mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-18 12:24:38 +08:00
7c5ded6a00
As a preparation for the next patch, which will move fork_inferior from GDB to common/ (and therefore share it with gdbserver), it is interesting to convert a few functions to C++. This patch touches functions related to parsing command-line arguments to the inferior (see gdb/fork-child.c:breakup_args), the way the arguments are stored on fork_inferior (using std::vector instead of char **), and the code responsible for dealing with argv also on gdbserver. I've taken this opportunity and decided to constify a few arguments to fork_inferior/create_inferior as well, in order to make the code cleaner. And now, on gdbserver, we're using xstrdup everywhere and aren't checking for memory allocation failures anymore, as requested by Pedro: <https://sourceware.org/ml/gdb-patches/2017-03/msg00191.html> Message-Id: <025ebdb9-90d9-d54a-c055-57ed2406b812@redhat.com> Pedro Alves wrote: > On the "== NULL" check: IIUC, the old NULL check was there to > handle strdup returning NULL due to out-of-memory. > See NULL checks and comments further above in this function. > Now that you're using a std::vector, that doesn't work or make > sense any longer, since if push_back fails to allocate space for > its internal buffer (with operator new), our operator new replacement > (common/new-op.c) calls malloc_failure, which aborts gdbserver. > > Not sure it makes sense to handle out-of-memory specially in > the gdb/rsp-facing functions nowadays (maybe git blame/log/patch > submission for that code shows some guidelines). Maybe (or, probably) > it's OK to stop caring about it, but then we should consistently remove > left over code, by using xstrdup instead and remove the NULL checks. IMO this refactoring was very good to increase the readability of the code as well, because some parts of the argument handling were unnecessarily confusing before. gdb/ChangeLog: 2017-04-12 Sergio Durigan Junior <sergiodj@redhat.com> * common/common-utils.c (free_vector_argv): New function. * common/common-utils.h: Include <vector>. (free_vector_argv): New prototype. * darwin-nat.c (darwin_create_inferior): Rewrite function prototype in order to constify "exec_file" and accept a "std::string" for "allargs". * fork-child.c: Include <vector>. (breakup_args): Rewrite function, using C++. (fork_inferior): Rewrite function header, constify "exec_file_arg" and accept "std::string" for "allargs". Update the code to calculate "argv" based on "allargs". Update calls to "exec_fun" and "execvp". * gnu-nat.c (gnu_create_inferior): Rewrite function prototype in order to constify "exec_file" and accept a "std::string" for "allargs". * go32-nat.c (go32_create_inferior): Likewise. * inf-ptrace.c (inf_ptrace_create_inferior): Likewise. * infcmd.c (run_command_1): Constify "exec_file". Use "std::string" for inferior arguments. * inferior.h (fork_inferior): Update prototype. * linux-nat.c (linux_nat_create_inferior): Rewrite function prototype in order to constify "exec_file" and accept a "std::string" for "allargs". * nto-procfs.c (procfs_create_inferior): Likewise. * procfs.c (procfs_create_inferior): Likewise. * remote-sim.c (gdbsim_create_inferior): Likewise. * remote.c (extended_remote_run): Update code to accept "std::string" as argument. (extended_remote_create_inferior): Rewrite function prototype in order to constify "exec_file" and accept a "std::string" for "allargs". * rs6000-nat.c (super_create_inferior): Likewise. (rs6000_create_inferior): Likewise. * target.h (struct target_ops) <to_create_inferior>: Likewise. * windows-nat.c (windows_create_inferior): Likewise. gdb/gdbserver/ChangeLog: 2017-04-12 Sergio Durigan Junior <sergiodj@redhat.com> * server.c: Include <vector>. <program_argv, wrapper_argv>: Convert to std::vector. (start_inferior): Rewrite function to use C++. (handle_v_run): Likewise. Update code that calculates the argv based on the vRun packet; use C++. (captured_main): Likewise.
832 lines
23 KiB
C
832 lines
23 KiB
C
/* Low-level child interface to ptrace.
