mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-06 12:09:26 +08:00
7bec77b47d
Define IN_SIGTRAMP and backtrace correctly through signal handlers.
875 lines
28 KiB
C
875 lines
28 KiB
C
/* Target-machine dependent code for Motorola 88000 series, for GDB.
|
||
Copyright (C) 1988, 1990, 1991 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "frame.h"
|
||
#include "inferior.h"
|
||
#include "value.h"
|
||
#include "gdbcore.h"
|
||
|
||
#include "symtab.h"
|
||
#include "setjmp.h"
|
||
#include "value.h"
|
||
#include "ieee-float.h" /* for ext_format & friends */
|
||
|
||
/* Size of an instruction */
|
||
#define BYTES_PER_88K_INSN 4
|
||
|
||
void frame_find_saved_regs ();
|
||
|
||
/* is this target an m88110? Otherwise assume m88100. This has
|
||
relevance for the ways in which we screw with instruction pointers. */
|
||
int target_is_m88110 = 0;
|
||
|
||
/* FIXME: this is really just a guess based on m88110 being big
|
||
endian. */
|
||
const struct ext_format ext_format_m88110 = {
|
||
/* tot sbyte smask expbyte manbyte */
|
||
10, 0, 0x80, 0,1, 4,8 /* m88110 */
|
||
};
|
||
|
||
/* Given a GDB frame, determine the address of the calling function's frame.
|
||
This will be used to create a new GDB frame struct, and then
|
||
INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
|
||
|
||
For us, the frame address is its stack pointer value, so we look up
|
||
the function prologue to determine the caller's sp value, and return it. */
|
||
|
||
FRAME_ADDR
|
||
frame_chain (thisframe)
|
||
FRAME thisframe;
|
||
{
|
||
|
||
frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
|
||
/* NOTE: this depends on frame_find_saved_regs returning the VALUE, not
|
||
the ADDRESS, of SP_REGNUM. It also depends on the cache of
|
||
frame_find_saved_regs results. */
|
||
if (thisframe->fsr->regs[SP_REGNUM])
|
||
return thisframe->fsr->regs[SP_REGNUM];
|
||
else
|
||
return thisframe->frame; /* Leaf fn -- next frame up has same SP. */
|
||
}
|
||
|
||
int
|
||
frameless_function_invocation (frame)
|
||
FRAME frame;
|
||
{
|
||
|
||
frame_find_saved_regs (frame, (struct frame_saved_regs *) 0);
|
||
/* NOTE: this depends on frame_find_saved_regs returning the VALUE, not
|
||
the ADDRESS, of SP_REGNUM. It also depends on the cache of
|
||
frame_find_saved_regs results. */
|
||
if (frame->fsr->regs[SP_REGNUM])
|
||
return 0; /* Frameful -- return addr saved somewhere */
|
||
else
|
||
return 1; /* Frameless -- no saved return address */
|
||
}
|
||
|
||
void
|
||
init_extra_frame_info (fromleaf, fi)
|
||
int fromleaf;
|
||
struct frame_info *fi;
|
||
{
|
||
fi->fsr = 0; /* Not yet allocated */
|
||
fi->args_pointer = 0; /* Unknown */
|
||
fi->locals_pointer = 0; /* Unknown */
|
||
}
|
||
|
||
/* Examine an m88k function prologue, recording the addresses at which
|
||
registers are saved explicitly by the prologue code, and returning
|
||
the address of the first instruction after the prologue (but not
|
||
after the instruction at address LIMIT, as explained below).
|
||
|
||
LIMIT places an upper bound on addresses of the instructions to be
|
||
examined. If the prologue code scan reaches LIMIT, the scan is
|
||
aborted and LIMIT is returned. This is used, when examining the
|
||
prologue for the current frame, to keep examine_prologue () from
|
||
claiming that a given register has been saved when in fact the
|
||
instruction that saves it has not yet been executed. LIMIT is used
|
||
at other times to stop the scan when we hit code after the true
|
||
function prologue (e.g. for the first source line) which might
|
||
otherwise be mistaken for function prologue.
|
||
|
||
The format of the function prologue matched by this routine is
|
||
derived from examination of the source to gcc 1.95, particularly
|
||
the routine output_prologue () in config/out-m88k.c.
|
||
|
||
subu r31,r31,n # stack pointer update
|
||
|
||
(st rn,r31,offset)? # save incoming regs
|
||
(st.d rn,r31,offset)?
