binutils-gdb/gdb/disasm-selftests.c
Andrew Burgess 8b39b1e7ab gdb: refactor the non-printing disassemblers
This commit started from an observation I made while working on some
other disassembler patches, that is, that the function
gdb_buffered_insn_length, is broken ... sort of.

I noticed that the gdb_buffered_insn_length function doesn't set up
the application data field if the disassemble_info structure.

Further, I noticed that some architectures, for example, ARM, require
that the application_data field be set, see gdb_print_insn_arm in
arm-tdep.c.

And so, if we ever use gdb_buffered_insn_length for ARM, then GDB will
likely crash.  Which is why I said only "sort of" broken.  Right now
we don't use gdb_buffered_insn_length with ARM, so maybe it isn't
broken yet?

Anyway to prove to myself that there was a problem here I extended the
disassembler self tests in disasm-selftests.c to include a test of
gdb_buffered_insn_length.  As I run the test for all architectures, I
do indeed see GDB crash for ARM.

To fix this we need gdb_buffered_insn_length to create a disassembler
that inherits from gdb_disassemble_info, but we also need this new
disassembler to not print anything.

And so, I introduce a new gdb_non_printing_disassembler class, this is
a disassembler that doesn't print anything to the output stream.

I then observed that both ARC and S12Z also create non-printing
disassemblers, but these are slightly different.  While the
disassembler in gdb_non_printing_disassembler reads the instruction
from a buffer, the ARC and S12Z disassemblers read from target memory
using target_read_code.

And so, I further split gdb_non_printing_disassembler into two
sub-classes, gdb_non_printing_memory_disassembler and
gdb_non_printing_buffer_disassembler.

The new selftests now pass, but otherwise, there should be no user
visible changes after this commit.
2022-06-15 09:44:55 +01:00