|
||
|
||
Copyright (C) 1988-2017 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "command.h"
|
||
#include "inferior.h"
|
||
#include "inflow.h"
|
||
#include "terminal.h"
|
||
#include "gdbcore.h"
|
||
#include "regcache.h"
|
||
#include "nat/gdb_ptrace.h"
|
||
#include "gdb_wait.h"
|
||
#include <signal.h>
|
||
|
||
#include "inf-ptrace.h"
|
||
#include "inf-child.h"
|
||
#include "gdbthread.h"
|
||
|
||
|
||
|
||
#ifdef PT_GET_PROCESS_STATE
|
||
|
||
/* Target hook for follow_fork. On entry and at return inferior_ptid is
|
||
the ptid of the followed inferior. */
|
||
|
||
static int
|
||
inf_ptrace_follow_fork (struct target_ops *ops, int follow_child,
|
||
int detach_fork)
|
||
{
|
||
if (!follow_child)
|
||
{
|
||
struct thread_info *tp = inferior_thread ();
|
||
pid_t child_pid = ptid_get_pid (tp->pending_follow.value.related_pid);
|
||
|
||
/* Breakpoints have already been detached from the child by
|
||
infrun.c. */
|
||
|
||
if (ptrace (PT_DETACH, child_pid, (PTRACE_TYPE_ARG3)1, 0) == -1)
|
||
perror_with_name (("ptrace"));
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int
|
||
inf_ptrace_insert_fork_catchpoint (struct target_ops *self, int pid)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
static int
|
||
inf_ptrace_remove_fork_catchpoint (struct target_ops *self, int pid)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
#endif /* PT_GET_PROCESS_STATE */
|
||
|
||
|
||
/* Prepare to be traced. */
|
||
|
||
static void
|
||
inf_ptrace_me (void)
|
||
{
|
||
/* "Trace me, Dr. Memory!" */
|
||
if (ptrace (PT_TRACE_ME, 0, (PTRACE_TYPE_ARG3) 0, 0) < 0)
|
||
trace_start_error_with_name ("ptrace");
|
||
}
|
||
|
||
/* Start a new inferior Unix child process. EXEC_FILE is the file to
|
||
run, ALLARGS is a string containing the arguments to the program.
|
||
ENV is the environment vector to pass. If FROM_TTY is non-zero, be
|
||
chatty about it. */
|
||
|
||
static void
|
||
inf_ptrace_create_inferior (struct target_ops *ops,
|
||
const char *exec_file, const std::string &allargs,
|
||
char **env, int from_tty)
|
||
{
|
||
int pid;
|
||
|
||
/* Do not change either targets above or the same target if already present.
|
||
The reason is the target stack is shared across multiple inferiors. */
|
||
int ops_already_pushed = target_is_pushed (ops);
|
||
struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
|
||
|
||
if (! ops_already_pushed)
|
||
{
|
||
/* Clear possible core file with its process_stratum. */
|
||
push_target (ops);
|
||
make_cleanup_unpush_target (ops);
|
||
}
|
||
|
||
pid = fork_inferior (exec_file, allargs, env, inf_ptrace_me, NULL,
|
||
NULL, NULL, NULL);
|
||
|
||
discard_cleanups (back_to);
|
||
|
||
startup_inferior (START_INFERIOR_TRAPS_EXPECTED);
|
||
|
||
/* On some targets, there must be some explicit actions taken after
|
||
the inferior has been started up. */
|
||
target_post_startup_inferior (pid_to_ptid (pid));
|
||
}
|
||
|
||
#ifdef PT_GET_PROCESS_STATE
|
||
|
||
static void
|
||
inf_ptrace_post_startup_inferior (struct target_ops *self, ptid_t pid)
|
||
{
|
||
ptrace_event_t pe;
|
||
|
||
/* Set the initial event mask. */
|
||
memset (&pe, 0, sizeof pe);
|
||
pe.pe_set_event |= PTRACE_FORK;
|
||
if (ptrace (PT_SET_EVENT_MASK, ptid_get_pid (pid),
|
||
(PTRACE_TYPE_ARG3)&pe, sizeof pe) == -1)
|
||
perror_with_name (("ptrace"));
|
||
}
|
||
|
||
#endif
|
||
|
||
/* Clean up a rotting corpse of an inferior after it died. */
|
||
|
||
static void
|
||
inf_ptrace_mourn_inferior (struct target_ops *ops)
|
||
{
|
||
int status;
|
||
|
||
/* Wait just one more time to collect the inferior's exit status.
|
||
Do not check whether this succeeds though, since we may be
|
||
dealing with a process that we attached to. Such a process will
|
||
only report its exit status to its original parent. */
|
||
waitpid (ptid_get_pid (inferior_ptid), &status, 0);
|
||
|
||
inf_child_mourn_inferior (ops);
|
||
}
|
||
|
||
/* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
|
||
be chatty about it. */
|
||
|
||
static void
|
||
inf_ptrace_attach (struct target_ops *ops, const char *args, int from_tty)
|
||
{
|
||
char *exec_file;
|
||
pid_t pid;
|
||
struct inferior *inf;
|
||
|
||
/* Do not change either targets above or the same target if already present.