|
||
|
||
(addu r30,r31,n)? # frame pointer update
|
||
|
||
(pic sequence)? # PIC code prologue
|
||
|
||
(or rn,rm,0)? # Move parameters to other regs
|
||
*/
|
||
|
||
/* Macros for extracting fields from instructions. */
|
||
|
||
#define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
|
||
#define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
|
||
|
||
/* Prologue code that handles position-independent-code setup. */
|
||
|
||
struct pic_prologue_code {
|
||
unsigned long insn, mask;
|
||
};
|
||
|
||
static struct pic_prologue_code pic_prologue_code [] = {
|
||
/* FIXME -- until this is translated to hex, we won't match it... */
|
||
{ 0xffffffff, 0 },
|
||
/* or r10,r1,0 (if not saved) */
|
||
/* bsr.n LabN */
|
||
/* or.u r25,r0,const */
|
||
/*LabN: or r25,r25,const2 */
|
||
/* addu r25,r25,1 */
|
||
/* or r1,r10,0 (if not saved) */
|
||
};
|
||
|
||
/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
|
||
is not the address of a valid instruction, the address of the next
|
||
instruction beyond ADDR otherwise. *PWORD1 receives the first word
|
||
of the instruction. PWORD2 is ignored -- a remnant of the original
|
||
i960 version. */
|
||
|
||
#define NEXT_PROLOGUE_INSN(addr, lim, pword1) \
|
||
(((addr) < (lim)) ? next_insn (addr, pword1) : 0)
|
||
|
||
/* Read the m88k instruction at 'memaddr' and return the address of
|
||
the next instruction after that, or 0 if 'memaddr' is not the
|
||
address of a valid instruction. The instruction
|
||
is stored at 'pword1'. */
|
||
|
||
CORE_ADDR
|
||
next_insn (memaddr, pword1)
|
||
unsigned long *pword1;
|
||
CORE_ADDR memaddr;
|
||
{
|
||
*pword1 = read_memory_integer (memaddr, BYTES_PER_88K_INSN);
|
||
return memaddr + BYTES_PER_88K_INSN;
|
||
}
|
||
|
||
/* Read a register from frames called by us (or from the hardware regs). */
|
||
|
||
static int
|
||
read_next_frame_reg(fi, regno)
|
||
FRAME fi;
|
||
int regno;
|
||
{
|
||
for (; fi; fi = fi->next) {
|
||
if (regno == SP_REGNUM) return fi->frame;
|
||
else if (fi->fsr->regs[regno])
|
||
return read_memory_integer(fi->fsr->regs[regno], 4);
|
||
}
|
||
return read_register(regno);
|
||
}
|
||
|
||
/* Examine the prologue of a function. `ip' points to the first instruction.
|
||
`limit' is the limit of the prologue (e.g. the addr of the first
|
||
linenumber, or perhaps the program counter if we're stepping through).
|
||
`frame_sp' is the stack pointer value in use in this frame.
|
||
`fsr' is a pointer to a frame_saved_regs structure into which we put
|
||
info about the registers saved by this frame.
|
||
`fi' is a struct frame_info pointer; we fill in various fields in it
|
||
to reflect the offsets of the arg pointer and the locals pointer. */
|
||
|
||
static CORE_ADDR
|
||
examine_prologue (ip, limit, frame_sp, fsr, fi)
|
||
register CORE_ADDR ip;
|
||
register CORE_ADDR limit;
|
||
FRAME_ADDR frame_sp;
|
||
struct frame_saved_regs *fsr;
|
||
struct frame_info *fi;
|
||
{
|
||
register CORE_ADDR next_ip;
|
||
register int src;
|
||
register struct pic_prologue_code *pcode;
|
||
unsigned int insn;
|
||
int size, offset;
|
||
char must_adjust[32]; /* If set, must adjust offsets in fsr */
|
||
int sp_offset = -1; /* -1 means not set (valid must be mult of 8) */
|
||
int fp_offset = -1; /* -1 means not set */
|
||
CORE_ADDR frame_fp;
|
||
|
||
memset (must_adjust, '\0', sizeof (must_adjust));
|
||
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
|
||
|
||
/* Accept move of incoming registers to other registers, using
|
||
"or rd,rs,0" or "or.u rd,rs,0" or "or rd,r0,rs" or "or rd,rs,r0".
|
||
We don't have to worry about walking into the first lines of code,
|
||
since the first line number will stop us (assuming we have symbols).
