binutils-gdb/sim/aarch64/interp.c
Joel Brobecker 61baf725ec update copyright year range in GDB files
This applies the second part of GDB's End of Year Procedure, which
updates the copyright year range in all of GDB's files.

gdb/ChangeLog:

        Update copyright year range in all GDB files.
2017-01-01 10:52:34 +04:00

376 lines
8.1 KiB
C

/* interp.c -- AArch64 sim interface to GDB.
Copyright (C) 2015-2017 Free Software Foundation, Inc.
Contributed by Red Hat.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "config.h"
#include <stdio.h>
#include <assert.h>
#include <signal.h>
#include <string.h>
#include <ctype.h>
#include <stdlib.h>
#include "ansidecl.h"
#include "bfd.h"
#include "gdb/callback.h"
#include "gdb/remote-sim.h"
#include "gdb/signals.h"
#include "gdb/sim-aarch64.h"
#include "sim-main.h"
#include "sim-options.h"
#include "memory.h"
#include "simulator.h"
/* Filter out (in place) symbols that are useless for disassembly.
COUNT is the number of elements in SYMBOLS.
Return the number of useful symbols. */
static long
remove_useless_symbols (asymbol **symbols, long count)
{
asymbol **in_ptr = symbols;
asymbol **out_ptr = symbols;
while (count-- > 0)
{
asymbol *sym = *in_ptr++;
if (strstr (sym->name, "gcc2_compiled"))
continue;
if (sym->name == NULL || sym->name[0] == '\0')
continue;
if (sym->flags & (BSF_DEBUGGING))
continue;
if ( bfd_is_und_section (sym->section)
|| bfd_is_com_section (sym->section))
continue;
if (sym->name[0] == '$')
continue;
*out_ptr++ = sym;
}
return out_ptr - symbols;
}
static signed int
compare_symbols (const void *ap, const void *bp)
{
const asymbol *a = * (const asymbol **) ap;
const asymbol *b = * (const asymbol **) bp;
if (bfd_asymbol_value (a) > bfd_asymbol_value (b))
return 1;
if (bfd_asymbol_value (a) < bfd_asymbol_value (b))
return -1;
return 0;
}
/* Find the name of the function at ADDR. */
const char *
aarch64_get_func (SIM_DESC sd, uint64_t addr)
{
long symcount = STATE_PROG_SYMS_COUNT (sd);
asymbol **symtab = STATE_PROG_SYMS (sd);
int min, max;
min = -1;
max = symcount;
while (min < max - 1)
{
int sym;
bfd_vma sa;
sym = (min + max) / 2;
sa = bfd_asymbol_value (symtab[sym]);
if (sa > addr)
max = sym;
else if (sa < addr)
min = sym;
else
{
min = sym;
break;
}
}
if (min != -1)
return bfd_asymbol_name (symtab [min]);
return "";
}
SIM_RC
sim_create_inferior (SIM_DESC sd, struct bfd *abfd,
char * const *argv, char * const *env)
{
sim_cpu *cpu = STATE_CPU (sd, 0);
bfd_vma addr = 0;
if (abfd != NULL)
addr = bfd_get_start_address (abfd);
aarch64_set_next_PC (cpu, addr);
aarch64_update_PC (cpu);
/* Standalone mode (i.e. `run`) will take care of the argv for us in
sim_open() -> sim_parse_args(). But in debug mode (i.e. 'target sim'
with `gdb`), we need to handle it because the user can change the
argv on the fly via gdb's 'run'. */
if (STATE_PROG_ARGV (sd) != argv)
{
freeargv (STATE_PROG_ARGV (sd));
STATE_PROG_ARGV (sd) = dupargv (argv);
}
if (trace_load_symbols (sd))
{
STATE_PROG_SYMS_COUNT (sd) =
remove_useless_symbols (STATE_PROG_SYMS (sd),
STATE_PROG_SYMS_COUNT (sd));
qsort (STATE_PROG_SYMS (sd), STATE_PROG_SYMS_COUNT (sd),
sizeof (asymbol *), compare_symbols);
}
aarch64_init (cpu, addr);
return SIM_RC_OK;
}
/* Read the LENGTH bytes at BUF as a little-endian value. */
static bfd_vma
get_le (unsigned char *buf, unsigned int length)
{
bfd_vma acc = 0;
while (length -- > 0)
acc = (acc << 8) + buf[length];
return acc;
}
/* Store VAL as a little-endian value in the LENGTH bytes at BUF. */
static void
put_le (unsigned char *buf, unsigned int length, bfd_vma val)
{
int i;