|
||
The reason is the target stack is shared across multiple inferiors. */
|
||
int ops_already_pushed = target_is_pushed (ops);
|
||
struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
|
||
|
||
pid = parse_pid_to_attach (args);
|
||
|
||
if (pid == getpid ()) /* Trying to masturbate? */
|
||
error (_("I refuse to debug myself!"));
|
||
|
||
if (! ops_already_pushed)
|
||
{
|
||
/* target_pid_to_str already uses the target. Also clear possible core
|
||
file with its process_stratum. */
|
||
push_target (ops);
|
||
make_cleanup_unpush_target (ops);
|
||
}
|
||
|
||
if (from_tty)
|
||
{
|
||
exec_file = get_exec_file (0);
|
||
|
||
if (exec_file)
|
||
printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
|
||
target_pid_to_str (pid_to_ptid (pid)));
|
||
else
|
||
printf_unfiltered (_("Attaching to %s\n"),
|
||
target_pid_to_str (pid_to_ptid (pid)));
|
||
|
||
gdb_flush (gdb_stdout);
|
||
}
|
||
|
||
#ifdef PT_ATTACH
|
||
errno = 0;
|
||
ptrace (PT_ATTACH, pid, (PTRACE_TYPE_ARG3)0, 0);
|
||
if (errno != 0)
|
||
perror_with_name (("ptrace"));
|
||
#else
|
||
error (_("This system does not support attaching to a process"));
|
||
#endif
|
||
|
||
inf = current_inferior ();
|
||
inferior_appeared (inf, pid);
|
||
inf->attach_flag = 1;
|
||
inferior_ptid = pid_to_ptid (pid);
|
||
|
||
/* Always add a main thread. If some target extends the ptrace
|
||
target, it should decorate the ptid later with more info. */
|
||
add_thread_silent (inferior_ptid);
|
||
|
||
discard_cleanups (back_to);
|
||
}
|
||
|
||
#ifdef PT_GET_PROCESS_STATE
|
||
|
||
static void
|
||
inf_ptrace_post_attach (struct target_ops *self, int pid)
|
||
{
|
||
ptrace_event_t pe;
|
||
|
||
/* Set the initial event mask. */
|
||
memset (&pe, 0, sizeof pe);
|
||
pe.pe_set_event |= PTRACE_FORK;
|
||
if (ptrace (PT_SET_EVENT_MASK, pid,
|
||
(PTRACE_TYPE_ARG3)&pe, sizeof pe) == -1)
|
||
perror_with_name (("ptrace"));
|
||
}
|
||
|
||
#endif
|
||
|
||
/* Detach from the inferior, optionally passing it the signal
|
||
specified by ARGS. If FROM_TTY is non-zero, be chatty about it. */
|
||
|
||
static void
|
||
inf_ptrace_detach (struct target_ops *ops, const char *args, int from_tty)
|
||
{
|
||
pid_t pid = ptid_get_pid (inferior_ptid);
|
||
int sig = 0;
|
||
|
||
target_announce_detach (from_tty);
|
||
if (args)
|
||
sig = atoi (args);
|
||
|
||
#ifdef PT_DETACH
|
||
/* We'd better not have left any breakpoints in the program or it'll
|
||
die when it hits one. Also note that this may only work if we
|
||
previously attached to the inferior. It *might* work if we
|
||
started the process ourselves. */
|
||
errno = 0;
|
||
ptrace (PT_DETACH, pid, (PTRACE_TYPE_ARG3)1, sig);
|
||
if (errno != 0)
|
||
perror_with_name (("ptrace"));
|
||
#else
|
||
error (_("This system does not support detaching from a process"));
|
||
#endif
|
||
|
||
inf_ptrace_detach_success (ops);
|
||
}
|
||
|
||
/* See inf-ptrace.h. */
|
||
|
||
void
|
||
inf_ptrace_detach_success (struct target_ops *ops)
|
||
{
|
||
pid_t pid = ptid_get_pid (inferior_ptid);
|
||
|
||
inferior_ptid = null_ptid;
|
||
detach_inferior (pid);
|
||
|
||
inf_child_maybe_unpush_target (ops);
|
||
}
|
||
|
||
/* Kill the inferior. */
|
||
|
||
static void
|
||
inf_ptrace_kill (struct target_ops *ops)
|
||
{
|
||
pid_t pid = ptid_get_pid (inferior_ptid);
|
||
int status;
|
||
|
||
if (pid == 0)
|
||
return;
|
||
|
||
ptrace (PT_KILL, pid, (PTRACE_TYPE_ARG3)0, 0);
|
||
waitpid (pid, &status, 0);
|
||
|
||