|
||
What we have actually seen is "or r10,r0,r12". */
|
||
|
||
#define OR_MOVE_INSN 0x58000000 /* or/or.u with immed of 0 */
|
||
#define OR_MOVE_MASK 0xF800FFFF
|
||
#define OR_REG_MOVE1_INSN 0xF4005800 /* or rd,r0,rs */
|
||
#define OR_REG_MOVE1_MASK 0xFC1FFFE0
|
||
#define OR_REG_MOVE2_INSN 0xF4005800 /* or rd,rs,r0 */
|
||
#define OR_REG_MOVE2_MASK 0xFC00FFFF
|
||
while (next_ip &&
|
||
((insn & OR_MOVE_MASK) == OR_MOVE_INSN ||
|
||
(insn & OR_REG_MOVE1_MASK) == OR_REG_MOVE1_INSN ||
|
||
(insn & OR_REG_MOVE2_MASK) == OR_REG_MOVE2_INSN
|
||
)
|
||
)
|
||
{
|
||
/* We don't care what moves to where. The result of the moves
|
||
has already been reflected in what the compiler tells us is the
|
||
location of these parameters. */
|
||
ip = next_ip;
|
||
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
|
||
}
|
||
|
||
/* Accept an optional "subu sp,sp,n" to set up the stack pointer. */
|
||
|
||
#define SUBU_SP_INSN 0x67ff0000
|
||
#define SUBU_SP_MASK 0xffff0007 /* Note offset must be mult. of 8 */
|
||
#define SUBU_OFFSET(x) ((unsigned)(x & 0xFFFF))
|
||
if (next_ip &&
|
||
((insn & SUBU_SP_MASK) == SUBU_SP_INSN)) /* subu r31, r31, N */
|
||
{
|
||
sp_offset = -SUBU_OFFSET (insn);
|
||
ip = next_ip;
|
||
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
|
||
}
|
||
|
||
/* The function must start with a stack-pointer adjustment, or
|
||
we don't know WHAT'S going on... */
|
||
if (sp_offset == -1)
|
||
return ip;
|
||
|
||
/* Accept zero or more instances of "st rx,sp,n" or "st.d rx,sp,n".
|
||
This may cause us to mistake the copying of a register
|
||
parameter to the frame for the saving of a callee-saved
|
||
register, but that can't be helped, since with the
|
||
"-fcall-saved" flag, any register can be made callee-saved.
|
||
This probably doesn't matter, since the ``saved'' caller's values of
|
||
non-callee-saved registers are not relevant anyway. */
|
||
|
||
#define STD_STACK_INSN 0x201f0000
|
||
#define STD_STACK_MASK 0xfc1f0000
|
||
#define ST_STACK_INSN 0x241f0000
|
||
#define ST_STACK_MASK 0xfc1f0000
|
||
#define ST_OFFSET(x) ((unsigned)((x) & 0xFFFF))
|
||
#define ST_SRC(x) EXTRACT_FIELD ((x), 21, 5)
|
||
|
||
while (next_ip)
|
||
{
|
||
if ((insn & ST_STACK_MASK) == ST_STACK_INSN)
|
||
size = 1;
|
||
else if ((insn & STD_STACK_MASK) == STD_STACK_INSN)
|
||
size = 2;
|
||
else
|
||
break;
|
||
|
||
src = ST_SRC (insn);
|
||
offset = ST_OFFSET (insn);
|
||
while (size--)
|
||
{
|
||
must_adjust[src] = 1;
|
||
fsr->regs[src++] = offset; /* Will be adjusted later */
|
||
offset += 4;
|
||
}
|
||
ip = next_ip;
|
||
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
|
||
}
|
||
|
||
/* Accept an optional "addu r30,r31,n" to set up the frame pointer. */
|
||
|
||
#define ADDU_FP_INSN 0x63df0000
|
||
#define ADDU_FP_MASK 0xffff0000
|
||
#define ADDU_OFFSET(x) ((unsigned)(x & 0xFFFF))
|
||
if (next_ip &&
|
||
((insn & ADDU_FP_MASK) == ADDU_FP_INSN)) /* addu r30, r31, N */
|
||
{
|
||
fp_offset = ADDU_OFFSET (insn);
|
||
ip = next_ip;
|
||
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
|
||
}
|
||
|
||
/* Accept the PIC prologue code if present. */
|
||
|
||
pcode = pic_prologue_code;
|
||
size = sizeof (pic_prologue_code) / sizeof (*pic_prologue_code);
|
||
/* If return addr is saved, we don't use first or last insn of PICstuff. */
|
||
if (fsr->regs[SRP_REGNUM]) {
|
||
pcode++;
|
||
size-=2;
|
||
}
|
||
|
||
while (size-- && next_ip && (pcode->insn == (pcode->mask & insn)))
|
||
{
|
||
pcode++;
|
||
ip = next_ip;
|
||
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
|
||
}
|
||
|
||
/* Accept moves of parameter registers to other registers, using
|
||
"or rd,rs,0" or "or.u rd,rs,0" or "or rd,r0,rs" or "or rd,rs,r0".