for (i = 0; i < length; i++)
{
buf[i] = val & 0xff;
val >>= 8;
}
}
static int
check_regno (int regno)
{
return 0 <= regno && regno < AARCH64_MAX_REGNO;
}
static size_t
reg_size (int regno)
{
if (regno == AARCH64_CPSR_REGNO || regno == AARCH64_FPSR_REGNO)
return 32;
return 64;
}
static int
aarch64_reg_get (SIM_CPU *cpu, int regno, unsigned char *buf, int length)
{
size_t size;
bfd_vma val;
if (!check_regno (regno))
return 0;
size = reg_size (regno);
if (length != size)
return 0;
switch (regno)
{
case AARCH64_MIN_GR ... AARCH64_MAX_GR:
val = aarch64_get_reg_u64 (cpu, regno, 0);
break;
case AARCH64_MIN_FR ... AARCH64_MAX_FR:
val = aarch64_get_FP_double (cpu, regno - 32);
break;
case AARCH64_PC_REGNO:
val = aarch64_get_PC (cpu);
break;
case AARCH64_CPSR_REGNO:
val = aarch64_get_CPSR (cpu);
break;
case AARCH64_FPSR_REGNO:
val = aarch64_get_FPSR (cpu);
break;
default:
sim_io_eprintf (CPU_STATE (cpu),
"sim: unrecognized register number: %d\n", regno);
return -1;
}
put_le (buf, length, val);
return size;
}
static int
aarch64_reg_set (SIM_CPU *cpu, int regno, unsigned char *buf, int length)
{
size_t size;
bfd_vma val;
if (!check_regno (regno))
return -1;
size = reg_size (regno);
if (length != size)
return -1;
val = get_le (buf, length);
switch (regno)
{
case AARCH64_MIN_GR ... AARCH64_MAX_GR:
aarch64_set_reg_u64 (cpu, regno, 1, val);
break;
case AARCH64_MIN_FR ... AARCH64_MAX_FR:
aarch64_set_FP_double (cpu, regno - 32, (double) val);
break;
case AARCH64_PC_REGNO:
aarch64_set_next_PC (cpu, val);
aarch64_update_PC (cpu);
break;
case AARCH64_CPSR_REGNO:
aarch64_set_CPSR (cpu, val);
break;
case AARCH64_FPSR_REGNO:
aarch64_set_FPSR (cpu, val);
break;
default:
sim_io_eprintf (CPU_STATE (cpu),
"sim: unrecognized register number: %d\n", regno);
return 0;
}
return size;
}
static sim_cia
aarch64_pc_get (sim_cpu *cpu)
{
return aarch64_get_PC (cpu);
}
static void
aarch64_pc_set (sim_cpu *cpu, sim_cia pc)
{
aarch64_set_next_PC (cpu, pc);
aarch64_update_PC (cpu);
}
static void
free_state (SIM_DESC sd)
{
if (STATE_MODULES (sd) != NULL)
sim_module_uninstall (sd);
sim_cpu_free_all (sd);
sim_state_free (sd);
}
SIM_DESC
sim_open (SIM_OPEN_KIND kind,
struct host_callback_struct * callback,
struct bfd * abfd,
char * const * argv)
{
sim_cpu *cpu;
SIM_DESC sd = sim_state_alloc (kind, callback);
if (sd == NULL)
return sd;
SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
/* Perform the initialization steps one by one. */
if (sim_cpu_alloc_all (sd, 1, 0) != SIM_RC_OK
|| sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK
|| sim_parse_args (sd, argv) != SIM_RC_OK
|| sim_analyze_program (sd,
(STATE_PROG_ARGV (sd) != NULL
? *STATE_PROG_ARGV (sd)
: NULL), abfd) != SIM_RC_OK
|| sim_config (sd) != SIM_RC_OK
|| sim_post_argv_init (sd) != SIM_RC_OK)
{
free_state (sd);
return NULL;
}
aarch64_init_LIT_table ();
assert (MAX_NR_PROCESSORS == 1);
cpu = STATE_CPU (sd, 0);
CPU_PC_FETCH (cpu) = aarch64_pc_get;
CPU_PC_STORE (cpu) = aarch64_pc_set;
CPU_REG_FETCH (cpu) = aarch64_reg_get;
CPU_REG_STORE (cpu) = aarch64_reg_set;
/* Set SP, FP and PC to 0 and set LR to -1
so we can detect a top-level return. */
aarch64_set_reg_u64 (cpu, SP, 1, 0);
aarch64_set_reg_u64 (cpu, FP, 1, 0);
aarch64_set_reg_u64 (cpu, LR, 1, TOP_LEVEL_RETURN_PC);
aarch64_set_next_PC (cpu, 0);
aarch64_update_PC (cpu);
/* Default to a 128 Mbyte (== 2^27) memory space. */
sim_do_commandf (sd, "memory-size 0x8000000");
return sd;
}
void
sim_engine_run (SIM_DESC sd,
int next_cpu_nr ATTRIBUTE_UNUSED,
int nr_cpus ATTRIBUTE_UNUSED,
int siggnal ATTRIBUTE_UNUSED)
{
aarch64_run (sd);
}