target_mourn_inferior (inferior_ptid);
|
||
}
|
||
|
||
/* Interrupt the inferior. */
|
||
|
||
static void
|
||
inf_ptrace_interrupt (struct target_ops *self, ptid_t ptid)
|
||
{
|
||
/* Send a SIGINT to the process group. This acts just like the user
|
||
typed a ^C on the controlling terminal. Note that using a
|
||
negative process number in kill() is a System V-ism. The proper
|
||
BSD interface is killpg(). However, all modern BSDs support the
|
||
System V interface too. */
|
||
kill (-inferior_process_group (), SIGINT);
|
||
}
|
||
|
||
/* Return which PID to pass to ptrace in order to observe/control the
|
||
tracee identified by PTID. */
|
||
|
||
pid_t
|
||
get_ptrace_pid (ptid_t ptid)
|
||
{
|
||
pid_t pid;
|
||
|
||
/* If we have an LWPID to work with, use it. Otherwise, we're
|
||
dealing with a non-threaded program/target. */
|
||
pid = ptid_get_lwp (ptid);
|
||
if (pid == 0)
|
||
pid = ptid_get_pid (ptid);
|
||
return pid;
|
||
}
|
||
|
||
/* Resume execution of thread PTID, or all threads if PTID is -1. If
|
||
STEP is nonzero, single-step it. If SIGNAL is nonzero, give it
|
||
that signal. */
|
||
|
||
static void
|
||
inf_ptrace_resume (struct target_ops *ops,
|
||
ptid_t ptid, int step, enum gdb_signal signal)
|
||
{
|
||
pid_t pid;
|
||
int request;
|
||
|
||
if (ptid_equal (minus_one_ptid, ptid))
|
||
/* Resume all threads. Traditionally ptrace() only supports
|
||
single-threaded processes, so simply resume the inferior. */
|
||
pid = ptid_get_pid (inferior_ptid);
|
||
else
|
||
pid = get_ptrace_pid (ptid);
|
||
|
||
if (catch_syscall_enabled () > 0)
|
||
request = PT_SYSCALL;
|
||
else
|
||
request = PT_CONTINUE;
|
||
|
||
if (step)
|
||
{
|
||
/* If this system does not support PT_STEP, a higher level
|
||
function will have called single_step() to transmute the step
|
||
request into a continue request (by setting breakpoints on
|
||
all possible successor instructions), so we don't have to
|
||
worry about that here. */
|
||
request = PT_STEP;
|
||
}
|
||
|
||
/* An address of (PTRACE_TYPE_ARG3)1 tells ptrace to continue from
|
||
where it was. If GDB wanted it to start some other way, we have
|
||
already written a new program counter value to the child. */
|
||
errno = 0;
|
||
ptrace (request, pid, (PTRACE_TYPE_ARG3)1, gdb_signal_to_host (signal));
|
||
if (errno != 0)
|
||
perror_with_name (("ptrace"));
|
||
}
|
||
|
||
/* Wait for the child specified by PTID to do something. Return the
|
||
process ID of the child, or MINUS_ONE_PTID in case of error; store
|
||
the status in *OURSTATUS. */
|
||
|
||
static ptid_t
|
||
inf_ptrace_wait (struct target_ops *ops,
|
||
ptid_t ptid, struct target_waitstatus *ourstatus, int options)
|
||
{
|
||
pid_t pid;
|
||
int status, save_errno;
|
||
|
||
do
|
||
{
|
||
set_sigint_trap ();
|
||
|
||
do
|
||
{
|
||
pid = waitpid (ptid_get_pid (ptid), &status, 0);
|
||
save_errno = errno;
|
||
}
|
||
while (pid == -1 && errno == EINTR);
|
||
|
||
clear_sigint_trap ();
|
||
|
||
if (pid == -1)
|
||
{
|
||
fprintf_unfiltered (gdb_stderr,
|
||
_("Child process unexpectedly missing: %s.\n"),
|
||
safe_strerror (save_errno));
|
||
|
||
/* Claim it exited with unknown signal. */
|
||
ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
|
||
ourstatus->value.sig = GDB_SIGNAL_UNKNOWN;
|
||
return inferior_ptid;
|
||
}
|
||
|
||
/* Ignore terminated detached child processes. */
|
||
if (!WIFSTOPPED (status) && pid != ptid_get_pid (inferior_ptid))
|
||
pid = -1;
|
||
}
|
||
while (pid == -1);