|
||
We don't have to worry about walking into the first lines of code,
|
||
since the first line number will stop us (assuming we have symbols).
|
||
What gcc actually seems to produce is "or rd,r0,rs". */
|
||
|
||
#define OR_MOVE_INSN 0x58000000 /* or/or.u with immed of 0 */
|
||
#define OR_MOVE_MASK 0xF800FFFF
|
||
#define OR_REG_MOVE1_INSN 0xF4005800 /* or rd,r0,rs */
|
||
#define OR_REG_MOVE1_MASK 0xFC1FFFE0
|
||
#define OR_REG_MOVE2_INSN 0xF4005800 /* or rd,rs,r0 */
|
||
#define OR_REG_MOVE2_MASK 0xFC00FFFF
|
||
while (next_ip &&
|
||
((insn & OR_MOVE_MASK) == OR_MOVE_INSN ||
|
||
(insn & OR_REG_MOVE1_MASK) == OR_REG_MOVE1_INSN ||
|
||
(insn & OR_REG_MOVE2_MASK) == OR_REG_MOVE2_INSN
|
||
)
|
||
)
|
||
{
|
||
/* We don't care what moves to where. The result of the moves
|
||
has already been reflected in what the compiler tells us is the
|
||
location of these parameters. */
|
||
ip = next_ip;
|
||
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
|
||
}
|
||
|
||
/* We're done with the prologue. If we don't care about the stack
|
||
frame itself, just return. (Note that fsr->regs has been trashed,
|
||
but the one caller who calls with fi==0 passes a dummy there.) */
|
||
|
||
if (fi == 0)
|
||
return ip;
|
||
|
||
/*
|
||
OK, now we have:
|
||
|
||
sp_offset original (before any alloca calls) displacement of SP
|
||
(will be negative).
|
||
|
||
fp_offset displacement from original SP to the FP for this frame
|
||
or -1.
|
||
|
||
fsr->regs[0..31] displacement from original SP to the stack
|
||
location where reg[0..31] is stored.
|
||
|
||
must_adjust[0..31] set if corresponding offset was set.
|
||
|
||
If alloca has been called between the function prologue and the current
|
||
IP, then the current SP (frame_sp) will not be the original SP as set by
|
||
the function prologue. If the current SP is not the original SP, then the
|
||
compiler will have allocated an FP for this frame, fp_offset will be set,
|
||
and we can use it to calculate the original SP.
|
||
|
||
Then, we figure out where the arguments and locals are, and relocate the
|
||
offsets in fsr->regs to absolute addresses. */
|
||
|
||
if (fp_offset != -1) {
|
||
/* We have a frame pointer, so get it, and base our calc's on it. */
|
||
frame_fp = (CORE_ADDR) read_next_frame_reg (fi->next, ACTUAL_FP_REGNUM);
|
||
frame_sp = frame_fp - fp_offset;
|
||
} else {
|
||
/* We have no frame pointer, therefore frame_sp is still the same value
|
||
as set by prologue. But where is the frame itself? */
|
||
if (must_adjust[SRP_REGNUM]) {
|
||
/* Function header saved SRP (r1), the return address. Frame starts
|
||
4 bytes down from where it was saved. */
|
||
frame_fp = frame_sp + fsr->regs[SRP_REGNUM] - 4;
|
||
fi->locals_pointer = frame_fp;
|
||
} else {
|
||
/* Function header didn't save SRP (r1), so we are in a leaf fn or
|
||
are otherwise confused. */
|
||
frame_fp = -1;
|
||
}
|
||
}
|
||
|
||
/* The locals are relative to the FP (whether it exists as an allocated
|
||
register, or just as an assumed offset from the SP) */
|
||
fi->locals_pointer = frame_fp;
|
||
|
||
/* The arguments are just above the SP as it was before we adjusted it
|
||
on entry. */
|
||
fi->args_pointer = frame_sp - sp_offset;
|
||
|
||
/* Now that we know the SP value used by the prologue, we know where
|
||
it saved all the registers. */
|
||
for (src = 0; src < 32; src++)
|
||
if (must_adjust[src])
|
||
fsr->regs[src] += frame_sp;
|
||
|
||
/* The saved value of the SP is always known. */
|
||
/* (we hope...) */
|
||
if (fsr->regs[SP_REGNUM] != 0
|
||
&& fsr->regs[SP_REGNUM] != frame_sp - sp_offset)
|
||
fprintf_unfiltered(gdb_stderr, "Bad saved SP value %x != %x, offset %x!\n",
|
||
fsr->regs[SP_REGNUM],
|
||
frame_sp - sp_offset, sp_offset);
|
||
|
||
fsr->regs[SP_REGNUM] = frame_sp - sp_offset;
|
||
|
||
return (ip);
|
||
}
|
||
|
||
/* Given an ip value corresponding to the start of a function,
|
||
return the ip of the first instruction after the function
|
||
prologue. */
|
||
|
||
CORE_ADDR
|
||
skip_prologue (ip)
|
||
CORE_ADDR (ip);
|
||
{
|
||
struct frame_saved_regs saved_regs_dummy;
|
||
struct symtab_and_line sal;
|
||
CORE_ADDR limit;
|
||
|
||
sal = find_pc_line (ip, 0);
|
||
limit = (sal.end) ? sal.end : 0xffffffff;
|
||
|
||
return (examine_prologue (ip, limit, (FRAME_ADDR) 0, &saved_regs_dummy,
|
||
(struct frame_info *)0 ));
|
||
}
|
||
|
||
/* Put here the code to store, into a struct frame_saved_regs,
|
||
the addresses of the saved registers of frame described by FRAME_INFO.
