mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-27 04:52:05 +08:00
f3185997ac
bfd PR 22875 * elf-bfd.h (struct elf_backend_data): Change the return type of the elf_info_to_howto and elf_info_to_howto_rel function pointers to bfd_boolean. * elfcode.h (elf_slurp_reloc_table_from_section): Check the return value from the info_to_howto function and fail if that function failed. * elf32-h8300.c (elf32_h8_relocate_section): Check return value from the info_to_howto function. (elf32_h8_relax_section): Likewise. * elf32-lm32.c (lm32_elf_relocate_section): Likewise. * elf32-m68hc1x.c (elf32_m68hc11_relocate_section): Likewise. * elf32-score.c (s3_bfd_score_elf_relocate_section): Likewise. * elf32-score7.c (s7_bfd_score_elf_relocate_section): Likewise. * elf32-tic6x.c (elf32_tic6x_relocate_section): Likewise. * elf64-ia64-vms.c (elf64_ia64_relocate_section): Likewise. * elf64-sparc.c (elf64_sparc_slurp_one_reloc_table): Likewise. * elf64-x86-64.c (elf_x86_64_tls_transition): Likewise. * elfnn-ia64.c (elfNN_ia64_relocate_section): Likewise. * elfnn-riscv.c (riscv_elf_check_relocs): Likewise. (riscv_elf_relocate_section): Likewise. * elf-hppa.h (elf_hppa_info_to_howto): Change return type to bfd_boolean. Issue an error message, set an error value and return FALSE if the reloc is not recognized. (elf_hppa_info_to_howto_rel): Likewise. * elf-m10200.c (mn10200_info_to_howto): Likewise. * elf-m10300.c (mn10300_info_to_howto): Likewise. * elf.c (_bfd_elf_no_info_to_howto): Likewise. * elf32-arc.c (arc_info_to_howto_rel): Likewise. * elf32-arm.c (elf32_arm_info_to_howto): Likewise. * elf32-avr.c (avr_info_to_howto_rela): Likewise. * elf32-bfin.c (bfin_info_to_howto): Likewise. * elf32-cr16.c (elf_cr16_info_to_howto): Likewise. * elf32-cr16c.c (elf_cr16c_info_to_howto): Likewise. * elf32-cris.c (elf_cr16c_info_to_howto_rel, cris_info_to_howto_rela): Likewise. * elf32-crx.c (elf_crx_info_to_howto): Likewise. * elf32-d10v.c (d10v_info_to_howto_rel): Likewise. * elf32-d30v.c (d30v_info_to_howto_rel, d30v_info_to_howto_rela): Likewise. * elf32-dlx.c (dlx_rtype_to_howto, elf32_dlx_info_to_howto, elf32_dlx_info_to_howto_rel): Likewise. * elf32-epiphany.c (epiphany_info_to_howto_rela): Likewise. * elf32-fr30.c (fr30_info_to_howto_rela): Likewise. * elf32-frv.c (frv_info_to_howto_rela, frvfdpic_info_to_howto_rel): Likewise. * elf32-ft32.c (ft32_info_to_howto_rela): Likewise. * elf32-gen.c (elf_generic_info_to_howto, elf_generic_info_to_howto_rel): Likewise. * elf32-h8300.c (elf32_h8_info_to_howto, elf32_h8_info_to_howto_rel): Likewise. * elf32-i370.c (i370_elf_info_to_howto): Likewise. * elf32-i386.c (elf_i386_reloc_type_lookup, elf_i386_rtype_to_howto, elf_i386_info_to_howto_rel): Likewise. * elf32-i860.c (lookup_howto, elf32_i860_info_to_howto_rela): Likewise. * elf32-i960.c (elf32_i960_info_to_howto_rel): Likewise. * elf32-ip2k.c (ip2k_info_to_howto_rela): Likewise. * elf32-iq2000.c (iq2000_info_to_howto_rela): Likewise. * elf32-lm32.c (lm32_info_to_howto_rela): Likewise. * elf32-m32c.c (m32c_info_to_howto_rela): Likewise. * elf32-m32r.c (m32r_info_to_howto_rel, m32r_info_to_howto): Likewise. * elf32-m68hc11.c (m68hc11_info_to_howto_rel): Likewise. * elf32-m68hc12.c (m68hc11_info_to_howto_rel): Likewise. * elf32-m68k.c (rtype_to_howto): Likewise. * elf32-mcore.c (mcore_elf_info_to_howto): Likewise. * elf32-mep.c (mep_info_to_howto_rela): Likewise. * elf32-metag.c (metag_info_to_howto_rela): Likewise. * elf32-microblaze.c (microblaze_elf_info_to_howto): Likewise. * elf32-mips.c (mips_info_to_howto_rel, mips_info_to_howto_rela): Likewise. * elf32-moxie.c (moxie_info_to_howto_rela): Likewise. * elf32-msp430.c (msp430_info_to_howto_rela): Likewise. * elf32-mt.c (mt_info_to_howto_rela): Likewise. * elf32-nds32.c (nds32_info_to_howto_rel, nds32_info_to_howto): Likewise. * elf32-nios2.c (nios2_elf32_info_to_howto): Likewise. * elf32-or1k.c (or1k_info_to_howto_rela): Likewise. * elf32-pj.c (pj_elf_info_to_howto): Likewise. * elf32-ppc.c (ppc_elf_info_to_howto): Likewise. * elf32-pru.c (pru_elf32_info_to_howto): Likewise. * elf32-rl78.c (rl78_info_to_howto_rela): Likewise. * elf32-rx.c (rx_info_to_howto_rela): Likewise. * elf32-s390.c (elf_s390_info_to_howto): Likewise. * elf32-score.c (s3_bfd_score_info_to_howto, _bfd_score_info_to_howto): Likewise. * elf32-score7.c (s7_bfd_score_info_to_howto): Likewise. * elf32-sh.c (sh_elf_info_to_howto): Likewise. * elf32-spu.c (spu_elf_info_to_howto): Likewise. * elf32-tic6x.c (elf32_tic6x_info_to_howto, elf32_tic6x_info_to_howto_rel): Likewise. * elf32-tilepro.c (tilepro_info_to_howto_rela): Likewise. * elf32-v850.c (v850_elf_info_to_howto_rel, v850_elf_info_to_howto_rela, v800_elf_info_to_howto): Likewise. * elf32-vax.c (rtype_to_howto): Likewise. * elf32-visium.c (visium_info_to_howto_rela): Likewise. * elf32-wasm32.c (elf32_wasm32_rtype_to_howto, elf32_wasm32_info_to_howto_rela): Likewise. * elf32-xc16x.c (elf32_xc16x_info_to_howto): Likewise. * elf32-xgate.c (xgate_info_to_howto_rel): Likewise. * elf32-xstormy16.c (xstormy16_info_to_howto_rela): Likewise. * elf32-xtensa.c (elf_xtensa_info_to_howto_rela): Likewise. * elf64-alpha.c (elf64_alpha_info_to_howto): Likewise. * elf64-gen.c (elf_generic_info_to_howto, elf_generic_info_to_howto_rel): Likewise. * elf64-ia64-vms.c (elf64_ia64_info_to_howto): Likewise. * elf64-mips.c (mips_elf64_info_to_howto_rela): Likewise. * elf64-mmix.c (mmix_info_to_howto_rela): Likewise. * elf64-ppc.c (ppc64_elf_info_to_howto): Likewise. * elf64-s390.c (elf_s390_reloc_type_lookup): Likewise. * elf64-sh64.c (elf_s390_info_to_howto, sh_elf64_info_to_howto): Likewise. * elf64-x86-64.c (elf_x86_64_info_to_howto): Likewise. * elfn32-mips.c (mips_info_to_howto_rel, mips_info_to_howto_rela): Likewise. * elfnn-aarch64.c (elfNN_aarch64_info_to_howto): Likewise. * elfnn-ia64.c (elfNN_ia64_info_to_howto): Likewise. * elfnn-riscv.c (riscv_info_to_howto_rela): Likewise. * elfxx-ia64.c (ia64_elf_reloc_type_lookup): Likewise. * elfxx-sparc.c (_bfd_sparc_elf_info_to_howto): Likewise. * elfxx-tilegx.c (tilegx_info_to_howto_rela): Likewise. * elf32-score.h (s7_bfd_score_info_to_howto): Update prototype. * elfxx-sparc.h (_bfd_sparc_elf_info_to_howto): Update prototype. * elfxx-tilegx.h (tilegx_info_to_howto_rela): Update prototype. * elfxx-target.h (elf_info_to_howto, elf_info_to_howto_rel): Default to NULL. binutils PR 22875 * objcopy.c (copy_object): Check the error status after marking symbols used in relocations. * testsuite/binutils-all/strip-13.s: New test source file. * testsuite/binutils-all/strip-13.s: New test driver file. * testsuite/binutils-all/objcopy.exp: Run the new test.
2929 lines
91 KiB
C
2929 lines
91 KiB
C
/* MMIX-specific support for 64-bit ELF.
|
||
Copyright (C) 2001-2018 Free Software Foundation, Inc.
|
||
Contributed by Hans-Peter Nilsson <hp@bitrange.com>
|
||
|
||
This file is part of BFD, the Binary File Descriptor library.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
|
||
MA 02110-1301, USA. */
|
||
|
||
|
||
/* No specific ABI or "processor-specific supplement" defined. */
|
||
|
||
/* TODO:
|
||
- "Traditional" linker relaxation (shrinking whole sections).
|
||
- Merge reloc stubs jumping to same location.
|
||
- GETA stub relaxation (call a stub for out of range new
|
||
R_MMIX_GETA_STUBBABLE). */
|
||
|
||
#include "sysdep.h"
|
||
#include "bfd.h"
|
||
#include "libbfd.h"
|
||
#include "elf-bfd.h"
|
||
#include "elf/mmix.h"
|
||
#include "opcode/mmix.h"
|
||
|
||
#define MINUS_ONE (((bfd_vma) 0) - 1)
|
||
|
||
#define MAX_PUSHJ_STUB_SIZE (5 * 4)
|
||
|
||
/* Put these everywhere in new code. */
|
||
#define FATAL_DEBUG \
|
||
_bfd_abort (__FILE__, __LINE__, \
|
||
"Internal: Non-debugged code (test-case missing)")
|
||
|
||
#define BAD_CASE(x) \
|
||
_bfd_abort (__FILE__, __LINE__, \
|
||
"bad case for " #x)
|
||
|
||
struct _mmix_elf_section_data
|
||
{
|
||
struct bfd_elf_section_data elf;
|
||
union
|
||
{
|
||
struct bpo_reloc_section_info *reloc;
|
||
struct bpo_greg_section_info *greg;
|
||
} bpo;
|
||
|
||
struct pushj_stub_info
|
||
{
|
||
/* Maximum number of stubs needed for this section. */
|
||
bfd_size_type n_pushj_relocs;
|
||
|
||
/* Size of stubs after a mmix_elf_relax_section round. */
|
||
bfd_size_type stubs_size_sum;
|
||
|
||
/* Per-reloc stubs_size_sum information. The stubs_size_sum member is the sum
|
||
of these. Allocated in mmix_elf_check_common_relocs. */
|
||
bfd_size_type *stub_size;
|
||
|
||
/* Offset of next stub during relocation. Somewhat redundant with the
|
||
above: error coverage is easier and we don't have to reset the
|
||
stubs_size_sum for relocation. */
|
||
bfd_size_type stub_offset;
|
||
} pjs;
|
||
|
||
/* Whether there has been a warning that this section could not be
|
||
linked due to a specific cause. FIXME: a way to access the
|
||
linker info or output section, then stuff the limiter guard
|
||
there. */
|
||
bfd_boolean has_warned_bpo;
|
||
bfd_boolean has_warned_pushj;
|
||
};
|
||
|
||
#define mmix_elf_section_data(sec) \
|
||
((struct _mmix_elf_section_data *) elf_section_data (sec))
|
||
|
||
/* For each section containing a base-plus-offset (BPO) reloc, we attach
|
||
this struct as mmix_elf_section_data (section)->bpo, which is otherwise
|
||
NULL. */
|
||
struct bpo_reloc_section_info
|
||
{
|
||
/* The base is 1; this is the first number in this section. */
|
||
size_t first_base_plus_offset_reloc;
|
||
|
||
/* Number of BPO-relocs in this section. */
|
||
size_t n_bpo_relocs_this_section;
|
||
|
||
/* Running index, used at relocation time. */
|
||
size_t bpo_index;
|
||
|
||
/* We don't have access to the bfd_link_info struct in
|
||
mmix_final_link_relocate. What we really want to get at is the
|
||
global single struct greg_relocation, so we stash it here. */
|
||
asection *bpo_greg_section;
|
||
};
|
||
|
||
/* Helper struct (in global context) for the one below.