|
||
|
||
#ifdef PT_GET_PROCESS_STATE
|
||
if (WIFSTOPPED (status))
|
||
{
|
||
ptrace_state_t pe;
|
||
pid_t fpid;
|
||
|
||
if (ptrace (PT_GET_PROCESS_STATE, pid,
|
||
(PTRACE_TYPE_ARG3)&pe, sizeof pe) == -1)
|
||
perror_with_name (("ptrace"));
|
||
|
||
switch (pe.pe_report_event)
|
||
{
|
||
case PTRACE_FORK:
|
||
ourstatus->kind = TARGET_WAITKIND_FORKED;
|
||
ourstatus->value.related_pid = pid_to_ptid (pe.pe_other_pid);
|
||
|
||
/* Make sure the other end of the fork is stopped too. */
|
||
fpid = waitpid (pe.pe_other_pid, &status, 0);
|
||
if (fpid == -1)
|
||
perror_with_name (("waitpid"));
|
||
|
||
if (ptrace (PT_GET_PROCESS_STATE, fpid,
|
||
(PTRACE_TYPE_ARG3)&pe, sizeof pe) == -1)
|
||
perror_with_name (("ptrace"));
|
||
|
||
gdb_assert (pe.pe_report_event == PTRACE_FORK);
|
||
gdb_assert (pe.pe_other_pid == pid);
|
||
if (fpid == ptid_get_pid (inferior_ptid))
|
||
{
|
||
ourstatus->value.related_pid = pid_to_ptid (pe.pe_other_pid);
|
||
return pid_to_ptid (fpid);
|
||
}
|
||
|
||
return pid_to_ptid (pid);
|
||
}
|
||
}
|
||
#endif
|
||
|
||
store_waitstatus (ourstatus, status);
|
||
return pid_to_ptid (pid);
|
||
}
|
||
|
||
/* Transfer data via ptrace into process PID's memory from WRITEBUF, or
|
||
from process PID's memory into READBUF. Start at target address ADDR
|
||
and transfer up to LEN bytes. Exactly one of READBUF and WRITEBUF must
|
||
be non-null. Return the number of transferred bytes. */
|
||
|
||
static ULONGEST
|
||
inf_ptrace_peek_poke (pid_t pid, gdb_byte *readbuf,
|
||
const gdb_byte *writebuf,
|
||
ULONGEST addr, ULONGEST len)
|
||
{
|
||
ULONGEST n;
|
||
unsigned int chunk;
|
||
|
||
/* We transfer aligned words. Thus align ADDR down to a word
|
||
boundary and determine how many bytes to skip at the
|
||
beginning. */
|
||
ULONGEST skip = addr & (sizeof (PTRACE_TYPE_RET) - 1);
|
||
addr -= skip;
|
||
|
||
for (n = 0;
|
||
n < len;
|
||
n += chunk, addr += sizeof (PTRACE_TYPE_RET), skip = 0)
|
||
{
|
||
/* Restrict to a chunk that fits in the current word. */
|
||
chunk = std::min (sizeof (PTRACE_TYPE_RET) - skip, len - n);
|
||
|
||
/* Use a union for type punning. */
|
||
union
|
||
{
|
||
PTRACE_TYPE_RET word;
|
||
gdb_byte byte[sizeof (PTRACE_TYPE_RET)];
|
||
} buf;
|
||
|
||
/* Read the word, also when doing a partial word write. */
|
||
if (readbuf != NULL || chunk < sizeof (PTRACE_TYPE_RET))
|
||
{
|
||
errno = 0;
|
||
buf.word = ptrace (PT_READ_I, pid,
|
||
(PTRACE_TYPE_ARG3)(uintptr_t) addr, 0);
|
||
if (errno != 0)
|
||
break;
|
||
if (readbuf != NULL)
|
||
memcpy (readbuf + n, buf.byte + skip, chunk);
|
||
}
|
||
if (writebuf != NULL)
|
||
{
|
||
memcpy (buf.byte + skip, writebuf + n, chunk);
|
||
errno = 0;
|
||
ptrace (PT_WRITE_D, pid, (PTRACE_TYPE_ARG3)(uintptr_t) addr,
|
||
buf.word);
|
||
if (errno != 0)
|
||
{
|
||
/* Using the appropriate one (I or D) is necessary for
|
||
Gould NP1, at least. */
|
||
errno = 0;
|
||
ptrace (PT_WRITE_I, pid, (PTRACE_TYPE_ARG3)(uintptr_t) addr,
|
||
buf.word);
|
||
if (errno != 0)
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
return n;
|
||
}
|
||
|
||
/* Implement the to_xfer_partial target_ops method. */
|
||
|
||
static enum target_xfer_status
|
||
inf_ptrace_xfer_partial (struct target_ops *ops, enum target_object object,
|
||
const char *annex, gdb_byte *readbuf,
|
||
const gdb_byte *writebuf,
|
||
ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
|
||
{
|
||
pid_t pid = get_ptrace_pid (inferior_ptid);
|
||
|
||
switch (object)