|
||
This includes special registers such as pc and fp saved in special
|
||
ways in the stack frame. sp is even more special:
|
||
the address we return for it IS the sp for the next frame.
|
||
|
||
We cache the result of doing this in the frame_cache_obstack, since
|
||
it is fairly expensive. */
|
||
|
||
void
|
||
frame_find_saved_regs (fi, fsr)
|
||
struct frame_info *fi;
|
||
struct frame_saved_regs *fsr;
|
||
{
|
||
register struct frame_saved_regs *cache_fsr;
|
||
extern struct obstack frame_cache_obstack;
|
||
CORE_ADDR ip;
|
||
struct symtab_and_line sal;
|
||
CORE_ADDR limit;
|
||
|
||
if (!fi->fsr)
|
||
{
|
||
cache_fsr = (struct frame_saved_regs *)
|
||
obstack_alloc (&frame_cache_obstack,
|
||
sizeof (struct frame_saved_regs));
|
||
memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
|
||
fi->fsr = cache_fsr;
|
||
|
||
/* Find the start and end of the function prologue. If the PC
|
||
is in the function prologue, we only consider the part that
|
||
has executed already. */
|
||
|
||
ip = get_pc_function_start (fi->pc);
|
||
sal = find_pc_line (ip, 0);
|
||
limit = (sal.end && sal.end < fi->pc) ? sal.end: fi->pc;
|
||
|
||
/* This will fill in fields in *fi as well as in cache_fsr. */
|
||
#ifdef SIGTRAMP_FRAME_FIXUP
|
||
if (fi->signal_handler_caller)
|
||
SIGTRAMP_FRAME_FIXUP(fi->frame);
|
||
#endif
|
||
examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
|
||
#ifdef SIGTRAMP_SP_FIXUP
|
||
if (fi->signal_handler_caller && fi->fsr->regs[SP_REGNUM])
|
||
SIGTRAMP_SP_FIXUP(fi->fsr->regs[SP_REGNUM]);
|
||
#endif
|
||
}
|
||
|
||
if (fsr)
|
||
*fsr = *fi->fsr;
|
||
}
|
||
|
||
/* Return the address of the locals block for the frame
|
||
described by FI. Returns 0 if the address is unknown.
|
||
NOTE! Frame locals are referred to by negative offsets from the
|
||
argument pointer, so this is the same as frame_args_address(). */
|
||
|
||
CORE_ADDR
|
||
frame_locals_address (fi)
|
||
struct frame_info *fi;
|
||
{
|
||
struct frame_saved_regs fsr;
|
||
|
||
if (fi->args_pointer) /* Cached value is likely there. */
|
||
return fi->args_pointer;
|
||
|
||
/* Nope, generate it. */
|
||
|
||
get_frame_saved_regs (fi, &fsr);
|
||
|
||
return fi->args_pointer;
|
||
}
|
||
|
||
/* Return the address of the argument block for the frame
|
||
described by FI. Returns 0 if the address is unknown. */
|
||
|
||
CORE_ADDR
|
||
frame_args_address (fi)
|
||
struct frame_info *fi;
|
||
{
|
||
struct frame_saved_regs fsr;
|
||
|
||
if (fi->args_pointer) /* Cached value is likely there. */
|
||
return fi->args_pointer;
|
||
|
||
/* Nope, generate it. */
|
||
|
||
get_frame_saved_regs (fi, &fsr);
|
||
|
||
return fi->args_pointer;
|
||
}
|
||
|
||
/* Return the saved PC from this frame.