|
||
There's one of these created for every BPO reloc. */
|
||
struct bpo_reloc_request
|
||
{
|
||
bfd_vma value;
|
||
|
||
/* Valid after relaxation. The base is 0; the first register number
|
||
must be added. The offset is in range 0..255. */
|
||
size_t regindex;
|
||
size_t offset;
|
||
|
||
/* The order number for this BPO reloc, corresponding to the order in
|
||
which BPO relocs were found. Used to create an index after reloc
|
||
requests are sorted. */
|
||
size_t bpo_reloc_no;
|
||
|
||
/* Set when the value is computed. Better than coding "guard values"
|
||
into the other members. Is FALSE only for BPO relocs in a GC:ed
|
||
section. */
|
||
bfd_boolean valid;
|
||
};
|
||
|
||
/* We attach this as mmix_elf_section_data (sec)->bpo in the linker-allocated
|
||
greg contents section (MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME),
|
||
which is linked into the register contents section
|
||
(MMIX_REG_CONTENTS_SECTION_NAME). This section is created by the
|
||
linker; using the same hook as for usual with BPO relocs does not
|
||
collide. */
|
||
struct bpo_greg_section_info
|
||
{
|
||
/* After GC, this reflects the number of remaining, non-excluded
|
||
BPO-relocs. */
|
||
size_t n_bpo_relocs;
|
||
|
||
/* This is the number of allocated bpo_reloc_requests; the size of
|
||
sorted_indexes. Valid after the check.*relocs functions are called
|
||
for all incoming sections. It includes the number of BPO relocs in
|
||
sections that were GC:ed. */
|
||
size_t n_max_bpo_relocs;
|
||
|
||
/* A counter used to find out when to fold the BPO gregs, since we
|
||
don't have a single "after-relaxation" hook. */
|
||
size_t n_remaining_bpo_relocs_this_relaxation_round;
|
||
|
||
/* The number of linker-allocated GREGs resulting from BPO relocs.
|
||
This is an approximation after _bfd_mmix_before_linker_allocation
|
||
and supposedly accurate after mmix_elf_relax_section is called for
|
||
all incoming non-collected sections. */
|
||
size_t n_allocated_bpo_gregs;
|
||
|
||
/* Index into reloc_request[], sorted on increasing "value", secondary
|
||
by increasing index for strict sorting order. */
|
||
size_t *bpo_reloc_indexes;
|
||
|
||
/* An array of all relocations, with the "value" member filled in by
|
||
the relaxation function. */
|
||
struct bpo_reloc_request *reloc_request;
|
||
};
|
||
|
||
|
||
extern bfd_boolean mmix_elf_final_link (bfd *, struct bfd_link_info *);
|
||
|
||
extern void mmix_elf_symbol_processing (bfd *, asymbol *);
|
||
|
||
/* Only intended to be called from a debugger. */
|
||
extern void mmix_dump_bpo_gregs
|
||
(struct bfd_link_info *, void (*) (const char *, ...));
|
||
|
||
static void
|
||
mmix_set_relaxable_size (bfd *, asection *, void *);
|
||
static bfd_reloc_status_type
|
||
mmix_elf_reloc (bfd *, arelent *, asymbol *, void *,
|
||
asection *, bfd *, char **);
|
||
static bfd_reloc_status_type
|
||
mmix_final_link_relocate (reloc_howto_type *, asection *, bfd_byte *, bfd_vma,
|
||
bfd_signed_vma, bfd_vma, const char *, asection *,
|
||
char **);
|
||
|
||
|
||
/* Watch out: this currently needs to have elements with the same index as
|
||
their R_MMIX_ number. */
|
||
static reloc_howto_type elf_mmix_howto_table[] =
|
||
{
|
||
/* This reloc does nothing. */
|
||
HOWTO (R_MMIX_NONE, /* type */
|
||
0, /* rightshift */
|
||
3, /* size (0 = byte, 1 = short, 2 = long) */
|
||
0, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_MMIX_NONE", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
/* An 8 bit absolute relocation. */
|
||
HOWTO (R_MMIX_8, /* type */
|
||
0, /* rightshift */
|
||
0, /* size (0 = byte, 1 = short, 2 = long) */
|
||
8, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_MMIX_8", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0xff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
/* An 16 bit absolute relocation. */
|
||
HOWTO (R_MMIX_16, /* type */
|
||
0, /* rightshift */
|
||
1, /* size (0 = byte, 1 = short, 2 = long) */
|
||
16, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_MMIX_16", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0xffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
/* An 24 bit absolute relocation. */
|
||
HOWTO (R_MMIX_24, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
24, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_MMIX_24", /* name */
|
||
FALSE, /* partial_inplace */
|
||
~0xffffff, /* src_mask */
|
||
0xffffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
/* A 32 bit absolute relocation. */
|
||
HOWTO (R_MMIX_32, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
32, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_MMIX_32", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0xffffffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
/* 64 bit relocation. */
|
||
HOWTO (R_MMIX_64, /* type */
|
||
0, /* rightshift */
|
||
4, /* size (0 = byte, 1 = short, 2 = long) */
|
||
64, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_MMIX_64", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0, /* src_mask */
|
||
MINUS_ONE, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
/* An 8 bit PC-relative relocation. */
|
||
HOWTO (R_MMIX_PC_8, /* type */
|
||
0, /* rightshift */
|
||
0, /* size (0 = byte, 1 = short, 2 = long) */
|
||
8, /* bitsize */
|
||
TRUE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_MMIX_PC_8", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0xff, /* dst_mask */
|
||
TRUE), /* pcrel_offset */
|
||
|
||
/* An 16 bit PC-relative relocation. */
|
||
HOWTO (R_MMIX_PC_16, /* type */
|
||
0, /* rightshift */
|
||
1, /* size (0 = byte, 1 = short, 2 = long) */
|
||
16, /* bitsize */
|
||
TRUE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_MMIX_PC_16", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0xffff, /* dst_mask */
|
||
TRUE), /* pcrel_offset */
|
||
|
||
/* An 24 bit PC-relative relocation. */
|
||
HOWTO (R_MMIX_PC_24, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
24, /* bitsize */
|
||
TRUE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_MMIX_PC_24", /* name */
|
||
FALSE, /* partial_inplace */
|
||
~0xffffff, /* src_mask */
|
||
0xffffff, /* dst_mask */
|
||
TRUE), /* pcrel_offset */
|
||
|
||
/* A 32 bit absolute PC-relative relocation. */
|
||
HOWTO (R_MMIX_PC_32, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
32, /* bitsize */
|
||
TRUE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_MMIX_PC_32", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0xffffffff, /* dst_mask */
|
||
TRUE), /* pcrel_offset */
|
||
|
||
/* 64 bit PC-relative relocation. */
|
||
HOWTO (R_MMIX_PC_64, /* type */
|
||
0, /* rightshift */
|
||
4, /* size (0 = byte, 1 = short, 2 = long) */
|
||
64, /* bitsize */
|
||
TRUE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_MMIX_PC_64", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0, /* src_mask */
|
||
MINUS_ONE, /* dst_mask */
|
||
TRUE), /* pcrel_offset */
|
||
|
||
/* GNU extension to record C++ vtable hierarchy. */
|
||
HOWTO (R_MMIX_GNU_VTINHERIT, /* type */
|
||
0, /* rightshift */
|
||
0, /* size (0 = byte, 1 = short, 2 = long) */
|
||
0, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
NULL, /* special_function */
|
||
"R_MMIX_GNU_VTINHERIT", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0, /* dst_mask */
|
||
TRUE), /* pcrel_offset */
|
||
|
||
/* GNU extension to record C++ vtable member usage. */
|
||
HOWTO (R_MMIX_GNU_VTENTRY, /* type */
|
||
0, /* rightshift */
|
||
0, /* size (0 = byte, 1 = short, 2 = long) */
|
||
0, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
_bfd_elf_rel_vtable_reloc_fn, /* special_function */
|
||
"R_MMIX_GNU_VTENTRY", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
/* The GETA relocation is supposed to get any address that could
|
||
possibly be reached by the GETA instruction. It can silently expand
|
||
to get a 64-bit operand, but will complain if any of the two least
|
||
significant bits are set. The howto members reflect a simple GETA. */
|
||
HOWTO (R_MMIX_GETA, /* type */
|
||
2, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
19, /* bitsize */
|
||
TRUE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_signed, /* complain_on_overflow */
|
||
mmix_elf_reloc, /* special_function */
|
||
"R_MMIX_GETA", /* name */
|
||
FALSE, /* partial_inplace */
|
||
~0x0100ffff, /* src_mask */
|
||
0x0100ffff, /* dst_mask */
|
||
TRUE), /* pcrel_offset */
|
||
|
||
HOWTO (R_MMIX_GETA_1, /* type */
|
||
2, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
19, /* bitsize */
|
||
TRUE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_signed, /* complain_on_overflow */
|
||
mmix_elf_reloc, /* special_function */
|
||
"R_MMIX_GETA_1", /* name */
|
||
FALSE, /* partial_inplace */
|
||
~0x0100ffff, /* src_mask */
|
||
0x0100ffff, /* dst_mask */
|
||
TRUE), /* pcrel_offset */
|
||
|
||
HOWTO (R_MMIX_GETA_2, /* type */
|
||
2, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
19, /* bitsize */
|
||
TRUE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_signed, /* complain_on_overflow */
|
||
mmix_elf_reloc, /* special_function */
|
||
"R_MMIX_GETA_2", /* name */
|
||
FALSE, /* partial_inplace */
|
||
~0x0100ffff, /* src_mask */
|
||
0x0100ffff, /* dst_mask */
|
||
TRUE), /* pcrel_offset */
|
||
|
||
HOWTO (R_MMIX_GETA_3, /* type */
|
||
2, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
19, /* bitsize */
|
||
TRUE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_signed, /* complain_on_overflow */
|
||
mmix_elf_reloc, /* special_function */
|
||
"R_MMIX_GETA_3", /* name */
|
||
FALSE, /* partial_inplace */
|
||
~0x0100ffff, /* src_mask */
|
||
0x0100ffff, /* dst_mask */
|
||
TRUE), /* pcrel_offset */
|
||
|
||
/* The conditional branches are supposed to reach any (code) address.
