdb_stdlog,
"gdbarch_update: info.bfd_arch_info %s\n",
(info.bfd_arch_info != NULL
? info.bfd_arch_info->printable_name
: "(null)"));
fprintf_unfiltered (gdb_stdlog,
"gdbarch_update: info.byte_order %d (%s)\n",
info.byte_order,
(info.byte_order == BFD_ENDIAN_BIG ? "big"
: info.byte_order == BFD_ENDIAN_LITTLE ? "little"
: "default"));
fprintf_unfiltered (gdb_stdlog,
"gdbarch_update: info.osabi %d (%s)\n",
info.osabi, gdbarch_osabi_name (info.osabi));
fprintf_unfiltered (gdb_stdlog,
"gdbarch_update: info.abfd 0x%lx\n",
(long) info.abfd);
fprintf_unfiltered (gdb_stdlog,
"gdbarch_update: info.tdep_info 0x%lx\n",
(long) info.tdep_info);
}
/* Find the target that knows about this architecture. */
for (rego = gdbarch_registry;
rego != NULL;
rego = rego->next)
if (rego->bfd_architecture == info.bfd_arch_info->arch)
break;
if (rego == NULL)
{
if (gdbarch_debug)
fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
return 0;
}
/* Swap the data belonging to the old target out setting the
installed data to zero. This stops the ->init() function trying
to refer to the previous architecture's global data structures. */
swapout_gdbarch_swap (current_gdbarch);
clear_gdbarch_swap (current_gdbarch);
/* Save the previously selected architecture, setting the global to
NULL. This stops ->init() trying to use the previous
architecture's configuration. The previous architecture may not
even be of the same architecture family. The most recent
architecture of the same family is found at the head of the
rego->arches list. */
old_gdbarch = current_gdbarch;
current_gdbarch = NULL;
/* Ask the target for a replacement architecture. */
new_gdbarch = rego->init (info, rego->arches);
/* Did the target like it? No. Reject the change and revert to the
old architecture. */
if (new_gdbarch == NULL)
{
if (gdbarch_debug)
fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
swapin_gdbarch_swap (old_gdbarch);
current_gdbarch = old_gdbarch;
return 0;
}
/* Did the architecture change? No. Oops, put the old architecture
back. */
if (old_gdbarch == new_gdbarch)
{
if (gdbarch_debug)
fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
(long) new_gdbarch,
new_gdbarch->bfd_arch_info->printable_name);
swapin_gdbarch_swap (old_gdbarch);
current_gdbarch = old_gdbarch;
return 1;
}
/* Is this a pre-existing architecture? Yes. Move it to the front
of the list of architectures (keeping the list sorted Most
Recently Used) and then copy it in. */
{
struct gdbarch_list **list;
for (list = &rego->arches;
(*list) != NULL;
list = &(*list)->next)
{
if ((*list)->gdbarch == new_gdbarch)
{
struct gdbarch_list *this;
if (gdbarch_debug)
fprintf_unfiltered (gdb_stdlog,
"gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
(long) new_gdbarch,
new_gdbarch->bfd_arch_info->printable_name);
/* Unlink this. */
this = (*list);
(*list) = this->next;
/* Insert in the front. */
this->next = rego->arches;
rego->arches = this;
/* Copy the new architecture in. */
current_gdbarch = new_gdbarch;
swapin_gdbarch_swap (new_gdbarch);
architecture_changed_event ();
return 1;
}
}
}
/* Prepend this new architecture to the architecture list (keep the
list sorted Most Recently Used). */
{
struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
this->next = rego->arches;
this->gdbarch = new_gdbarch;
rego->arches = this;
}
/* Switch to this new architecture marking it initialized. */
current_gdbarch = new_gdbarch;
current_gdbarch->initialized_p = 1;
if (gdbarch_debug)
{
fprintf_unfiltered (gdb_stdlog,
"gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
(long) new_gdbarch,
new_gdbarch->bfd_arch_info->printable_name);
}
/* Check that the newly installed architecture is valid. Plug in
any post init values. */
new_gdbarch->dump_tdep = rego->dump_tdep;
verify_gdbarch (new_gdbarch);
/* Initialize the per-architecture memory (swap) areas.
CURRENT_GDBARCH must be update before these modules are
called. */
init_gdbarch_swap (new_gdbarch);
/* Initialize the per-architecture data. CURRENT_GDBARCH
must be updated before these modules are called. */
architecture_changed_event ();
if (gdbarch_debug)
gdbarch_dump (current_gdbarch, gdb_stdlog);
return 1;
}
/* Disassembler */
/* Pointer to the target-dependent disassembly function. */
int (*tm_print_insn) (bfd_vma, disassemble_info *);
disassemble_info tm_print_insn_info;
extern void _initialize_gdbarch (void);
void
_initialize_gdbarch (void)
{
struct cmd_list_element *c;
INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
tm_print_insn_info.flavour = bfd_target_unknown_flavour;
tm_print_insn_info.read_memory_func = dis_asm_read_memory;
tm_print_insn_info.memory_error_func = dis_asm_memory_error;
tm_print_insn_info.print_address_func = dis_asm_print_address;
add_show_from_set (add_set_cmd ("arch",
class_maintenance,
var_zinteger,
(char *)&gdbarch_debug,
"Set architecture debugging.\\n\\
When non-zero, architecture debugging is enabled.", &setdebuglist),
&showdebuglist);
c = add_set_cmd ("archdebug",
class_maintenance,
var_zinteger,
(char *)&gdbarch_debug,
"Set architecture debugging.\\n\\
When non-zero, architecture debugging is enabled.", &setlist);
deprecate_cmd (c, "set debug arch");
deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
}
EOF
# close things off
exec 1>&2
#../move-if-change new-gdbarch.c gdbarch.c
compare_new gdbarch.c