|
||
|
||
If the frame has a memory copy of SRP_REGNUM, use that. If not,
|
||
just use the register SRP_REGNUM itself. */
|
||
|
||
CORE_ADDR
|
||
frame_saved_pc (frame)
|
||
FRAME frame;
|
||
{
|
||
return read_next_frame_reg(frame, SRP_REGNUM);
|
||
}
|
||
|
||
#if 0
|
||
/* I believe this is all obsolete call dummy stuff. */
|
||
static int
|
||
pushed_size (prev_words, v)
|
||
int prev_words;
|
||
struct value *v;
|
||
{
|
||
switch (TYPE_CODE (VALUE_TYPE (v)))
|
||
{
|
||
case TYPE_CODE_VOID: /* Void type (values zero length) */
|
||
|
||
return 0; /* That was easy! */
|
||
|
||
case TYPE_CODE_PTR: /* Pointer type */
|
||
case TYPE_CODE_ENUM: /* Enumeration type */
|
||
case TYPE_CODE_INT: /* Integer type */
|
||
case TYPE_CODE_REF: /* C++ Reference types */
|
||
case TYPE_CODE_ARRAY: /* Array type, lower & upper bounds */
|
||
|
||
return 1;
|
||
|
||
case TYPE_CODE_FLT: /* Floating type */
|
||
|
||
if (TYPE_LENGTH (VALUE_TYPE (v)) == 4)
|
||
return 1;
|
||
else
|
||
/* Assume that it must be a double. */
|
||
if (prev_words & 1) /* at an odd-word boundary */
|
||
return 3; /* round to 8-byte boundary */
|
||
else
|
||
return 2;
|
||
|
||
case TYPE_CODE_STRUCT: /* C struct or Pascal record */
|
||
case TYPE_CODE_UNION: /* C union or Pascal variant part */
|
||
|
||
return (((TYPE_LENGTH (VALUE_TYPE (v)) + 3) / 4) * 4);
|
||
|
||
case TYPE_CODE_FUNC: /* Function type */
|
||
case TYPE_CODE_SET: /* Pascal sets */
|
||
case TYPE_CODE_RANGE: /* Range (integers within bounds) */
|
||
case TYPE_CODE_STRING: /* String type */
|
||
case TYPE_CODE_MEMBER: /* Member type */
|
||
case TYPE_CODE_METHOD: /* Method type */
|
||
/* Don't know how to pass these yet. */
|
||
|
||
case TYPE_CODE_UNDEF: /* Not used; catches errors */
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
static void
|
||
store_parm_word (address, val)
|
||
CORE_ADDR address;
|
||
int val;
|
||
{
|
||
write_memory (address, (char *)&val, 4);
|
||
}
|
||
|
||
static int
|
||
store_parm (prev_words, left_parm_addr, v)
|
||
unsigned int prev_words;
|
||
CORE_ADDR left_parm_addr;
|
||
struct value *v;
|
||
{
|
||
CORE_ADDR start = left_parm_addr + (prev_words * 4);
|
||
int *val_addr = (int *)VALUE_CONTENTS(v);
|
||
|
||
switch (TYPE_CODE (VALUE_TYPE (v)))
|
||
{
|
||
case TYPE_CODE_VOID: /* Void type (values zero length) */
|
||
|
||
return 0;
|
||
|
||
case TYPE_CODE_PTR: /* Pointer type */
|
||
case TYPE_CODE_ENUM: /* Enumeration type */
|
||
case TYPE_CODE_INT: /* Integer type */
|
||
case TYPE_CODE_ARRAY: /* Array type, lower & upper bounds */
|
||
case TYPE_CODE_REF: /* C++ Reference types */
|
||
|
||
store_parm_word (start, *val_addr);
|
||
return 1;
|
||
|
||
case TYPE_CODE_FLT: /* Floating type */
|
||
|
||
if (TYPE_LENGTH (VALUE_TYPE (v)) == 4)
|
||
{
|
||
store_parm_word (start, *val_addr);
|
||
return 1;
|
||
}
|
||
else
|
||
{
|
||
store_parm_word (start + ((prev_words & 1) * 4), val_addr[0]);
|
||
store_parm_word (start + ((prev_words & 1) * 4) + 4, val_addr[1]);
|
||
return 2 + (prev_words & 1);
|
||
}
|
||
|
||
case TYPE_CODE_STRUCT: /* C struct or Pascal record */
|
||
case TYPE_CODE_UNION: /* C union or Pascal variant part */
|
||
|
||
{
|
||
unsigned int words = (((TYPE_LENGTH (VALUE_TYPE (v)) + 3) / 4) * 4);
|
||
unsigned int word;
|
||
|
||
for (word = 0; word < words; word++)
|
||
store_parm_word (start + (word * 4), val_addr[word]);
|
||
return words;
|
||
}
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
/* This routine sets up all of the parameter values needed to make a pseudo
|
||
call. The name "push_parameters" is a misnomer on some archs,
|
||
because (on the m88k) most parameters generally end up being passed in
|
||
registers rather than on the stack. In this routine however, we do
|
||
end up storing *all* parameter values onto the stack (even if we will
|
||
realize later that some of these stores were unnecessary). */
|
||
|
||
#define FIRST_PARM_REGNUM 2
|
||
|
||
void
|
||
push_parameters (return_type, struct_conv, nargs, args)
|
||
struct type *return_type;
|
||
int struct_conv;
|
||
int nargs;
|
||
value *args;
|
||
{
|
||
int parm_num;
|
||
unsigned int p_words = 0;
|
||
CORE_ADDR left_parm_addr;
|
||
|
||
/* Start out by creating a space for the return value (if need be). We
|
||
only need to do this if the return value is a struct or union. If we
|
||
do make a space for a struct or union return value, then we must also
|
||
arrange for the base address of that space to go into r12, which is the
|
||
standard place to pass the address of the return value area to the
|
||
callee. Note that only structs and unions are returned in this fashion.