|
||
It can silently expand to a 64-bit operand, but will emit an error if
|
||
any of the two least significant bits are set. The howto members
|
||
reflect a simple branch. */
|
||
HOWTO (R_MMIX_CBRANCH, /* type */
|
||
2, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
19, /* bitsize */
|
||
TRUE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_signed, /* complain_on_overflow */
|
||
mmix_elf_reloc, /* special_function */
|
||
"R_MMIX_CBRANCH", /* name */
|
||
FALSE, /* partial_inplace */
|
||
~0x0100ffff, /* src_mask */
|
||
0x0100ffff, /* dst_mask */
|
||
TRUE), /* pcrel_offset */
|
||
|
||
HOWTO (R_MMIX_CBRANCH_J, /* type */
|
||
2, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
19, /* bitsize */
|
||
TRUE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_signed, /* complain_on_overflow */
|
||
mmix_elf_reloc, /* special_function */
|
||
"R_MMIX_CBRANCH_J", /* name */
|
||
FALSE, /* partial_inplace */
|
||
~0x0100ffff, /* src_mask */
|
||
0x0100ffff, /* dst_mask */
|
||
TRUE), /* pcrel_offset */
|
||
|
||
HOWTO (R_MMIX_CBRANCH_1, /* type */
|
||
2, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
19, /* bitsize */
|
||
TRUE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_signed, /* complain_on_overflow */
|
||
mmix_elf_reloc, /* special_function */
|
||
"R_MMIX_CBRANCH_1", /* name */
|
||
FALSE, /* partial_inplace */
|
||
~0x0100ffff, /* src_mask */
|
||
0x0100ffff, /* dst_mask */
|
||
TRUE), /* pcrel_offset */
|
||
|
||
HOWTO (R_MMIX_CBRANCH_2, /* type */
|
||
2, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
19, /* bitsize */
|
||
TRUE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_signed, /* complain_on_overflow */
|
||
mmix_elf_reloc, /* special_function */
|
||
"R_MMIX_CBRANCH_2", /* name */
|
||
FALSE, /* partial_inplace */
|
||
~0x0100ffff, /* src_mask */
|
||
0x0100ffff, /* dst_mask */
|
||
TRUE), /* pcrel_offset */
|
||
|
||
HOWTO (R_MMIX_CBRANCH_3, /* type */
|
||
2, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
19, /* bitsize */
|
||
TRUE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_signed, /* complain_on_overflow */
|
||
mmix_elf_reloc, /* special_function */
|
||
"R_MMIX_CBRANCH_3", /* name */
|
||
FALSE, /* partial_inplace */
|
||
~0x0100ffff, /* src_mask */
|
||
0x0100ffff, /* dst_mask */
|
||
TRUE), /* pcrel_offset */
|
||
|
||
/* The PUSHJ instruction can reach any (code) address, as long as it's
|
||
the beginning of a function (no usable restriction). It can silently
|
||
expand to a 64-bit operand, but will emit an error if any of the two
|
||
least significant bits are set. It can also expand into a call to a
|
||
stub; see R_MMIX_PUSHJ_STUBBABLE. The howto members reflect a simple
|
||
PUSHJ. */
|
||
HOWTO (R_MMIX_PUSHJ, /* type */
|
||
2, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
19, /* bitsize */
|
||
TRUE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_signed, /* complain_on_overflow */
|
||
mmix_elf_reloc, /* special_function */
|
||
"R_MMIX_PUSHJ", /* name */
|
||
FALSE, /* partial_inplace */
|
||
~0x0100ffff, /* src_mask */
|
||
0x0100ffff, /* dst_mask */
|
||
TRUE), /* pcrel_offset */
|
||
|
||
HOWTO (R_MMIX_PUSHJ_1, /* type */
|
||
2, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
19, /* bitsize */
|
||
TRUE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_signed, /* complain_on_overflow */
|
||
mmix_elf_reloc, /* special_function */
|
||
"R_MMIX_PUSHJ_1", /* name */
|
||
FALSE, /* partial_inplace */
|
||
~0x0100ffff, /* src_mask */
|
||
0x0100ffff, /* dst_mask */
|
||
TRUE), /* pcrel_offset */
|
||
|
||
HOWTO (R_MMIX_PUSHJ_2, /* type */
|
||
2, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
19, /* bitsize */
|
||
TRUE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_signed, /* complain_on_overflow */
|
||
mmix_elf_reloc, /* special_function */
|
||
"R_MMIX_PUSHJ_2", /* name */
|
||
FALSE, /* partial_inplace */
|
||
~0x0100ffff, /* src_mask */
|
||
0x0100ffff, /* dst_mask */
|
||
TRUE), /* pcrel_offset */
|
||
|
||
HOWTO (R_MMIX_PUSHJ_3, /* type */
|
||
2, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
19, /* bitsize */
|
||
TRUE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_signed, /* complain_on_overflow */
|
||
mmix_elf_reloc, /* special_function */
|
||
"R_MMIX_PUSHJ_3", /* name */
|
||
FALSE, /* partial_inplace */
|
||
~0x0100ffff, /* src_mask */
|
||
0x0100ffff, /* dst_mask */
|
||
TRUE), /* pcrel_offset */
|
||
|
||
/* A JMP is supposed to reach any (code) address. By itself, it can
|
||
reach +-64M; the expansion can reach all 64 bits. Note that the 64M
|
||
limit is soon reached if you link the program in wildly different
|
||
memory segments. The howto members reflect a trivial JMP. */
|
||
HOWTO (R_MMIX_JMP, /* type */
|
||
2, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
27, /* bitsize */
|
||
TRUE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_signed, /* complain_on_overflow */
|
||
mmix_elf_reloc, /* special_function */
|
||
"R_MMIX_JMP", /* name */
|
||
FALSE, /* partial_inplace */
|
||
~0x1ffffff, /* src_mask */
|
||
0x1ffffff, /* dst_mask */
|
||
TRUE), /* pcrel_offset */
|
||
|
||
HOWTO (R_MMIX_JMP_1, /* type */
|
||
2, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
27, /* bitsize */
|
||
TRUE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_signed, /* complain_on_overflow */
|
||
mmix_elf_reloc, /* special_function */
|
||
"R_MMIX_JMP_1", /* name */
|
||
FALSE, /* partial_inplace */
|
||
~0x1ffffff, /* src_mask */
|
||
0x1ffffff, /* dst_mask */
|
||
TRUE), /* pcrel_offset */
|
||
|
||
HOWTO (R_MMIX_JMP_2, /* type */
|
||
2, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
27, /* bitsize */
|
||
TRUE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_signed, /* complain_on_overflow */
|
||
mmix_elf_reloc, /* special_function */
|
||
"R_MMIX_JMP_2", /* name */
|
||
FALSE, /* partial_inplace */
|
||
~0x1ffffff, /* src_mask */
|
||
0x1ffffff, /* dst_mask */
|
||
TRUE), /* pcrel_offset */
|
||
|
||
HOWTO (R_MMIX_JMP_3, /* type */
|
||
2, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
27, /* bitsize */
|
||
TRUE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_signed, /* complain_on_overflow */
|
||
mmix_elf_reloc, /* special_function */
|
||
"R_MMIX_JMP_3", /* name */
|
||
FALSE, /* partial_inplace */
|
||
~0x1ffffff, /* src_mask */
|
||
0x1ffffff, /* dst_mask */
|
||
TRUE), /* pcrel_offset */
|
||
|
||
/* When we don't emit link-time-relaxable code from the assembler, or
|
||
when relaxation has done all it can do, these relocs are used. For
|
||
GETA/PUSHJ/branches. */
|
||
HOWTO (R_MMIX_ADDR19, /* type */
|
||
2, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
19, /* bitsize */
|
||
TRUE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_signed, /* complain_on_overflow */
|
||
mmix_elf_reloc, /* special_function */
|
||
"R_MMIX_ADDR19", /* name */
|
||
FALSE, /* partial_inplace */
|
||
~0x0100ffff, /* src_mask */
|
||
0x0100ffff, /* dst_mask */
|
||
TRUE), /* pcrel_offset */
|
||
|
||
/* For JMP. */
|
||
HOWTO (R_MMIX_ADDR27, /* type */
|
||
2, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
27, /* bitsize */
|
||
TRUE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_signed, /* complain_on_overflow */
|
||
mmix_elf_reloc, /* special_function */
|
||
"R_MMIX_ADDR27", /* name */
|
||
FALSE, /* partial_inplace */
|
||
~0x1ffffff, /* src_mask */
|
||
0x1ffffff, /* dst_mask */
|
||
TRUE), /* pcrel_offset */
|
||
|
||
/* A general register or the value 0..255. If a value, then the
|
||
instruction (offset -3) needs adjusting. */
|
||
HOWTO (R_MMIX_REG_OR_BYTE, /* type */
|
||
0, /* rightshift */
|
||
1, /* size (0 = byte, 1 = short, 2 = long) */
|
||
8, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
mmix_elf_reloc, /* special_function */
|
||
"R_MMIX_REG_OR_BYTE", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0xff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
/* A general register. */
|
||
HOWTO (R_MMIX_REG, /* type */
|
||
0, /* rightshift */
|
||
1, /* size (0 = byte, 1 = short, 2 = long) */
|
||
8, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
mmix_elf_reloc, /* special_function */
|
||
"R_MMIX_REG", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0xff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
/* A register plus an index, corresponding to the relocation expression.
|
||
The sizes must correspond to the valid range of the expression, while
|
||
the bitmasks correspond to what we store in the image. */
|
||
HOWTO (R_MMIX_BASE_PLUS_OFFSET, /* type */
|
||
0, /* rightshift */
|
||
4, /* size (0 = byte, 1 = short, 2 = long) */
|
||
64, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
mmix_elf_reloc, /* special_function */
|
||
"R_MMIX_BASE_PLUS_OFFSET", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0xffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
/* A "magic" relocation for a LOCAL expression, asserting that the
|
||
expression is less than the number of global registers. No actual
|
||
modification of the contents is done. Implementing this as a
|
||
relocation was less intrusive than e.g. putting such expressions in a
|
||
section to discard *after* relocation. */
|
||
HOWTO (R_MMIX_LOCAL, /* type */
|
||
0, /* rightshift */
|
||
0, /* size (0 = byte, 1 = short, 2 = long) */
|
||
0, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
mmix_elf_reloc, /* special_function */
|
||
"R_MMIX_LOCAL", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
HOWTO (R_MMIX_PUSHJ_STUBBABLE, /* type */
|
||
2, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
19, /* bitsize */
|
||
TRUE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_signed, /* complain_on_overflow */
|
||
mmix_elf_reloc, /* special_function */
|
||
"R_MMIX_PUSHJ_STUBBABLE", /* name */
|
||
FALSE, /* partial_inplace */
|
||
~0x0100ffff, /* src_mask */
|
||
0x0100ffff, /* dst_mask */
|
||
TRUE) /* pcrel_offset */
|
||
};
|
||
|
||
|
||
/* Map BFD reloc types to MMIX ELF reloc types. */
|
||
|
||
struct mmix_reloc_map
|
||
{
|
||
bfd_reloc_code_real_type bfd_reloc_val;
|
||
enum elf_mmix_reloc_type elf_reloc_val;
|
||
};
|
||
|
||
|
||
static const struct mmix_reloc_map mmix_reloc_map[] =
|
||
{
|
||
{BFD_RELOC_NONE, R_MMIX_NONE},
|
||
{BFD_RELOC_8, R_MMIX_8},
|
||
{BFD_RELOC_16, R_MMIX_16},
|
||
{BFD_RELOC_24, R_MMIX_24},
|
||
{BFD_RELOC_32, R_MMIX_32},
|
||
{BFD_RELOC_64, R_MMIX_64},
|
||
{BFD_RELOC_8_PCREL, R_MMIX_PC_8},
|
||
{BFD_RELOC_16_PCREL, R_MMIX_PC_16},
|
||
{BFD_RELOC_24_PCREL, R_MMIX_PC_24},
|
||
{BFD_RELOC_32_PCREL, R_MMIX_PC_32},
|
||
{BFD_RELOC_64_PCREL, R_MMIX_PC_64},
|
||
{BFD_RELOC_VTABLE_INHERIT, R_MMIX_GNU_VTINHERIT},
|
||
{BFD_RELOC_VTABLE_ENTRY, R_MMIX_GNU_VTENTRY},
|
||
{BFD_RELOC_MMIX_GETA, R_MMIX_GETA},
|
||
{BFD_RELOC_MMIX_CBRANCH, R_MMIX_CBRANCH},
|
||
{BFD_RELOC_MMIX_PUSHJ, R_MMIX_PUSHJ},
|
||
{BFD_RELOC_MMIX_JMP, R_MMIX_JMP},
|
||
{BFD_RELOC_MMIX_ADDR19, R_MMIX_ADDR19},
|
||
{BFD_RELOC_MMIX_ADDR27, R_MMIX_ADDR27},
|
||
{BFD_RELOC_MMIX_REG_OR_BYTE, R_MMIX_REG_OR_BYTE},
|
||
{BFD_RELOC_MMIX_REG, R_MMIX_REG},
|
||
{BFD_RELOC_MMIX_BASE_PLUS_OFFSET, R_MMIX_BASE_PLUS_OFFSET},
|
||
{BFD_RELOC_MMIX_LOCAL, R_MMIX_LOCAL},
|
||
{BFD_RELOC_MMIX_PUSHJ_STUBBABLE, R_MMIX_PUSHJ_STUBBABLE}
|
||
};
|
||
|
||
static reloc_howto_type *
|
||
bfd_elf64_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
|
||
bfd_reloc_code_real_type code)
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = 0;
|
||
i < sizeof (mmix_reloc_map) / sizeof (mmix_reloc_map[0]);
|
||
i++)
|
||
{
|
||
if (mmix_reloc_map[i].bfd_reloc_val == code)
|
||
return &elf_mmix_howto_table[mmix_reloc_map[i].elf_reloc_val];
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
static reloc_howto_type *
|
||
bfd_elf64_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
|
||
const char *r_name)
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = 0;
|
||
i < sizeof (elf_mmix_howto_table) / sizeof (elf_mmix_howto_table[0]);
|
||
i++)
|
||
if (elf_mmix_howto_table[i].name != NULL
|
||
&& strcasecmp (elf_mmix_howto_table[i].name, r_name) == 0)
|
||
return &elf_mmix_howto_table[i];
|
||
|
||
return NULL;
|
||
}
|
||
|
||
static bfd_boolean
|
||
mmix_elf_new_section_hook (bfd *abfd, asection *sec)
|
||
{
|
||
if (!sec->used_by_bfd)
|
||
{
|
||
struct _mmix_elf_section_data *sdata;
|
||
bfd_size_type amt = sizeof (*sdata);
|
||
|
||
sdata = bfd_zalloc (abfd, amt);
|
||
if (sdata == NULL)
|
||
return FALSE;
|
||
sec->used_by_bfd = sdata;
|
||
}
|
||
|
||
return _bfd_elf_new_section_hook (abfd, sec);
|
||
}
|
||
|
||
|
||
/* This function performs the actual bitfiddling and sanity check for a
|
||
final relocation. Each relocation gets its *worst*-case expansion
|
||
in size when it arrives here; any reduction in size should have been
|
||
caught in linker relaxation earlier. When we get here, the relocation
|
||
looks like the smallest instruction with SWYM:s (nop:s) appended to the
|
||
max size. We fill in those nop:s.
|
||
|
||
R_MMIX_GETA: (FIXME: Relaxation should break this up in 1, 2, 3 tetra)
|
||
GETA $N,foo
|
||
->
|
||
SETL $N,foo & 0xffff
|
||
INCML $N,(foo >> 16) & 0xffff
|
||
INCMH $N,(foo >> 32) & 0xffff
|
||
INCH $N,(foo >> 48) & 0xffff
|
||
|
||
R_MMIX_CBRANCH: (FIXME: Relaxation should break this up, but
|
||
condbranches needing relaxation might be rare enough to not be
|
||
worthwhile.)
|
||
[P]Bcc $N,foo
|
||
->
|
||
[~P]B~cc $N,.+20
|
||
SETL $255,foo & ...
|
||
INCML ...
|
||
INCMH ...
|
||
INCH ...