|
||
{
|
||
case TARGET_OBJECT_MEMORY:
|
||
#ifdef PT_IO
|
||
/* OpenBSD 3.1, NetBSD 1.6 and FreeBSD 5.0 have a new PT_IO
|
||
request that promises to be much more efficient in reading
|
||
and writing data in the traced process's address space. */
|
||
{
|
||
struct ptrace_io_desc piod;
|
||
|
||
/* NOTE: We assume that there are no distinct address spaces
|
||
for instruction and data. However, on OpenBSD 3.9 and
|
||
later, PIOD_WRITE_D doesn't allow changing memory that's
|
||
mapped read-only. Since most code segments will be
|
||
read-only, using PIOD_WRITE_D will prevent us from
|
||
inserting breakpoints, so we use PIOD_WRITE_I instead. */
|
||
piod.piod_op = writebuf ? PIOD_WRITE_I : PIOD_READ_D;
|
||
piod.piod_addr = writebuf ? (void *) writebuf : readbuf;
|
||
piod.piod_offs = (void *) (long) offset;
|
||
piod.piod_len = len;
|
||
|
||
errno = 0;
|
||
if (ptrace (PT_IO, pid, (caddr_t)&piod, 0) == 0)
|
||
{
|
||
/* Return the actual number of bytes read or written. */
|
||
*xfered_len = piod.piod_len;
|
||
return (piod.piod_len == 0) ? TARGET_XFER_EOF : TARGET_XFER_OK;
|
||
}
|
||
/* If the PT_IO request is somehow not supported, fallback on
|
||
using PT_WRITE_D/PT_READ_D. Otherwise we will return zero
|
||
to indicate failure. */
|
||
if (errno != EINVAL)
|
||
return TARGET_XFER_EOF;
|
||
}
|
||
#endif
|
||
*xfered_len = inf_ptrace_peek_poke (pid, readbuf, writebuf,
|
||
offset, len);
|
||
return *xfered_len != 0 ? TARGET_XFER_OK : TARGET_XFER_EOF;
|
||
|
||
case TARGET_OBJECT_UNWIND_TABLE:
|
||
return TARGET_XFER_E_IO;
|
||
|
||
case TARGET_OBJECT_AUXV:
|
||
#if defined (PT_IO) && defined (PIOD_READ_AUXV)
|
||
/* OpenBSD 4.5 has a new PIOD_READ_AUXV operation for the PT_IO
|
||
request that allows us to read the auxilliary vector. Other
|
||
BSD's may follow if they feel the need to support PIE. */
|
||
{
|
||
struct ptrace_io_desc piod;
|
||
|
||
if (writebuf)
|
||
return TARGET_XFER_E_IO;
|
||
piod.piod_op = PIOD_READ_AUXV;
|
||
piod.piod_addr = readbuf;
|
||
piod.piod_offs = (void *) (long) offset;
|
||
piod.piod_len = len;
|
||
|
||
errno = 0;
|
||
if (ptrace (PT_IO, pid, (caddr_t)&piod, 0) == 0)
|
||
{
|
||
/* Return the actual number of bytes read or written. */
|
||
*xfered_len = piod.piod_len;
|
||
return (piod.piod_len == 0) ? TARGET_XFER_EOF : TARGET_XFER_OK;
|
||
}
|
||
}
|
||
#endif
|
||
return TARGET_XFER_E_IO;
|
||
|
||
case TARGET_OBJECT_WCOOKIE:
|
||
return TARGET_XFER_E_IO;
|
||
|
||
default:
|
||
return TARGET_XFER_E_IO;
|
||
}
|
||
}
|
||
|
||
/* Return non-zero if the thread specified by PTID is alive. */
|
||
|
||
static int
|
||
inf_ptrace_thread_alive (struct target_ops *ops, ptid_t ptid)
|
||
{
|
||
/* ??? Is kill the right way to do this? */
|
||
return (kill (ptid_get_pid (ptid), 0) != -1);
|
||
}
|
||
|
||
/* Print status information about what we're accessing. */
|
||
|
||
static void
|
||
inf_ptrace_files_info (struct target_ops *ignore)
|
||
{
|
||
struct inferior *inf = current_inferior ();
|
||
|
||
printf_filtered (_("\tUsing the running image of %s %s.\n"),
|
||
inf->attach_flag ? "attached" : "child",
|
||
target_pid_to_str (inferior_ptid));
|
||
}
|
||
|
||
static const char *
|
||
inf_ptrace_pid_to_str (struct target_ops *ops, ptid_t ptid)
|
||
{
|
||
return normal_pid_to_str (ptid);
|
||
}
|
||
|
||
#if defined (PT_IO) && defined (PIOD_READ_AUXV)
|
||
|
||
/* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
|
||
Return 0 if *READPTR is already at the end of the buffer.