|
||
Ints, enums, pointers, and floats are returned into r2. Doubles are
|
||
returned into the register pair {r2,r3}. Note also that the space
|
||
reserved for a struct or union return value only has to be word aligned
|
||
(not double-word) but it is double-word aligned here anyway (just in
|
||
case that becomes important someday). */
|
||
|
||
switch (TYPE_CODE (return_type))
|
||
{
|
||
case TYPE_CODE_STRUCT:
|
||
case TYPE_CODE_UNION:
|
||
{
|
||
int return_bytes = ((TYPE_LENGTH (return_type) + 7) / 8) * 8;
|
||
CORE_ADDR rv_addr;
|
||
|
||
rv_addr = read_register (SP_REGNUM) - return_bytes;
|
||
|
||
write_register (SP_REGNUM, rv_addr); /* push space onto the stack */
|
||
write_register (SRA_REGNUM, rv_addr);/* set return value register */
|
||
break;
|
||
}
|
||
default: break;
|
||
}
|
||
|
||
/* Here we make a pre-pass on the whole parameter list to figure out exactly
|
||
how many words worth of stuff we are going to pass. */
|
||
|
||
for (p_words = 0, parm_num = 0; parm_num < nargs; parm_num++)
|
||
p_words += pushed_size (p_words, value_arg_coerce (args[parm_num]));
|
||
|
||
/* Now, check to see if we have to round up the number of parameter words
|
||
to get up to the next 8-bytes boundary. This may be necessary because
|
||
of the software convention to always keep the stack aligned on an 8-byte
|
||
boundary. */
|
||
|
||
if (p_words & 1)
|
||
p_words++; /* round to 8-byte boundary */
|
||
|
||
/* Now figure out the absolute address of the leftmost parameter, and update
|
||
the stack pointer to point at that address. */
|
||
|
||
left_parm_addr = read_register (SP_REGNUM) - (p_words * 4);
|
||
write_register (SP_REGNUM, left_parm_addr);
|
||
|
||
/* Now we can go through all of the parameters (in left-to-right order)
|
||
and write them to their parameter stack slots. Note that we are not
|
||
really "pushing" the parameter values. The stack space for these values
|
||
was already allocated above. Now we are just filling it up. */
|
||
|
||
for (p_words = 0, parm_num = 0; parm_num < nargs; parm_num++)
|
||
p_words +=
|
||
store_parm (p_words, left_parm_addr, value_arg_coerce (args[parm_num]));
|
||
|
||
/* Now that we are all done storing the parameter values into the stack, we
|
||
must go back and load up the parameter registers with the values from the
|
||
corresponding stack slots. Note that in the two cases of (a) gaps in the
|
||
parameter word sequence causes by (otherwise) misaligned doubles, and (b)
|
||
slots correcponding to structs or unions, the work we do here in loading
|
||
some parameter registers may be unnecessary, but who cares? */
|
||
|
||
for (p_words = 0; p_words < 8; p_words++)
|
||
{
|
||
write_register (FIRST_PARM_REGNUM + p_words,
|
||
read_memory_integer (left_parm_addr + (p_words * 4), 4));
|
||
}
|
||
}
|
||
|
||
void
|
||
collect_returned_value (rval, value_type, struct_return, nargs, args)
|
||
value *rval;
|
||
struct type *value_type;
|
||
int struct_return;
|
||
int nargs;
|
||
value *args;
|
||
{
|
||
char retbuf[REGISTER_BYTES];
|
||
|
||
memcpy (retbuf, registers, REGISTER_BYTES);