|
||
GO $255,$255,0
|
||
|
||
R_MMIX_PUSHJ: (FIXME: Relaxation...)
|
||
PUSHJ $N,foo
|
||
->
|
||
SETL $255,foo & ...
|
||
INCML ...
|
||
INCMH ...
|
||
INCH ...
|
||
PUSHGO $N,$255,0
|
||
|
||
R_MMIX_JMP: (FIXME: Relaxation...)
|
||
JMP foo
|
||
->
|
||
SETL $255,foo & ...
|
||
INCML ...
|
||
INCMH ...
|
||
INCH ...
|
||
GO $255,$255,0
|
||
|
||
R_MMIX_ADDR19 and R_MMIX_ADDR27 are just filled in. */
|
||
|
||
static bfd_reloc_status_type
|
||
mmix_elf_perform_relocation (asection *isec, reloc_howto_type *howto,
|
||
void *datap, bfd_vma addr, bfd_vma value,
|
||
char **error_message)
|
||
{
|
||
bfd *abfd = isec->owner;
|
||
bfd_reloc_status_type flag = bfd_reloc_ok;
|
||
bfd_reloc_status_type r;
|
||
int offs = 0;
|
||
int reg = 255;
|
||
|
||
/* The worst case bits are all similar SETL/INCML/INCMH/INCH sequences.
|
||
We handle the differences here and the common sequence later. */
|
||
switch (howto->type)
|
||
{
|
||
case R_MMIX_GETA:
|
||
offs = 0;
|
||
reg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
|
||
|
||
/* We change to an absolute value. */
|
||
value += addr;
|
||
break;
|
||
|
||
case R_MMIX_CBRANCH:
|
||
{
|
||
int in1 = bfd_get_16 (abfd, (bfd_byte *) datap) << 16;
|
||
|
||
/* Invert the condition and prediction bit, and set the offset
|
||
to five instructions ahead.
|
||
|
||
We *can* do better if we want to. If the branch is found to be
|
||
within limits, we could leave the branch as is; there'll just
|
||
be a bunch of NOP:s after it. But we shouldn't see this
|
||
sequence often enough that it's worth doing it. */
|
||
|
||
bfd_put_32 (abfd,
|
||
(((in1 ^ ((PRED_INV_BIT | COND_INV_BIT) << 24)) & ~0xffff)
|
||
| (24/4)),
|
||
(bfd_byte *) datap);
|
||
|
||
/* Put a "GO $255,$255,0" after the common sequence. */
|
||
bfd_put_32 (abfd,
|
||
((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) | 0xffff00,
|
||
(bfd_byte *) datap + 20);
|
||
|
||
/* Common sequence starts at offset 4. */
|
||
offs = 4;
|
||
|
||
/* We change to an absolute value. */
|
||
value += addr;
|
||
}
|
||
break;
|
||
|
||
case R_MMIX_PUSHJ_STUBBABLE:
|
||
/* If the address fits, we're fine. */
|
||
if ((value & 3) == 0
|
||
/* Note rightshift 0; see R_MMIX_JMP case below. */
|
||
&& (r = bfd_check_overflow (complain_overflow_signed,
|
||
howto->bitsize,
|
||
0,
|
||
bfd_arch_bits_per_address (abfd),
|
||
value)) == bfd_reloc_ok)
|
||
goto pcrel_mmix_reloc_fits;
|
||
else
|
||
{
|
||
bfd_size_type size = isec->rawsize ? isec->rawsize : isec->size;
|
||
|
||
/* We have the bytes at the PUSHJ insn and need to get the
|
||
position for the stub. There's supposed to be room allocated
|
||
for the stub. */
|
||
bfd_byte *stubcontents
|
||
= ((bfd_byte *) datap
|
||
- (addr - (isec->output_section->vma + isec->output_offset))
|
||
+ size
|
||
+ mmix_elf_section_data (isec)->pjs.stub_offset);
|
||
bfd_vma stubaddr;
|
||
|
||
if (mmix_elf_section_data (isec)->pjs.n_pushj_relocs == 0)
|
||
{
|
||
/* This shouldn't happen when linking to ELF or mmo, so
|
||
this is an attempt to link to "binary", right? We
|
||
can't access the output bfd, so we can't verify that
|
||
assumption. We only know that the critical
|
||
mmix_elf_check_common_relocs has not been called,
|
||
which happens when the output format is different
|
||
from the input format (and is not mmo). */
|
||
if (! mmix_elf_section_data (isec)->has_warned_pushj)
|
||
{
|
||
/* For the first such error per input section, produce
|
||
a verbose message. */
|
||
*error_message
|
||
= _("invalid input relocation when producing"
|
||
" non-ELF, non-mmo format output;"
|
||
" please use the objcopy program to convert from"
|
||
" ELF or mmo,"
|
||
" or assemble using"
|
||
" \"-no-expand\" (for gcc, \"-Wa,-no-expand\"");
|
||
mmix_elf_section_data (isec)->has_warned_pushj = TRUE;
|
||
return bfd_reloc_dangerous;
|
||
}
|
||
|
||
/* For subsequent errors, return this one, which is
|
||
rate-limited but looks a little bit different,
|
||
hopefully without affecting user-friendliness. */
|
||
return bfd_reloc_overflow;
|
||
}
|
||
|
||
/* The address doesn't fit, so redirect the PUSHJ to the
|
||
location of the stub. */
|
||
r = mmix_elf_perform_relocation (isec,
|
||
&elf_mmix_howto_table
|
||
[R_MMIX_ADDR19],
|
||
datap,
|
||
addr,
|
||
isec->output_section->vma
|
||
+ isec->output_offset
|
||
+ size
|
||
+ (mmix_elf_section_data (isec)
|
||
->pjs.stub_offset)
|
||
- addr,
|
||
error_message);
|
||
if (r != bfd_reloc_ok)
|
||
return r;
|
||
|
||
stubaddr
|
||
= (isec->output_section->vma
|
||
+ isec->output_offset
|
||
+ size
|
||
+ mmix_elf_section_data (isec)->pjs.stub_offset);
|
||
|
||
/* We generate a simple JMP if that suffices, else the whole 5
|
||
insn stub. */
|
||
if (bfd_check_overflow (complain_overflow_signed,
|
||
elf_mmix_howto_table[R_MMIX_ADDR27].bitsize,
|
||
0,
|
||
bfd_arch_bits_per_address (abfd),
|
||
addr + value - stubaddr) == bfd_reloc_ok)
|
||
{
|
||
bfd_put_32 (abfd, JMP_INSN_BYTE << 24, stubcontents);
|
||
r = mmix_elf_perform_relocation (isec,
|
||
&elf_mmix_howto_table
|
||
[R_MMIX_ADDR27],
|
||
stubcontents,
|
||
stubaddr,
|
||
value + addr - stubaddr,
|
||
error_message);
|
||
mmix_elf_section_data (isec)->pjs.stub_offset += 4;
|
||
|
||
if (size + mmix_elf_section_data (isec)->pjs.stub_offset
|
||
> isec->size)
|
||
abort ();
|
||
|
||
return r;
|
||
}
|
||
else
|
||
{
|
||
/* Put a "GO $255,0" after the common sequence. */
|
||
bfd_put_32 (abfd,
|
||
((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
|
||
| 0xff00, (bfd_byte *) stubcontents + 16);
|
||
|
||
/* Prepare for the general code to set the first part of the
|
||
linker stub, and */
|
||
value += addr;
|
||
datap = stubcontents;
|
||
mmix_elf_section_data (isec)->pjs.stub_offset
|
||
+= MAX_PUSHJ_STUB_SIZE;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case R_MMIX_PUSHJ:
|
||
{
|
||
int inreg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
|
||
|
||
/* Put a "PUSHGO $N,$255,0" after the common sequence. */
|
||
bfd_put_32 (abfd,
|
||
((PUSHGO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
|
||
| (inreg << 16)
|
||
| 0xff00,
|
||
(bfd_byte *) datap + 16);
|
||
|
||
/* We change to an absolute value. */
|
||
value += addr;
|
||
}
|
||
break;
|
||
|
||
case R_MMIX_JMP:
|
||
/* This one is a little special. If we get here on a non-relaxing
|
||
link, and the destination is actually in range, we don't need to
|
||
execute the nops.
|
||
If so, we fall through to the bit-fiddling relocs.
|
||
|
||
FIXME: bfd_check_overflow seems broken; the relocation is
|
||
rightshifted before testing, so supply a zero rightshift. */
|
||
|
||
if (! ((value & 3) == 0
|
||
&& (r = bfd_check_overflow (complain_overflow_signed,
|
||
howto->bitsize,
|
||
0,
|
||
bfd_arch_bits_per_address (abfd),
|
||
value)) == bfd_reloc_ok))
|
||
{
|
||
/* If the relocation doesn't fit in a JMP, we let the NOP:s be
|
||
modified below, and put a "GO $255,$255,0" after the
|
||
address-loading sequence. */
|
||
bfd_put_32 (abfd,
|
||
((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
|
||
| 0xffff00,
|
||
(bfd_byte *) datap + 16);
|
||
|
||
/* We change to an absolute value. */
|
||
value += addr;
|
||
break;
|
||
}
|
||
/* FALLTHROUGH. */
|
||
case R_MMIX_ADDR19:
|
||
case R_MMIX_ADDR27:
|
||
pcrel_mmix_reloc_fits:
|
||
/* These must be in range, or else we emit an error. */
|
||
if ((value & 3) == 0
|
||
/* Note rightshift 0; see above. */
|
||
&& (r = bfd_check_overflow (complain_overflow_signed,
|
||
howto->bitsize,
|
||
0,
|
||
bfd_arch_bits_per_address (abfd),
|
||
value)) == bfd_reloc_ok)
|
||
{
|
||
bfd_vma in1
|
||
= bfd_get_32 (abfd, (bfd_byte *) datap);
|
||
bfd_vma highbit;
|
||
|
||
if ((bfd_signed_vma) value < 0)
|
||
{
|
||
highbit = 1 << 24;
|
||
value += (1 << (howto->bitsize - 1));
|
||
}
|
||
else
|
||
highbit = 0;
|
||
|
||
value >>= 2;
|
||
|
||
bfd_put_32 (abfd,
|
||
(in1 & howto->src_mask)
|
||
| highbit
|
||
| (value & howto->dst_mask),
|
||
(bfd_byte *) datap);
|
||
|
||
return bfd_reloc_ok;
|
||
}
|
||
else
|
||
return bfd_reloc_overflow;
|
||
|
||
case R_MMIX_BASE_PLUS_OFFSET:
|
||
{
|
||
struct bpo_reloc_section_info *bpodata
|
||
= mmix_elf_section_data (isec)->bpo.reloc;
|
||
asection *bpo_greg_section;
|
||
struct bpo_greg_section_info *gregdata;
|
||
size_t bpo_index;
|
||
|
||
if (bpodata == NULL)
|
||
{
|
||
/* This shouldn't happen when linking to ELF or mmo, so
|
||
this is an attempt to link to "binary", right? We
|
||
can't access the output bfd, so we can't verify that
|
||
assumption. We only know that the critical
|
||
mmix_elf_check_common_relocs has not been called, which
|
||
happens when the output format is different from the
|
||
input format (and is not mmo). */
|
||
if (! mmix_elf_section_data (isec)->has_warned_bpo)
|
||
{
|
||
/* For the first such error per input section, produce
|
||
a verbose message. */
|
||
*error_message
|
||
= _("invalid input relocation when producing"
|
||
" non-ELF, non-mmo format output;"
|
||
" please use the objcopy program to convert from"
|
||
" ELF or mmo,"
|
||
" or compile using the gcc-option"
|
||
" \"-mno-base-addresses\".");
|
||
mmix_elf_section_data (isec)->has_warned_bpo = TRUE;
|
||
return bfd_reloc_dangerous;
|
||
}
|
||
|
||
/* For subsequent errors, return this one, which is
|
||
rate-limited but looks a little bit different,
|
||
hopefully without affecting user-friendliness. */
|
||
return bfd_reloc_overflow;
|
||
}
|
||
|
||
bpo_greg_section = bpodata->bpo_greg_section;
|
||
gregdata = mmix_elf_section_data (bpo_greg_section)->bpo.greg;
|
||
bpo_index = gregdata->bpo_reloc_indexes[bpodata->bpo_index++];
|
||
|
||
/* A consistency check: The value we now have in "relocation" must
|
||
be the same as the value we stored for that relocation. It
|
||
doesn't cost much, so can be left in at all times. */
|
||
if (value != gregdata->reloc_request[bpo_index].value)
|
||
{
|
||
_bfd_error_handler
|
||
/* xgettext:c-format */
|
||
(_("%pB: Internal inconsistency error for value for\n\
|
||
linker-allocated global register: linked: %#" PRIx64 " != relaxed: %#" PRIx64 ""),
|
||
isec->owner,
|
||
(uint64_t) value,
|
||
(uint64_t) gregdata->reloc_request[bpo_index].value);
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return bfd_reloc_overflow;
|
||
}
|
||
|
||
/* Then store the register number and offset for that register
|
||
into datap and datap + 1 respectively. */
|
||
bfd_put_8 (abfd,
|
||
gregdata->reloc_request[bpo_index].regindex
|
||
+ bpo_greg_section->output_section->vma / 8,
|
||
datap);
|
||
bfd_put_8 (abfd,
|
||
gregdata->reloc_request[bpo_index].offset,
|
||
((unsigned char *) datap) + 1);
|
||
return bfd_reloc_ok;
|
||
}
|
||
|
||
case R_MMIX_REG_OR_BYTE:
|
||
case R_MMIX_REG:
|
||
if (value > 255)
|
||
return bfd_reloc_overflow;
|
||
bfd_put_8 (abfd, value, datap);
|
||
return bfd_reloc_ok;
|
||
|
||
default:
|
||
BAD_CASE (howto->type);
|
||
}
|
||
|
||
/* This code adds the common SETL/INCML/INCMH/INCH worst-case
|
||
sequence. */
|
||
|
||
/* Lowest two bits must be 0. We return bfd_reloc_overflow for
|
||
everything that looks strange. */
|
||
if (value & 3)
|
||
flag = bfd_reloc_overflow;
|
||
|
||
bfd_put_32 (abfd,
|
||
(SETL_INSN_BYTE << 24) | (value & 0xffff) | (reg << 16),
|
||
(bfd_byte *) datap + offs);
|
||
bfd_put_32 (abfd,
|
||
(INCML_INSN_BYTE << 24) | ((value >> 16) & 0xffff) | (reg << 16),
|
||
(bfd_byte *) datap + offs + 4);
|
||
bfd_put_32 (abfd,
|
||
(INCMH_INSN_BYTE << 24) | ((value >> 32) & 0xffff) | (reg << 16),
|
||
(bfd_byte *) datap + offs + 8);
|
||
bfd_put_32 (abfd,
|
||
(INCH_INSN_BYTE << 24) | ((value >> 48) & 0xffff) | (reg << 16),
|
||
(bfd_byte *) datap + offs + 12);
|
||
|
||
return flag;
|
||
}
|
||
|
||
/* Set the howto pointer for an MMIX ELF reloc (type RELA). */
|
||
|
||
static bfd_boolean
|
||
mmix_info_to_howto_rela (bfd *abfd,
|
||
arelent *cache_ptr,
|
||
Elf_Internal_Rela *dst)
|
||
{
|
||
unsigned int r_type;
|
||
|
||