346 lines
9.3 KiB
C

/* Self tests for disassembler for GDB, the GNU debugger.
Copyright (C) 2017-2022 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "disasm.h"
#include "gdbsupport/selftest.h"
#include "selftest-arch.h"
#include "gdbarch.h"
namespace selftests {
/* Return a pointer to a buffer containing an instruction that can be
disassembled for architecture GDBARCH. *LEN will be set to the length
of the returned buffer.
If there's no known instruction to disassemble for GDBARCH (because we
haven't figured on out, not because no instructions exist) then nullptr
is returned, and *LEN is set to 0. */
static const gdb_byte *
get_test_insn (struct gdbarch *gdbarch, size_t *len)
{
*len = 0;
const gdb_byte *insn = nullptr;
switch (gdbarch_bfd_arch_info (gdbarch)->arch)
{
case bfd_arch_bfin:
/* M3.L = 0xe117 */
static const gdb_byte bfin_insn[] = {0x17, 0xe1, 0xff, 0xff};
insn = bfin_insn;
*len = sizeof (bfin_insn);
break;
case bfd_arch_arm:
/* mov r0, #0 */
static const gdb_byte arm_insn[] = {0x0, 0x0, 0xa0, 0xe3};
insn = arm_insn;
*len = sizeof (arm_insn);
break;
case bfd_arch_ia64:
/* We get:
internal-error: gdbarch_sw_breakpoint_from_kind:
Assertion `gdbarch->sw_breakpoint_from_kind != NULL' failed. */
return insn;
case bfd_arch_mep:
/* Disassembles as '*unknown*' insn, then len self-check fails. */
return insn;
case bfd_arch_mips:
if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mips16)
/* Disassembles insn, but len self-check fails. */
return insn;
goto generic_case;
case bfd_arch_tic6x:
/* Disassembles as '<undefined instruction 0x56454314>' insn, but len
self-check passes, so let's allow it. */
goto generic_case;
case bfd_arch_xtensa:
/* Disassembles insn, but len self-check fails. */
return insn;
case bfd_arch_or1k:
/* Disassembles as '*unknown*' insn, but len self-check passes, so let's
allow it. */
goto generic_case;
case bfd_arch_s390:
/* nopr %r7 */
static const gdb_byte s390_insn[] = {0x07, 0x07};
insn = s390_insn;
*len = sizeof (s390_insn);
break;
case bfd_arch_xstormy16:
/* nop */
static const gdb_byte xstormy16_insn[] = {0x0, 0x0};
insn = xstormy16_insn;
*len = sizeof (xstormy16_insn);
break;
case bfd_arch_nios2:
case bfd_arch_score:
case bfd_arch_riscv:
/* nios2, riscv, and score need to know the current instruction
to select breakpoint instruction. Give the breakpoint
instruction kind explicitly. */
{
int bplen;
insn = gdbarch_sw_breakpoint_from_kind (gdbarch, 4, &bplen);
*len = bplen;
}
break;
case bfd_arch_arc:
/* PR 21003 */
if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_arc_arc601)
return insn;
goto generic_case;
case bfd_arch_z80:
{
int bplen;
insn = gdbarch_sw_breakpoint_from_kind (gdbarch, 0x0008, &bplen);
*len = bplen;
}
break;
case bfd_arch_i386:
{
const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
/* The disassembly tests will fail on x86-linux because
opcodes rejects an attempt to disassemble for an arch with
a 64-bit address size when bfd_vma is 32-bit. */
if (info->bits_per_address > sizeof (bfd_vma) * CHAR_BIT)
return insn;
}
/* fall through */
default:
generic_case:
{
/* Test disassemble breakpoint instruction. */
CORE_ADDR pc = 0;
int kind;
int bplen;
struct gdbarch_info info;
info.bfd_arch_info = gdbarch_bfd_arch_info (gdbarch);
enum gdb_osabi it;
bool found = false;
for (it = GDB_OSABI_UNKNOWN; it != GDB_OSABI_INVALID;
it = static_cast<enum gdb_osabi>(static_cast<int>(it) + 1))
{
if (it == GDB_OSABI_UNKNOWN)
continue;
info.osabi = it;
if (it != GDB_OSABI_NONE)
{
if (!has_gdb_osabi_handler (info))
/* Unsupported. Skip to prevent warnings like:
A handler for the OS ABI <x> is not built into this
configuration of GDB. Attempting to continue with the
default <y> settings. */
continue;
}
gdbarch = gdbarch_find_by_info (info);
SELF_CHECK (gdbarch != NULL);
try
{
kind = gdbarch_breakpoint_kind_from_pc (gdbarch, &pc);
insn = gdbarch_sw_breakpoint_from_kind (gdbarch, kind, &bplen);
}
catch (...)
{
continue;
}
found = true;
break;
}
/* Assert that we have found an instruction to disassemble. */
SELF_CHECK (found);
*len = bplen;
break;
}
}
SELF_CHECK (*len > 0);
return insn;
}
/* Test disassembly of one instruction. */
static void
print_one_insn_test (struct gdbarch *gdbarch)
{
size_t len;
const gdb_byte *insn = get_test_insn (gdbarch, &len);
if (insn == nullptr)
return;
/* Test gdb_disassembler for a given gdbarch by reading data from a
pre-allocated buffer. If you want to see the disassembled
instruction printed to gdb_stdout, use maint selftest -verbose. */
class gdb_disassembler_test : public gdb_disassembler
{
public:
explicit gdb_disassembler_test (struct gdbarch *gdbarch,
const gdb_byte *insn,
size_t len)
: gdb_disassembler (gdbarch,
(run_verbose () ? gdb_stdlog : &null_stream),
gdb_disassembler_test::read_memory),
m_insn (insn), m_len (len)
{
}
int
print_insn (CORE_ADDR memaddr)
{
int len = gdb_disassembler::print_insn (memaddr);
if (run_verbose ())
debug_printf ("\n");
return len;
}
private:
/* A buffer contain one instruction. */
const gdb_byte *m_insn;
/* Length of the buffer. */
size_t m_len;
static int read_memory (bfd_vma memaddr, gdb_byte *myaddr,
unsigned int len, struct disassemble_info *info)
{
gdb_disassembler_test *self
= static_cast<gdb_disassembler_test *>(info->application_data);
/* The disassembler in opcodes may read more data than one
instruction. Supply infinite consecutive copies
of the same instruction. */
for (size_t i = 0; i < len; i++)
myaddr[i] = self->m_insn[(memaddr + i) % self->m_len];
return 0;
}
};
gdb_disassembler_test di (gdbarch, insn, len);
SELF_CHECK (di.print_insn (0) == len);
}
/* Test the gdb_buffered_insn_length function. */
static void
buffered_insn_length_test (struct gdbarch *gdbarch)
{
size_t buf_len;
const gdb_byte *insn = get_test_insn (gdbarch, &buf_len);
if (insn == nullptr)
return;
/* The tic6x architecture is VLIW. Disassembling requires that the
entire instruction bundle be available. However, the buffer we got
back from get_test_insn only contains a single instruction, which is
just part of an instruction bundle. As a result, the disassemble will
fail. To avoid this, skip tic6x tests now. */
if (gdbarch_bfd_arch_info (gdbarch)->arch == bfd_arch_tic6x)
return;
CORE_ADDR insn_address = 0;
int calculated_len = gdb_buffered_insn_length (gdbarch, insn, buf_len,
insn_address);
SELF_CHECK (calculated_len == buf_len);
}
/* Test disassembly on memory error. */
static void
memory_error_test (struct gdbarch *gdbarch)
{
class gdb_disassembler_test : public gdb_disassembler
{
public:
gdb_disassembler_test (struct gdbarch *gdbarch)
: gdb_disassembler (gdbarch, &null_stream,
gdb_disassembler_test::read_memory)
{
}
static int read_memory (bfd_vma memaddr, gdb_byte *myaddr,
unsigned int len,
struct disassemble_info *info)
{
/* Always return an error. */
return -1;
}
};
if (gdbarch_bfd_arch_info (gdbarch)->arch == bfd_arch_i386)
{
const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
/* This test will fail on x86-linux because opcodes rejects an
attempt to disassemble for an arch with a 64-bit address size
when bfd_vma is 32-bit. */
if (info->bits_per_address > sizeof (bfd_vma) * CHAR_BIT)
return;
}
gdb_disassembler_test di (gdbarch);
bool saw_memory_error = false;
try
{
di.print_insn (0);
}
catch (const gdb_exception_error &ex)
{
if (ex.error == MEMORY_ERROR)
saw_memory_error = true;
}
/* Expect MEMORY_ERROR. */
SELF_CHECK (saw_memory_error);
}
} // namespace selftests
void _initialize_disasm_selftests ();
void
_initialize_disasm_selftests ()
{
selftests::register_test_foreach_arch ("print_one_insn",
selftests::print_one_insn_test);
selftests::register_test_foreach_arch ("memory_error",
selftests::memory_error_test);
selftests::register_test_foreach_arch ("buffered_insn_length",
selftests::buffered_insn_length_test);
}