|
||
Return -1 if there is insufficient buffer for a whole entry.
|
||
Return 1 if an entry was read into *TYPEP and *VALP. */
|
||
|
||
static int
|
||
inf_ptrace_auxv_parse (struct target_ops *ops, gdb_byte **readptr,
|
||
gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
|
||
{
|
||
struct type *int_type = builtin_type (target_gdbarch ())->builtin_int;
|
||
struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
|
||
const int sizeof_auxv_type = TYPE_LENGTH (int_type);
|
||
const int sizeof_auxv_val = TYPE_LENGTH (ptr_type);
|
||
enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
|
||
gdb_byte *ptr = *readptr;
|
||
|
||
if (endptr == ptr)
|
||
return 0;
|
||
|
||
if (endptr - ptr < 2 * sizeof_auxv_val)
|
||
return -1;
|
||
|
||
*typep = extract_unsigned_integer (ptr, sizeof_auxv_type, byte_order);
|
||
ptr += sizeof_auxv_val; /* Alignment. */
|
||
*valp = extract_unsigned_integer (ptr, sizeof_auxv_val, byte_order);
|
||
ptr += sizeof_auxv_val;
|
||
|
||
*readptr = ptr;
|
||
return 1;
|
||
}
|
||
|
||
#endif
|
||
|
||
/* Create a prototype ptrace target. The client can override it with
|
||
local methods. */
|
||
|
||
struct target_ops *
|
||
inf_ptrace_target (void)
|
||
{
|
||
struct target_ops *t = inf_child_target ();
|
||
|
||
t->to_attach = inf_ptrace_attach;
|
||
t->to_detach = inf_ptrace_detach;
|
||
t->to_resume = inf_ptrace_resume;
|
||
t->to_wait = inf_ptrace_wait;
|
||
t->to_files_info = inf_ptrace_files_info;
|
||
t->to_kill = inf_ptrace_kill;
|
||
t->to_create_inferior = inf_ptrace_create_inferior;
|
||
#ifdef PT_GET_PROCESS_STATE
|
||
t->to_follow_fork = inf_ptrace_follow_fork;
|
||
t->to_insert_fork_catchpoint = inf_ptrace_insert_fork_catchpoint;
|
||
t->to_remove_fork_catchpoint = inf_ptrace_remove_fork_catchpoint;
|
||
t->to_post_startup_inferior = inf_ptrace_post_startup_inferior;
|
||
t->to_post_attach = inf_ptrace_post_attach;
|
||
#endif
|
||
t->to_mourn_inferior = inf_ptrace_mourn_inferior;
|
||
t->to_thread_alive = inf_ptrace_thread_alive;
|
||
t->to_pid_to_str = inf_ptrace_pid_to_str;
|
||
t->to_interrupt = inf_ptrace_interrupt;
|
||
t->to_xfer_partial = inf_ptrace_xfer_partial;
|
||
#if defined (PT_IO) && defined (PIOD_READ_AUXV)
|
||
t->to_auxv_parse = inf_ptrace_auxv_parse;
|
||
#endif
|
||
|
||
return t;
|
||
}
|
||
|
||
|
||
/* Pointer to a function that returns the offset within the user area
|
||
where a particular register is stored. */
|
||
static CORE_ADDR (*inf_ptrace_register_u_offset)(struct gdbarch *, int, int);
|
||
|
||
/* Fetch register REGNUM from the inferior. */
|
||
|
||
static void
|
||
inf_ptrace_fetch_register (struct regcache *regcache, int regnum)
|
||
{
|
||
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
||
CORE_ADDR addr;
|
||
size_t size;
|
||
PTRACE_TYPE_RET *buf;
|
||
pid_t pid;
|
||
int i;
|
||
|
||
/* This isn't really an address, but ptrace thinks of it as one. */
|
||
addr = inf_ptrace_register_u_offset (gdbarch, regnum, 0);
|
||
if (addr == (CORE_ADDR)-1
|
||
|| gdbarch_cannot_fetch_register (gdbarch, regnum))
|
||
{
|
||
regcache_raw_supply (regcache, regnum, NULL);
|
||
return;
|
||
}
|
||
|
||
pid = get_ptrace_pid (regcache_get_ptid (regcache));
|
||
|
||
size = register_size (gdbarch, regnum);
|
||
gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
|
||
buf = (PTRACE_TYPE_RET *) alloca (size);
|
||
|