r_type = ELF64_R_TYPE (dst->r_info);
|
||
if (r_type >= (unsigned int) R_MMIX_max)
|
||
{
|
||
/* xgettext:c-format */
|
||
_bfd_error_handler (_("%pB: unsupported relocation type %#x"),
|
||
abfd, r_type);
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
cache_ptr->howto = &elf_mmix_howto_table[r_type];
|
||
return TRUE;
|
||
}
|
||
|
||
/* Any MMIX-specific relocation gets here at assembly time or when linking
|
||
to other formats (such as mmo); this is the relocation function from
|
||
the reloc_table. We don't get here for final pure ELF linking. */
|
||
|
||
static bfd_reloc_status_type
|
||
mmix_elf_reloc (bfd *abfd,
|
||
arelent *reloc_entry,
|
||
asymbol *symbol,
|
||
void * data,
|
||
asection *input_section,
|
||
bfd *output_bfd,
|
||
char **error_message)
|
||
{
|
||
bfd_vma relocation;
|
||
bfd_reloc_status_type r;
|
||
asection *reloc_target_output_section;
|
||
bfd_reloc_status_type flag = bfd_reloc_ok;
|
||
bfd_vma output_base = 0;
|
||
|
||
r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
|
||
input_section, output_bfd, error_message);
|
||
|
||
/* If that was all that was needed (i.e. this isn't a final link, only
|
||
some segment adjustments), we're done. */
|
||
if (r != bfd_reloc_continue)
|
||
return r;
|
||
|
||
if (bfd_is_und_section (symbol->section)
|
||
&& (symbol->flags & BSF_WEAK) == 0
|
||
&& output_bfd == (bfd *) NULL)
|
||
return bfd_reloc_undefined;
|
||
|
||
/* Is the address of the relocation really within the section? */
|
||
if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
|
||
return bfd_reloc_outofrange;
|
||
|
||
/* Work out which section the relocation is targeted at and the
|
||
initial relocation command value. */
|
||
|
||
/* Get symbol value. (Common symbols are special.) */
|
||
if (bfd_is_com_section (symbol->section))
|
||
relocation = 0;
|
||
else
|
||
relocation = symbol->value;
|
||
|
||
reloc_target_output_section = bfd_get_output_section (symbol);
|
||
|
||
/* Here the variable relocation holds the final address of the symbol we
|
||
are relocating against, plus any addend. */
|
||
if (output_bfd)
|
||
output_base = 0;
|
||
else
|
||
output_base = reloc_target_output_section->vma;
|
||
|
||
relocation += output_base + symbol->section->output_offset;
|
||
|
||
if (output_bfd != (bfd *) NULL)
|
||
{
|
||
/* Add in supplied addend. */
|
||
relocation += reloc_entry->addend;
|
||
|
||
/* This is a partial relocation, and we want to apply the
|
||
relocation to the reloc entry rather than the raw data.
|
||
Modify the reloc inplace to reflect what we now know. */
|
||
reloc_entry->addend = relocation;
|
||
reloc_entry->address += input_section->output_offset;
|
||
return flag;
|
||
}
|
||
|
||
return mmix_final_link_relocate (reloc_entry->howto, input_section,
|
||
data, reloc_entry->address,
|
||
reloc_entry->addend, relocation,
|
||
bfd_asymbol_name (symbol),
|
||
reloc_target_output_section,
|
||
error_message);
|
||
}
|
||
|
||
/* Relocate an MMIX ELF section. Modified from elf32-fr30.c; look to it
|
||
for guidance if you're thinking of copying this. */
|
||
|
||
static bfd_boolean
|
||
mmix_elf_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
|
||
struct bfd_link_info *info,
|
||
bfd *input_bfd,
|
||
asection *input_section,
|
||
bfd_byte *contents,
|
||
Elf_Internal_Rela *relocs,
|
||
Elf_Internal_Sym *local_syms,
|
||
asection **local_sections)
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
struct elf_link_hash_entry **sym_hashes;
|
||
Elf_Internal_Rela *rel;
|
||
Elf_Internal_Rela *relend;
|
||
bfd_size_type size;
|
||
size_t pjsno = 0;
|
||
|
||
size = input_section->rawsize ? input_section->rawsize : input_section->size;
|
||
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
||
sym_hashes = elf_sym_hashes (input_bfd);
|
||
relend = relocs + input_section->reloc_count;
|
||
|
||
/* Zero the stub area before we start. */
|
||
if (input_section->rawsize != 0
|
||
&& input_section->size > input_section->rawsize)
|
||
memset (contents + input_section->rawsize, 0,
|
||
input_section->size - input_section->rawsize);
|
||
|
||
for (rel = relocs; rel < relend; rel ++)
|
||
{
|
||
reloc_howto_type *howto;
|
||
unsigned long r_symndx;
|
||
Elf_Internal_Sym *sym;
|
||
asection *sec;
|
||
struct elf_link_hash_entry *h;
|
||
bfd_vma relocation;
|
||
bfd_reloc_status_type r;
|
||
const char *name = NULL;
|
||
int r_type;
|
||
bfd_boolean undefined_signalled = FALSE;
|
||
|
||
r_type = ELF64_R_TYPE (rel->r_info);
|
||
|
||
if (r_type == R_MMIX_GNU_VTINHERIT
|
||
|| r_type == R_MMIX_GNU_VTENTRY)
|
||
continue;
|
||
|
||
r_symndx = ELF64_R_SYM (rel->r_info);
|
||
|
||
howto = elf_mmix_howto_table + ELF64_R_TYPE (rel->r_info);
|
||
h = NULL;
|
||
sym = NULL;
|
||
sec = NULL;
|
||
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
{
|
||
sym = local_syms + r_symndx;
|
||
sec = local_sections [r_symndx];
|
||
relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
|
||
|
||
name = bfd_elf_string_from_elf_section (input_bfd,
|
||
symtab_hdr->sh_link,
|
||
sym->st_name);
|
||
if (name == NULL)
|
||
name = bfd_section_name (input_bfd, sec);
|
||
}
|
||
else
|
||
{
|
||
bfd_boolean unresolved_reloc, ignored;
|
||
|
||
RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
|
||
r_symndx, symtab_hdr, sym_hashes,
|
||
h, sec, relocation,
|
||
unresolved_reloc, undefined_signalled,
|
||
ignored);
|
||
name = h->root.root.string;
|
||
}
|
||
|
||
if (sec != NULL && discarded_section (sec))
|
||
RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
|
||
rel, 1, relend, howto, 0, contents);
|
||
|
||
if (bfd_link_relocatable (info))
|
||
{
|
||
/* This is a relocatable link. For most relocs we don't have to
|
||
change anything, unless the reloc is against a section
|
||
symbol, in which case we have to adjust according to where
|
||
the section symbol winds up in the output section. */
|
||
if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
|
||
rel->r_addend += sec->output_offset;
|
||
|
||
/* For PUSHJ stub relocs however, we may need to change the
|
||
reloc and the section contents, if the reloc doesn't reach
|
||
beyond the end of the output section and previous stubs.
|
||
Then we change the section contents to be a PUSHJ to the end
|
||
of the input section plus stubs (we can do that without using
|
||
a reloc), and then we change the reloc to be a R_MMIX_PUSHJ
|
||
at the stub location. */
|
||
if (r_type == R_MMIX_PUSHJ_STUBBABLE)
|
||
{
|
||
/* We've already checked whether we need a stub; use that
|
||
knowledge. */
|
||
if (mmix_elf_section_data (input_section)->pjs.stub_size[pjsno]
|
||
!= 0)
|
||
{
|
||
Elf_Internal_Rela relcpy;
|
||
|
||
if (mmix_elf_section_data (input_section)
|
||
->pjs.stub_size[pjsno] != MAX_PUSHJ_STUB_SIZE)
|
||
abort ();
|
||
|
||
/* There's already a PUSHJ insn there, so just fill in
|
||
the offset bits to the stub. */
|
||
if (mmix_final_link_relocate (elf_mmix_howto_table
|
||
+ R_MMIX_ADDR19,
|
||
input_section,
|
||
contents,
|
||
rel->r_offset,
|
||
0,
|
||
input_section
|
||
->output_section->vma
|
||
+ input_section->output_offset
|
||
+ size
|
||
+ mmix_elf_section_data (input_section)
|
||
->pjs.stub_offset,
|
||
NULL, NULL, NULL) != bfd_reloc_ok)
|
||
return FALSE;
|
||
|
||
/* Put a JMP insn at the stub; it goes with the
|
||
R_MMIX_JMP reloc. */
|
||
bfd_put_32 (output_bfd, JMP_INSN_BYTE << 24,
|
||
contents
|
||
+ size
|
||
+ mmix_elf_section_data (input_section)
|
||
->pjs.stub_offset);
|
||
|
||
/* Change the reloc to be at the stub, and to a full
|
||
R_MMIX_JMP reloc. */
|
||
rel->r_info = ELF64_R_INFO (r_symndx, R_MMIX_JMP);
|
||
rel->r_offset
|
||
= (size
|
||
+ mmix_elf_section_data (input_section)
|
||
->pjs.stub_offset);
|
||
|
||
mmix_elf_section_data (input_section)->pjs.stub_offset
|
||
+= MAX_PUSHJ_STUB_SIZE;
|
||
|
||
/* Shift this reloc to the end of the relocs to maintain
|
||
the r_offset sorted reloc order. */
|
||
relcpy = *rel;
|
||
memmove (rel, rel + 1, (char *) relend - (char *) rel);
|
||
relend[-1] = relcpy;
|
||
|
||
/* Back up one reloc, or else we'd skip the next reloc
|
||
in turn. */
|
||
rel--;
|
||
}
|
||
|
||
pjsno++;
|
||
}
|
||
continue;
|
||
}
|
||
|
||
r = mmix_final_link_relocate (howto, input_section,
|
||
contents, rel->r_offset,
|
||
rel->r_addend, relocation, name, sec, NULL);
|
||
|
||
if (r != bfd_reloc_ok)
|
||
{
|
||
const char * msg = (const char *) NULL;
|
||
|
||
switch (r)
|
||
{
|
||
case bfd_reloc_overflow:
|
||
info->callbacks->reloc_overflow
|
||
(info, (h ? &h->root : NULL), name, howto->name,
|
||
(bfd_vma) 0, input_bfd, input_section, rel->r_offset);
|
||
break;
|
||
|
||
case bfd_reloc_undefined:
|
||
/* We may have sent this message above. */
|
||
if (! undefined_signalled)
|
||
info->callbacks->undefined_symbol
|
||
(info, name, input_bfd, input_section, rel->r_offset, TRUE);
|
||
undefined_signalled = TRUE;
|
||
break;
|
||
|
||
case bfd_reloc_outofrange:
|
||
msg = _("internal error: out of range error");
|
||
break;
|
||
|
||
case bfd_reloc_notsupported:
|
||
msg = _("internal error: unsupported relocation error");
|
||
break;
|
||
|
||
case bfd_reloc_dangerous:
|
||
msg = _("internal error: dangerous relocation");
|
||
break;
|
||
|
||
default:
|
||
msg = _("internal error: unknown error");
|
||
break;
|
||
}
|
||
|
||
if (msg)
|
||
(*info->callbacks->warning) (info, msg, name, input_bfd,
|
||
input_section, rel->r_offset);
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Perform a single relocation. By default we use the standard BFD
|
||
routines. A few relocs we have to do ourselves. */
|
||
|
||
static bfd_reloc_status_type
|
||
mmix_final_link_relocate (reloc_howto_type *howto, asection *input_section,
|
||
bfd_byte *contents, bfd_vma r_offset,
|
||
bfd_signed_vma r_addend, bfd_vma relocation,
|
||
const char *symname, asection *symsec,
|
||
char **error_message)
|
||
{
|
||
bfd_reloc_status_type r = bfd_reloc_ok;
|
||
bfd_vma addr
|
||
= (input_section->output_section->vma
|
||
+ input_section->output_offset
|
||
+ r_offset);
|
||
bfd_signed_vma srel
|
||
= (bfd_signed_vma) relocation + r_addend;
|
||
|
||
switch (howto->type)
|
||
{
|
||
/* All these are PC-relative. */
|
||
case R_MMIX_PUSHJ_STUBBABLE:
|
||
case R_MMIX_PUSHJ:
|
||
case R_MMIX_CBRANCH:
|
||
case R_MMIX_ADDR19:
|
||
case R_MMIX_GETA:
|
||
case R_MMIX_ADDR27:
|
||
case R_MMIX_JMP:
|
||
contents += r_offset;
|
||
|
||
srel -= (input_section->output_section->vma
|
||
+ input_section->output_offset
|
||
+ r_offset);
|
||
|
||
r = mmix_elf_perform_relocation (input_section, howto, contents,
|
||
addr, srel, error_message);
|
||
break;
|
||
|
||
case R_MMIX_BASE_PLUS_OFFSET:
|
||
if (symsec == NULL)
|
||
return bfd_reloc_undefined;
|
||
|
||
/* Check that we're not relocating against a register symbol. */
|
||
if (strcmp (bfd_get_section_name (symsec->owner, symsec),
|
||
MMIX_REG_CONTENTS_SECTION_NAME) == 0
|
||
|| strcmp (bfd_get_section_name (symsec->owner, symsec),
|
||
MMIX_REG_SECTION_NAME) == 0)
|
||
{
|
||
/* Note: This is separated out into two messages in order
|
||
to ease the translation into other languages. */
|
||
if (symname == NULL || *symname == 0)
|
||
_bfd_error_handler
|
||
/* xgettext:c-format */
|
||
(_("%pB: base-plus-offset relocation against register symbol:"
|
||
" (unknown) in %pA"),
|
||
input_section->owner, symsec);
|
||
else
|
||
_bfd_error_handler
|
||
/* xgettext:c-format */
|
||
(_("%pB: base-plus-offset relocation against register symbol:"
|
||
" %s in %pA"),
|
||
input_section->owner, symname, symsec);
|
||
return bfd_reloc_overflow;
|
||
}
|
||
goto do_mmix_reloc;
|
||
|
||
case R_MMIX_REG_OR_BYTE:
|
||
case R_MMIX_REG:
|
||
/* For now, we handle these alike. They must refer to an register
|
||
symbol, which is either relative to the register section and in
|
||
the range 0..255, or is in the register contents section with vma
|
||
regno * 8. */
|
||
|
||
/* FIXME: A better way to check for reg contents section?