|
||
*rval = value_being_returned (value_type, retbuf, struct_return);
|
||
return;
|
||
}
|
||
#endif /* 0 */
|
||
|
||
/*start of lines added by kev*/
|
||
|
||
#define DUMMY_FRAME_SIZE 192
|
||
|
||
static void
|
||
write_word (sp, word)
|
||
CORE_ADDR sp;
|
||
unsigned LONGEST word;
|
||
{
|
||
register int len = REGISTER_SIZE;
|
||
char buffer[MAX_REGISTER_RAW_SIZE];
|
||
|
||
store_unsigned_integer (buffer, len, word);
|
||
write_memory (sp, buffer, len);
|
||
}
|
||
|
||
void
|
||
m88k_push_dummy_frame()
|
||
{
|
||
register CORE_ADDR sp = read_register (SP_REGNUM);
|
||
register int rn;
|
||
int offset;
|
||
|
||
sp -= DUMMY_FRAME_SIZE; /* allocate a bunch of space */
|
||
|
||
for (rn = 0, offset = 0; rn <= SP_REGNUM; rn++, offset+=4)
|
||
write_word (sp+offset, read_register(rn));
|
||
|
||
write_word (sp+offset, read_register (SXIP_REGNUM));
|
||
offset += 4;
|
||
|
||
write_word (sp+offset, read_register (SNIP_REGNUM));
|
||
offset += 4;
|
||
|
||
write_word (sp+offset, read_register (SFIP_REGNUM));
|
||
offset += 4;
|
||
|
||
write_word (sp+offset, read_register (PSR_REGNUM));
|
||
offset += 4;
|
||
|
||
write_word (sp+offset, read_register (FPSR_REGNUM));
|
||
offset += 4;
|
||
|
||
write_word (sp+offset, read_register (FPCR_REGNUM));
|
||
offset += 4;
|
||
|
||
write_register (SP_REGNUM, sp);
|
||
write_register (ACTUAL_FP_REGNUM, sp);
|
||
}
|
||
|
||
void
|
||
pop_frame ()
|
||
{
|
||
register FRAME frame = get_current_frame ();
|
||
register CORE_ADDR fp;
|
||
register int regnum;
|
||
struct frame_saved_regs fsr;
|
||
struct frame_info *fi;
|
||
|
||
fi = get_frame_info (frame);
|
||
fp = fi -> frame;
|
||
get_frame_saved_regs (fi, &fsr);
|
||
|
||
if (PC_IN_CALL_DUMMY (read_pc(), read_register(SP_REGNUM), FRAME_FP(fi)))
|
||
{
|
||
/* FIXME: I think get_frame_saved_regs should be handling this so
|
||
that we can deal with the saved registers properly (e.g. frame
|
||
1 is a call dummy, the user types "frame 2" and then "print $ps"). */
|
||
register CORE_ADDR sp = read_register (ACTUAL_FP_REGNUM);
|
||
int offset;
|
||
|
||
for (regnum = 0, offset = 0; regnum <= SP_REGNUM; regnum++, offset+=4)
|
||
(void) write_register (regnum, read_memory_integer (sp+offset, 4));
|
||
|
||
write_register (SXIP_REGNUM, read_memory_integer (sp+offset, 4));
|
||
offset += 4;
|
||
|
||
write_register (SNIP_REGNUM, read_memory_integer (sp+offset, 4));
|
||
offset += 4;
|
||
|
||
write_register (SFIP_REGNUM, read_memory_integer (sp+offset, 4));
|
||
offset += 4;
|
||
|
||
write_register (PSR_REGNUM, read_memory_integer (sp+offset, 4));
|
||
offset += 4;
|
||
|
||
write_register (FPSR_REGNUM, read_memory_integer (sp+offset, 4));
|
||
offset += 4;
|
||
|
||
write_register (FPCR_REGNUM, read_memory_integer (sp+offset, 4));
|
||
offset += 4;
|
||
|
||
}
|
||
else
|
||
{
|
||
for (regnum = FP_REGNUM ; regnum > 0 ; regnum--)
|
||
if (fsr.regs[regnum])
|
||
write_register (regnum,
|
||
read_memory_integer (fsr.regs[regnum], 4));
|
||
write_pc(frame_saved_pc(frame));
|
||
}
|
||
reinit_frame_cache ();
|
||
}
|