||
/* Read the register contents from the inferior a chunk at a time. */
|
||
for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
|
||
{
|
||
errno = 0;
|
||
buf[i] = ptrace (PT_READ_U, pid, (PTRACE_TYPE_ARG3)(uintptr_t)addr, 0);
|
||
if (errno != 0)
|
||
error (_("Couldn't read register %s (#%d): %s."),
|
||
gdbarch_register_name (gdbarch, regnum),
|
||
regnum, safe_strerror (errno));
|
||
|
||
addr += sizeof (PTRACE_TYPE_RET);
|
||
}
|
||
regcache_raw_supply (regcache, regnum, buf);
|
||
}
|
||
|
||
/* Fetch register REGNUM from the inferior. If REGNUM is -1, do this
|
||
for all registers. */
|
||
|
||
static void
|
||
inf_ptrace_fetch_registers (struct target_ops *ops,
|
||
struct regcache *regcache, int regnum)
|
||
{
|
||
if (regnum == -1)
|
||
for (regnum = 0;
|
||
regnum < gdbarch_num_regs (get_regcache_arch (regcache));
|
||
regnum++)
|
||
inf_ptrace_fetch_register (regcache, regnum);
|
||
else
|
||
inf_ptrace_fetch_register (regcache, regnum);
|
||
}
|
||
|
||
/* Store register REGNUM into the inferior. */
|
||
|
||
static void
|
||
inf_ptrace_store_register (const struct regcache *regcache, int regnum)
|
||
{
|
||
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
||
CORE_ADDR addr;
|
||
size_t size;
|
||
PTRACE_TYPE_RET *buf;
|
||
pid_t pid;
|
||
int i;
|
||
|
||
/* This isn't really an address, but ptrace thinks of it as one. */
|
||
addr = inf_ptrace_register_u_offset (gdbarch, regnum, 1);
|
||
if (addr == (CORE_ADDR)-1
|
||
|| gdbarch_cannot_store_register (gdbarch, regnum))
|
||
return;
|
||
|
||
pid = get_ptrace_pid (regcache_get_ptid (regcache));
|
||
|
||
size = register_size (gdbarch, regnum);
|
||
gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
|
||
buf = (PTRACE_TYPE_RET *) alloca (size);
|
||
|
||
/* Write the register contents into the inferior a chunk at a time. */
|
||
regcache_raw_collect (regcache, regnum, buf);
|
||
for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
|
||
{
|
||
errno = 0;
|
||
ptrace (PT_WRITE_U, pid, (PTRACE_TYPE_ARG3)(uintptr_t)addr, buf[i]);
|
||
if (errno != 0)
|
||
error (_("Couldn't write register %s (#%d): %s."),
|
||
gdbarch_register_name (gdbarch, regnum),
|
||
regnum, safe_strerror (errno));
|
||
|
||
addr += sizeof (PTRACE_TYPE_RET);
|
||
}
|
||
}
|
||
|
||
/* Store register REGNUM back into the inferior. If REGNUM is -1, do
|
||
this for all registers. */
|
||
|
||
static void
|
||
inf_ptrace_store_registers (struct target_ops *ops,
|
||
struct regcache *regcache, int regnum)
|
||
{
|
||
if (regnum == -1)
|
||
for (regnum = 0;
|
||
regnum < gdbarch_num_regs (get_regcache_arch (regcache));
|
||
regnum++)
|
||
inf_ptrace_store_register (regcache, regnum);
|
||
else
|
||
inf_ptrace_store_register (regcache, regnum);
|
||
}
|
||
|
||
/* Create a "traditional" ptrace target. REGISTER_U_OFFSET should be
|
||
a function returning the offset within the user area where a
|
||
particular register is stored. */
|
||
|
||
struct target_ops *
|
||
inf_ptrace_trad_target (CORE_ADDR (*register_u_offset)
|
||
(struct gdbarch *, int, int))
|
||
{
|
||
struct target_ops *t = inf_ptrace_target();
|
||
|
||
gdb_assert (register_u_offset);
|
||
inf_ptrace_register_u_offset = register_u_offset;
|
||
t->to_fetch_registers = inf_ptrace_fetch_registers;
|
||
t->to_store_registers = inf_ptrace_store_registers;
|
||
|
||
return t;
|
||
}
|