|
||
FIXME: Postpone section->scaling to mmix_elf_perform_relocation? */
|
||
if (symsec == NULL)
|
||
return bfd_reloc_undefined;
|
||
|
||
if (strcmp (bfd_get_section_name (symsec->owner, symsec),
|
||
MMIX_REG_CONTENTS_SECTION_NAME) == 0)
|
||
{
|
||
if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
|
||
{
|
||
/* The bfd_reloc_outofrange return value, though intuitively
|
||
a better value, will not get us an error. */
|
||
return bfd_reloc_overflow;
|
||
}
|
||
srel /= 8;
|
||
}
|
||
else if (strcmp (bfd_get_section_name (symsec->owner, symsec),
|
||
MMIX_REG_SECTION_NAME) == 0)
|
||
{
|
||
if (srel < 0 || srel > 255)
|
||
/* The bfd_reloc_outofrange return value, though intuitively a
|
||
better value, will not get us an error. */
|
||
return bfd_reloc_overflow;
|
||
}
|
||
else
|
||
{
|
||
/* Note: This is separated out into two messages in order
|
||
to ease the translation into other languages. */
|
||
if (symname == NULL || *symname == 0)
|
||
_bfd_error_handler
|
||
/* xgettext:c-format */
|
||
(_("%pB: register relocation against non-register symbol:"
|
||
" (unknown) in %pA"),
|
||
input_section->owner, symsec);
|
||
else
|
||
_bfd_error_handler
|
||
/* xgettext:c-format */
|
||
(_("%pB: register relocation against non-register symbol:"
|
||
" %s in %pA"),
|
||
input_section->owner, symname, symsec);
|
||
|
||
/* The bfd_reloc_outofrange return value, though intuitively a
|
||
better value, will not get us an error. */
|
||
return bfd_reloc_overflow;
|
||
}
|
||
do_mmix_reloc:
|
||
contents += r_offset;
|
||
r = mmix_elf_perform_relocation (input_section, howto, contents,
|
||
addr, srel, error_message);
|
||
break;
|
||
|
||
case R_MMIX_LOCAL:
|
||
/* This isn't a real relocation, it's just an assertion that the
|
||
final relocation value corresponds to a local register. We
|
||
ignore the actual relocation; nothing is changed. */
|
||
{
|
||
asection *regsec
|
||
= bfd_get_section_by_name (input_section->output_section->owner,
|
||
MMIX_REG_CONTENTS_SECTION_NAME);
|
||
bfd_vma first_global;
|
||
|
||
/* Check that this is an absolute value, or a reference to the
|
||
register contents section or the register (symbol) section.
|
||
Absolute numbers can get here as undefined section. Undefined
|
||
symbols are signalled elsewhere, so there's no conflict in us
|
||
accidentally handling it. */
|
||
if (!bfd_is_abs_section (symsec)
|
||
&& !bfd_is_und_section (symsec)
|
||
&& strcmp (bfd_get_section_name (symsec->owner, symsec),
|
||
MMIX_REG_CONTENTS_SECTION_NAME) != 0
|
||
&& strcmp (bfd_get_section_name (symsec->owner, symsec),
|
||
MMIX_REG_SECTION_NAME) != 0)
|
||
{
|
||
_bfd_error_handler
|
||
(_("%pB: directive LOCAL valid only with a register or absolute value"),
|
||
input_section->owner);
|
||
|
||
return bfd_reloc_overflow;
|
||
}
|
||
|
||
/* If we don't have a register contents section, then $255 is the
|
||
first global register. */
|
||
if (regsec == NULL)
|
||
first_global = 255;
|
||
else
|
||
{
|
||
first_global
|
||
= bfd_get_section_vma (input_section->output_section->owner,
|
||
regsec) / 8;
|
||
if (strcmp (bfd_get_section_name (symsec->owner, symsec),
|
||
MMIX_REG_CONTENTS_SECTION_NAME) == 0)
|
||
{
|
||
if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
|
||
/* The bfd_reloc_outofrange return value, though
|
||
intuitively a better value, will not get us an error. */
|
||
return bfd_reloc_overflow;
|
||
srel /= 8;
|
||
}
|
||
}
|
||
|
||
if ((bfd_vma) srel >= first_global)
|
||
{
|
||
/* FIXME: Better error message. */
|
||
_bfd_error_handler
|
||
/* xgettext:c-format */
|
||
(_("%pB: LOCAL directive: "
|
||
"register $%" PRId64 " is not a local register;"
|
||
" first global register is $%" PRId64),
|
||
input_section->owner, (int64_t) srel, (int64_t) first_global);
|
||
|
||
return bfd_reloc_overflow;
|
||
}
|
||
}
|
||
r = bfd_reloc_ok;
|
||
break;
|
||
|
||
default:
|
||
r = _bfd_final_link_relocate (howto, input_section->owner, input_section,
|
||
contents, r_offset,
|
||
relocation, r_addend);
|
||
}
|
||
|
||
return r;
|
||
}
|
||
|
||
/* Return the section that should be marked against GC for a given
|
||
relocation. */
|
||
|
||
static asection *
|
||
mmix_elf_gc_mark_hook (asection *sec,
|
||
struct bfd_link_info *info,
|
||
Elf_Internal_Rela *rel,
|
||
struct elf_link_hash_entry *h,
|
||
Elf_Internal_Sym *sym)
|
||
{
|
||
if (h != NULL)
|
||
switch (ELF64_R_TYPE (rel->r_info))
|
||
{
|
||
case R_MMIX_GNU_VTINHERIT:
|
||
case R_MMIX_GNU_VTENTRY:
|
||
return NULL;
|
||
}
|
||
|
||
return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
|
||
}
|
||
|
||
/* Sort register relocs to come before expanding relocs. */
|
||
|
||
static int
|
||
mmix_elf_sort_relocs (const void * p1, const void * p2)
|
||
{
|
||
const Elf_Internal_Rela *r1 = (const Elf_Internal_Rela *) p1;
|
||
const Elf_Internal_Rela *r2 = (const Elf_Internal_Rela *) p2;
|
||
int r1_is_reg, r2_is_reg;
|
||
|
||
/* Sort primarily on r_offset & ~3, so relocs are done to consecutive
|
||
insns. */
|
||
if ((r1->r_offset & ~(bfd_vma) 3) > (r2->r_offset & ~(bfd_vma) 3))
|
||
return 1;
|
||
else if ((r1->r_offset & ~(bfd_vma) 3) < (r2->r_offset & ~(bfd_vma) 3))
|
||
return -1;
|
||
|
||
r1_is_reg
|
||
= (ELF64_R_TYPE (r1->r_info) == R_MMIX_REG_OR_BYTE
|
||
|| ELF64_R_TYPE (r1->r_info) == R_MMIX_REG);
|
||
r2_is_reg
|
||
= (ELF64_R_TYPE (r2->r_info) == R_MMIX_REG_OR_BYTE
|
||
|| ELF64_R_TYPE (r2->r_info) == R_MMIX_REG);
|
||
if (r1_is_reg != r2_is_reg)
|
||
return r2_is_reg - r1_is_reg;
|
||
|
||
/* Neither or both are register relocs. Then sort on full offset. */
|
||
if (r1->r_offset > r2->r_offset)
|
||
return 1;
|
||
else if (r1->r_offset < r2->r_offset)
|
||
return -1;
|
||
return 0;
|
||
}
|
||
|
||
/* Subset of mmix_elf_check_relocs, common to ELF and mmo linking. */
|
||
|
||
static bfd_boolean
|
||
mmix_elf_check_common_relocs (bfd *abfd,
|
||
struct bfd_link_info *info,
|
||
asection *sec,
|
||
const Elf_Internal_Rela *relocs)
|
||
{
|
||
bfd *bpo_greg_owner = NULL;
|
||
asection *allocated_gregs_section = NULL;
|
||
struct bpo_greg_section_info *gregdata = NULL;
|
||
struct bpo_reloc_section_info *bpodata = NULL;
|
||
const Elf_Internal_Rela *rel;
|
||
const Elf_Internal_Rela *rel_end;
|
||
|
||
/* We currently have to abuse this COFF-specific member, since there's
|
||
no target-machine-dedicated member. There's no alternative outside
|
||
the bfd_link_info struct; we can't specialize a hash-table since
|
||
they're different between ELF and mmo. */
|
||
bpo_greg_owner = (bfd *) info->base_file;
|
||
|
||
rel_end = relocs + sec->reloc_count;
|
||
for (rel = relocs; rel < rel_end; rel++)
|
||
{
|
||
switch (ELF64_R_TYPE (rel->r_info))
|
||
{
|
||
/* This relocation causes a GREG allocation. We need to count
|
||
them, and we need to create a section for them, so we need an
|
||
object to fake as the owner of that section. We can't use
|
||
the ELF dynobj for this, since the ELF bits assume lots of
|
||
DSO-related stuff if that member is non-NULL. */
|
||
case R_MMIX_BASE_PLUS_OFFSET:
|
||
/* We don't do anything with this reloc for a relocatable link. */
|
||
if (bfd_link_relocatable (info))
|
||
break;
|
||
|
||
if (bpo_greg_owner == NULL)
|
||
{
|
||
bpo_greg_owner = abfd;
|
||
info->base_file = bpo_greg_owner;
|
||
}
|
||
|
||
if (allocated_gregs_section == NULL)
|
||
allocated_gregs_section
|
||
= bfd_get_section_by_name (bpo_greg_owner,
|
||
MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
|
||
|
||
if (allocated_gregs_section == NULL)
|
||
{
|
||
allocated_gregs_section
|
||
= bfd_make_section_with_flags (bpo_greg_owner,
|
||
MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME,
|
||
(SEC_HAS_CONTENTS
|
||
| SEC_IN_MEMORY
|
||
| SEC_LINKER_CREATED));
|
||
/* Setting both SEC_ALLOC and SEC_LOAD means the section is
|
||
treated like any other section, and we'd get errors for
|
||
address overlap with the text section. Let's set none of
|
||
those flags, as that is what currently happens for usual
|
||
GREG allocations, and that works. */
|
||
if (allocated_gregs_section == NULL
|
||
|| !bfd_set_section_alignment (bpo_greg_owner,
|
||
allocated_gregs_section,
|
||
3))
|
||
return FALSE;
|
||
|
||
gregdata = (struct bpo_greg_section_info *)
|
||
bfd_zalloc (bpo_greg_owner, sizeof (struct bpo_greg_section_info));
|
||
if (gregdata == NULL)
|
||
return FALSE;
|
||
mmix_elf_section_data (allocated_gregs_section)->bpo.greg
|
||
= gregdata;
|
||
}
|
||
else if (gregdata == NULL)
|
||
gregdata
|
||
= mmix_elf_section_data (allocated_gregs_section)->bpo.greg;
|
||
|
||
/* Get ourselves some auxiliary info for the BPO-relocs. */
|
||
if (bpodata == NULL)
|
||
{
|
||
/* No use doing a separate iteration pass to find the upper
|
||
limit - just use the number of relocs. */
|
||
bpodata = (struct bpo_reloc_section_info *)
|
||
bfd_alloc (bpo_greg_owner,
|
||
sizeof (struct bpo_reloc_section_info)
|
||
* (sec->reloc_count + 1));
|
||
if (bpodata == NULL)
|
||
return FALSE;
|
||
mmix_elf_section_data (sec)->bpo.reloc = bpodata;
|
||
bpodata->first_base_plus_offset_reloc
|
||
= bpodata->bpo_index
|
||
= gregdata->n_max_bpo_relocs;
|
||
bpodata->bpo_greg_section
|
||
= allocated_gregs_section;
|
||
bpodata->n_bpo_relocs_this_section = 0;
|
||
}
|
||
|
||
bpodata->n_bpo_relocs_this_section++;
|
||
gregdata->n_max_bpo_relocs++;
|
||
|
||
/* We don't get another chance to set this before GC; we've not
|
||
set up any hook that runs before GC. */
|
||
gregdata->n_bpo_relocs
|
||
= gregdata->n_max_bpo_relocs;
|
||
break;
|
||
|
||
case R_MMIX_PUSHJ_STUBBABLE:
|
||
mmix_elf_section_data (sec)->pjs.n_pushj_relocs++;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Allocate per-reloc stub storage and initialize it to the max stub
|
||
size. */
|
||
if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs != 0)
|
||
{
|
||
size_t i;
|
||
|
||
mmix_elf_section_data (sec)->pjs.stub_size
|
||
= bfd_alloc (abfd, mmix_elf_section_data (sec)->pjs.n_pushj_relocs
|
||
* sizeof (mmix_elf_section_data (sec)
|
||
->pjs.stub_size[0]));
|
||
if (mmix_elf_section_data (sec)->pjs.stub_size == NULL)
|
||
return FALSE;
|
||
|
||
for (i = 0; i < mmix_elf_section_data (sec)->pjs.n_pushj_relocs; i++)
|
||
mmix_elf_section_data (sec)->pjs.stub_size[i] = MAX_PUSHJ_STUB_SIZE;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Look through the relocs for a section during the first phase. */
|
||
|
||
static bfd_boolean
|
||
mmix_elf_check_relocs (bfd *abfd,
|
||
struct bfd_link_info *info,
|
||
asection *sec,
|
||
const Elf_Internal_Rela *relocs)
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
struct elf_link_hash_entry **sym_hashes;
|
||
const Elf_Internal_Rela *rel;
|
||
const Elf_Internal_Rela *rel_end;
|
||
|
||
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
sym_hashes = elf_sym_hashes (abfd);
|
||
|
||
/* First we sort the relocs so that any register relocs come before
|
||
expansion-relocs to the same insn. FIXME: Not done for mmo. */
|
||
qsort ((void *) relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
|
||
mmix_elf_sort_relocs);
|
||
|
||
/* Do the common part. */
|
||
if (!mmix_elf_check_common_relocs (abfd, info, sec, relocs))
|
||
return FALSE;
|
||
|
||
if (bfd_link_relocatable (info))
|
||
return TRUE;
|
||
|
||
rel_end = relocs + sec->reloc_count;
|
||
for (rel = relocs; rel < rel_end; rel++)
|
||
{
|
||
struct elf_link_hash_entry *h;
|
||
unsigned long r_symndx;
|
||
|
||
r_symndx = ELF64_R_SYM (rel->r_info);
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
h = NULL;
|
||
else
|
||
{
|
||
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
||
while (h->root.type == bfd_link_hash_indirect
|
||
|| h->root.type == bfd_link_hash_warning)
|
||
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
||
}
|
||
|
||
switch (ELF64_R_TYPE (rel->r_info))
|
||
{
|
||
/* This relocation describes the C++ object vtable hierarchy.
|
||
Reconstruct it for later use during GC. */
|
||
case R_MMIX_GNU_VTINHERIT:
|
||
if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
|
||
return FALSE;
|
||
break;
|
||
|
||
/* This relocation describes which C++ vtable entries are actually
|
||
used. Record for later use during GC. */
|
||
case R_MMIX_GNU_VTENTRY:
|
||
BFD_ASSERT (h != NULL);
|
||
if (h != NULL
|
||
&& !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
|
||
return FALSE;
|
||
break;
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Wrapper for mmix_elf_check_common_relocs, called when linking to mmo.
|
||
Copied from elf_link_add_object_symbols. */
|
||
|
||
bfd_boolean
|
||
_bfd_mmix_check_all_relocs (bfd *abfd, struct bfd_link_info *info)
|
||
{
|
||
asection *o;
|
||
|
||
for (o = abfd->sections; o != NULL; o = o->next)
|
||
{
|
||
Elf_Internal_Rela *internal_relocs;
|
||
bfd_boolean ok;
|
||
|
||
if ((o->flags & SEC_RELOC) == 0
|
||
|| o->reloc_count == 0
|
||
|| ((info->strip == strip_all || info->strip == strip_debugger)
|
||
&& (o->flags & SEC_DEBUGGING) != 0)
|
||
|| bfd_is_abs_section (o->output_section))
|
||
continue;
|
||
|
||
internal_relocs
|
||
= _bfd_elf_link_read_relocs (abfd, o, NULL,
|
||
(Elf_Internal_Rela *) NULL,
|
||
info->keep_memory);
|
||
if (internal_relocs == NULL)
|
||
return FALSE;
|
||
|
||
ok = mmix_elf_check_common_relocs (abfd, info, o, internal_relocs);
|
||
|
||
if (! info->keep_memory)
|
||
free (internal_relocs);
|
||
|
||
if (! ok)
|
||
return FALSE;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Change symbols relative to the reg contents section to instead be to
|
||
the register section, and scale them down to correspond to the register
|
||
number. */
|
||
|
||
static int
|
||
mmix_elf_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
||
const char *name ATTRIBUTE_UNUSED,
|
||
Elf_Internal_Sym *sym,
|
||
asection *input_sec,
|
||
struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
|
||
{
|
||
if (input_sec != NULL
|
||
&& input_sec->name != NULL
|
||
&& ELF_ST_TYPE (sym->st_info) != STT_SECTION
|
||
&& strcmp (input_sec->name, MMIX_REG_CONTENTS_SECTION_NAME) == 0)
|
||
{
|
||
sym->st_value /= 8;
|
||
sym->st_shndx = SHN_REGISTER;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* We fake a register section that holds values that are register numbers.
|
||
Having a SHN_REGISTER and register section translates better to other
|
||
formats (e.g. mmo) than for example a STT_REGISTER attribute.
|
||
This section faking is based on a construct in elf32-mips.c. */
|
||
static asection mmix_elf_reg_section;
|
||
static asymbol mmix_elf_reg_section_symbol;
|
||
static asymbol *mmix_elf_reg_section_symbol_ptr;
|
||
|
||
/* Handle the special section numbers that a symbol may use. */
|
||
|
||
void
|
||
mmix_elf_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym)
|
||
{
|
||
elf_symbol_type *elfsym;
|
||
|
||
elfsym = (elf_symbol_type *) asym;
|
||
switch (elfsym->internal_elf_sym.st_shndx)
|
||
{
|
||
case SHN_REGISTER:
|
||
if (mmix_elf_reg_section.name == NULL)
|
||
{
|
||
/* Initialize the register section. */
|
||
mmix_elf_reg_section.name = MMIX_REG_SECTION_NAME;
|
||
mmix_elf_reg_section.flags = SEC_NO_FLAGS;
|
||
mmix_elf_reg_section.output_section = &mmix_elf_reg_section;
|
||
mmix_elf_reg_section.symbol = &mmix_elf_reg_section_symbol;
|
||
mmix_elf_reg_section.symbol_ptr_ptr = &mmix_elf_reg_section_symbol_ptr;
|
||
mmix_elf_reg_section_symbol.name = MMIX_REG_SECTION_NAME;
|
||
mmix_elf_reg_section_symbol.flags = BSF_SECTION_SYM;
|
||
mmix_elf_reg_section_symbol.section = &mmix_elf_reg_section;
|
||
mmix_elf_reg_section_symbol_ptr = &mmix_elf_reg_section_symbol;
|
||
}
|
||
asym->section = &mmix_elf_reg_section;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Given a BFD section, try to locate the corresponding ELF section
|
||
index. */
|
||
|
||
static bfd_boolean
|
||
mmix_elf_section_from_bfd_section (bfd * abfd ATTRIBUTE_UNUSED,
|
||
asection * sec,
|
||
int * retval)
|
||
{
|
||
if (strcmp (bfd_get_section_name (abfd, sec), MMIX_REG_SECTION_NAME) == 0)
|
||
*retval = SHN_REGISTER;
|
||
else
|
||
return FALSE;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Hook called by the linker routine which adds symbols from an object
|
||
file. We must handle the special SHN_REGISTER section number here.
|
||
|
||
We also check that we only have *one* each of the section-start
|
||
symbols, since otherwise having two with the same value would cause
|
||
them to be "merged", but with the contents serialized. */
|
||
|
||
static bfd_boolean
|
||
mmix_elf_add_symbol_hook (bfd *abfd,
|
||
struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
||
Elf_Internal_Sym *sym,
|
||
const char **namep ATTRIBUTE_UNUSED,
|
||
flagword *flagsp ATTRIBUTE_UNUSED,
|
||
asection **secp,
|
||
bfd_vma *valp ATTRIBUTE_UNUSED)
|
||
{
|
||
if (sym->st_shndx == SHN_REGISTER)
|
||
{
|
||
*secp = bfd_make_section_old_way (abfd, MMIX_REG_SECTION_NAME);
|
||
(*secp)->flags |= SEC_LINKER_CREATED;
|
||
}
|
||
else if ((*namep)[0] == '_' && (*namep)[1] == '_' && (*namep)[2] == '.'
|
||
&& CONST_STRNEQ (*namep, MMIX_LOC_SECTION_START_SYMBOL_PREFIX))
|
||
{
|
||
/* See if we have another one. */
|
||
struct bfd_link_hash_entry *h = bfd_link_hash_lookup (info->hash,
|
||
*namep,
|
||
FALSE,
|
||
FALSE,
|
||
FALSE);
|
||
|
||
if (h != NULL && h->type != bfd_link_hash_undefined)
|
||
{
|
||
/* How do we get the asymbol (or really: the filename) from h?
|
||
h->u.def.section->owner is NULL. */
|
||
_bfd_error_handler
|
||
/* xgettext:c-format */
|
||
(_("%pB: error: multiple definition of `%s'; start of %s "
|
||
"is set in a earlier linked file"),
|
||
abfd, *namep,
|
||
*namep + strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX));
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* We consider symbols matching "L.*:[0-9]+" to be local symbols. */
|
||
|
||
static bfd_boolean
|
||
mmix_elf_is_local_label_name (bfd *abfd, const char *name)
|
||
{
|
||
const char *colpos;
|
||
int digits;
|
||
|
||
/* Also include the default local-label definition. */
|
||
if (_bfd_elf_is_local_label_name (abfd, name))
|
||
return TRUE;
|
||
|
||
if (*name != 'L')
|
||
return FALSE;
|
||
|
||
/* If there's no ":", or more than one, it's not a local symbol. */
|
||
colpos = strchr (name, ':');
|
||
if (colpos == NULL || strchr (colpos + 1, ':') != NULL)
|
||
return FALSE;
|
||
|
||
/* Check that there are remaining characters and that they are digits. */
|
||
if (colpos[1] == 0)
|
||
return FALSE;
|
||
|
||
digits = strspn (colpos + 1, "0123456789");
|
||
return digits != 0 && colpos[1 + digits] == 0;
|
||
}
|
||
|
||
/* We get rid of the register section here. */
|
||
|
||
bfd_boolean
|
||
mmix_elf_final_link (bfd *abfd, struct bfd_link_info *info)
|
||
{
|
||
/* We never output a register section, though we create one for
|
||
temporary measures. Check that nobody entered contents into it. */
|
||
asection *reg_section;
|
||
|
||
reg_section = bfd_get_section_by_name (abfd, MMIX_REG_SECTION_NAME);
|
||
|
||
if (reg_section != NULL)
|
||
{
|
||
/* FIXME: Pass error state gracefully. */
|
||
if (bfd_get_section_flags (abfd, reg_section) & SEC_HAS_CONTENTS)
|
||
_bfd_abort (__FILE__, __LINE__, _("register section has contents\n"));
|
||
|
||
/* Really remove the section, if it hasn't already been done. */
|
||
if (!bfd_section_removed_from_list (abfd, reg_section))
|
||
{
|
||
bfd_section_list_remove (abfd, reg_section);
|
||
--abfd->section_count;
|
||
}
|
||
}
|
||
|
||
if (! bfd_elf_final_link (abfd, info))
|
||
return FALSE;
|
||
|
||
/* Since this section is marked SEC_LINKER_CREATED, it isn't output by
|
||
the regular linker machinery. We do it here, like other targets with
|
||
special sections. */
|
||
if (info->base_file != NULL)
|
||
{
|
||
asection *greg_section
|
||
= bfd_get_section_by_name ((bfd *) info->base_file,
|
||
MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
|
||
if (!bfd_set_section_contents (abfd,
|
||
greg_section->output_section,
|
||
greg_section->contents,
|
||
(file_ptr) greg_section->output_offset,
|
||
greg_section->size))
|
||
return FALSE;
|
||
}
|
||
return TRUE;
|
||
}
|
||
|
||
/* We need to include the maximum size of PUSHJ-stubs in the initial
|
||
section size. This is expected to shrink during linker relaxation. */
|
||
|
||
static void
|
||
mmix_set_relaxable_size (bfd *abfd ATTRIBUTE_UNUSED,
|
||
asection *sec,
|
||
void *ptr)
|
||
{
|
||
struct bfd_link_info *info = ptr;
|
||
|
||
/* Make sure we only do this for section where we know we want this,
|
||
otherwise we might end up resetting the size of COMMONs. */
|
||
if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0)
|
||
return;
|
||
|
||
sec->rawsize = sec->size;
|
||
sec->size += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
|
||
* MAX_PUSHJ_STUB_SIZE);
|
||
|
||
/* For use in relocatable link, we start with a max stubs size. See
|
||
mmix_elf_relax_section. */
|
||
if (bfd_link_relocatable (info) && sec->output_section)
|
||
mmix_elf_section_data (sec->output_section)->pjs.stubs_size_sum
|
||
+= (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
|
||
* MAX_PUSHJ_STUB_SIZE);
|
||
}
|
||
|
||
/* Initialize stuff for the linker-generated GREGs to match
|
||
R_MMIX_BASE_PLUS_OFFSET relocs seen by the linker. */
|
||
|
||
bfd_boolean
|
||
_bfd_mmix_before_linker_allocation (bfd *abfd ATTRIBUTE_UNUSED,
|
||
struct bfd_link_info *info)
|
||
{
|
||
asection *bpo_gregs_section;
|
||
bfd *bpo_greg_owner;
|
||
struct bpo_greg_section_info *gregdata;
|
||
size_t n_gregs;
|
||
bfd_vma gregs_size;
|
||
size_t i;
|
||
size_t *bpo_reloc_indexes;
|
||
bfd *ibfd;
|
||
|
||
/* Set the initial size of sections. */
|
||
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
|
||
bfd_map_over_sections (ibfd, mmix_set_relaxable_size, info);
|
||
|
||
/* The bpo_greg_owner bfd is supposed to have been set by
|
||
mmix_elf_check_relocs when the first R_MMIX_BASE_PLUS_OFFSET is seen.
|
||
If there is no such object, there was no R_MMIX_BASE_PLUS_OFFSET. */
|
||
bpo_greg_owner = (bfd *) info->base_file;
|
||
if (bpo_greg_owner == NULL)
|
||
return TRUE;
|
||
|
||
bpo_gregs_section
|
||
= bfd_get_section_by_name (bpo_greg_owner,
|
||
MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
|
||
|
||
if (bpo_gregs_section == NULL)
|
||
return TRUE;
|
||
|
||
/* We use the target-data handle in the ELF section data. */
|
||
gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
|
||
if (gregdata == NULL)
|
||
return FALSE;
|
||
|
||
n_gregs = gregdata->n_bpo_relocs;
|
||
gregdata->n_allocated_bpo_gregs = n_gregs;
|
||
|
||
/* When this reaches zero during relaxation, all entries have been
|
||
filled in and the size of the linker gregs can be calculated. */
|
||
gregdata->n_remaining_bpo_relocs_this_relaxation_round = n_gregs;
|
||
|
||
/* Set the zeroth-order estimate for the GREGs size. */
|
||
gregs_size = n_gregs * 8;
|
||
|
||
if (!bfd_set_section_size (bpo_greg_owner, bpo_gregs_section, gregs_size))
|
||
return FALSE;
|
||
|
||
/* Allocate and set up the GREG arrays. They're filled in at relaxation
|
||
time. Note that we must use the max number ever noted for the array,
|
||
since the index numbers were created before GC. */
|
||
gregdata->reloc_request
|
||
= bfd_zalloc (bpo_greg_owner,
|
||
sizeof (struct bpo_reloc_request)
|
||
* gregdata->n_max_bpo_relocs);
|
||
|
||
gregdata->bpo_reloc_indexes
|
||
= bpo_reloc_indexes
|
||
= bfd_alloc (bpo_greg_owner,
|
||
gregdata->n_max_bpo_relocs
|
||
* sizeof (size_t));
|
||
if (bpo_reloc_indexes == NULL)
|
||
return FALSE;
|
||
|
||
/* The default order is an identity mapping. */
|
||
for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
|
||
{
|
||
bpo_reloc_indexes[i] = i;
|
||
gregdata->reloc_request[i].bpo_reloc_no = i;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Fill in contents in the linker allocated gregs. Everything is
|
||
calculated at this point; we just move the contents into place here. */
|
||
|
||
bfd_boolean
|
||
_bfd_mmix_after_linker_allocation (bfd *abfd ATTRIBUTE_UNUSED,
|
||
struct bfd_link_info *link_info)
|
||
{
|
||
asection *bpo_gregs_section;
|
||
bfd *bpo_greg_owner;
|
||
struct bpo_greg_section_info *gregdata;
|
||
size_t n_gregs;
|
||
size_t i, j;
|
||
size_t lastreg;
|
||
bfd_byte *contents;
|
||
|
||
/* The bpo_greg_owner bfd is supposed to have been set by mmix_elf_check_relocs
|
||
when the first R_MMIX_BASE_PLUS_OFFSET is seen. If there is no such
|
||
object, there was no R_MMIX_BASE_PLUS_OFFSET. */
|
||
bpo_greg_owner = (bfd *) link_info->base_file;
|
||
if (bpo_greg_owner == NULL)
|
||
return TRUE;
|
||
|
||
bpo_gregs_section
|
||
= bfd_get_section_by_name (bpo_greg_owner,
|
||
MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
|
||
|
||
/* This can't happen without DSO handling. When DSOs are handled
|
||
without any R_MMIX_BASE_PLUS_OFFSET seen, there will be no such
|
||
section. */
|
||
if (bpo_gregs_section == NULL)
|
||
return TRUE;
|
||
|
||
/* We use the target-data handle in the ELF section data. */
|
||
|
||
gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
|
||
if (gregdata == NULL)
|
||
return FALSE;
|
||
|
||
n_gregs = gregdata->n_allocated_bpo_gregs;
|
||
|
||
bpo_gregs_section->contents
|
||
= contents = bfd_alloc (bpo_greg_owner, bpo_gregs_section->size);
|
||
if (contents == NULL)
|
||
return FALSE;
|
||
|
||
/* Sanity check: If these numbers mismatch, some relocation has not been
|
||
accounted for and the rest of gregdata is probably inconsistent.
|
||
It's a bug, but it's more helpful to identify it than segfaulting
|
||
below. */
|
||
if (gregdata->n_remaining_bpo_relocs_this_relaxation_round
|
||
!= gregdata->n_bpo_relocs)
|
||
{
|
||
_bfd_error_handler
|
||
/* xgettext:c-format */
|
||
(_("internal inconsistency: remaining %lu != max %lu;"
|
||
" please report this bug"),
|
||
(unsigned long) gregdata->n_remaining_bpo_relocs_this_relaxation_round,
|
||
(unsigned long) gregdata->n_bpo_relocs);
|
||
return FALSE;
|
||
}
|
||
|
||
for (lastreg = 255, i = 0, j = 0; j < n_gregs; i++)
|
||
if (gregdata->reloc_request[i].regindex != lastreg)
|
||
{
|
||
bfd_put_64 (bpo_greg_owner, gregdata->reloc_request[i].value,
|
||
contents + j * 8);
|
||
lastreg = gregdata->reloc_request[i].regindex;
|
||
j++;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Sort valid relocs to come before non-valid relocs, then on increasing
|
||
value. */
|
||
|
||
static int
|
||
bpo_reloc_request_sort_fn (const void * p1, const void * p2)
|
||
{
|
||
const struct bpo_reloc_request *r1 = (const struct bpo_reloc_request *) p1;
|
||
const struct bpo_reloc_request *r2 = (const struct bpo_reloc_request *) p2;
|
||
|
||
/* Primary function is validity; non-valid relocs sorted after valid
|
||
ones. */
|
||
if (r1->valid != r2->valid)
|
||
return r2->valid - r1->valid;
|
||
|
||
/* Then sort on value. Don't simplify and return just the difference of
|
||
the values: the upper bits of the 64-bit value would be truncated on
|
||
a host with 32-bit ints. */
|
||
if (r1->value != r2->value)
|
||
return r1->value > r2->value ? 1 : -1;
|
||
|
||
/* As a last re-sort, use the relocation number, so we get a stable
|
||
sort. The *addresses* aren't stable since items are swapped during
|
||
sorting. It depends on the qsort implementation if this actually
|
||
happens. */
|
||
return r1->bpo_reloc_no > r2->bpo_reloc_no
|
||
? 1 : (r1->bpo_reloc_no < r2->bpo_reloc_no ? -1 : 0);
|
||
}
|
||
|
||
/* For debug use only. Dumps the global register allocations resulting
|
||
from base-plus-offset relocs. */
|
||
|
||
void
|
||
mmix_dump_bpo_gregs (struct bfd_link_info *link_info,
|
||
void (*pf) (const char *fmt, ...))
|
||
{
|
||
bfd *bpo_greg_owner;
|
||
asection *bpo_gregs_section;
|
||
struct bpo_greg_section_info *gregdata;
|
||
unsigned int i;
|
||
|
||
if (link_info == NULL || link_info->base_file == NULL)
|
||
return;
|
||
|
||
bpo_greg_owner = (bfd *) link_info->base_file;
|
||
|
||
bpo_gregs_section
|
||
= bfd_get_section_by_name (bpo_greg_owner,
|
||
MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
|
||
|
||
if (bpo_gregs_section == NULL)
|
||
return;
|
||
|
||
gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
|
||
if (gregdata == NULL)
|
||
return;
|
||
|
||
if (pf == NULL)
|
||
pf = _bfd_error_handler;
|
||
|
||
/* These format strings are not translated. They are for debug purposes
|
||
only and never displayed to an end user. Should they escape, we
|
||
surely want them in original. */
|
||
(*pf) (" n_bpo_relocs: %u\n n_max_bpo_relocs: %u\n n_remain...round: %u\n\
|
||
n_allocated_bpo_gregs: %u\n", gregdata->n_bpo_relocs,
|
||
gregdata->n_max_bpo_relocs,
|
||
gregdata->n_remaining_bpo_relocs_this_relaxation_round,
|
||
gregdata->n_allocated_bpo_gregs);
|
||
|
||
if (gregdata->reloc_request)
|
||
for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
|
||
(*pf) ("%4u (%4u)/%4u#%u: 0x%08lx%08lx r: %3u o: %3u\n",
|
||
i,
|
||
(gregdata->bpo_reloc_indexes != NULL
|
||
? gregdata->bpo_reloc_indexes[i] : (size_t) -1),
|
||
gregdata->reloc_request[i].bpo_reloc_no,
|
||
gregdata->reloc_request[i].valid,
|
||
|
||
(unsigned long) (gregdata->reloc_request[i].value >> 32),
|
||
(unsigned long) gregdata->reloc_request[i].value,
|
||
gregdata->reloc_request[i].regindex,
|
||
gregdata->reloc_request[i].offset);
|
||
}
|
||
|
||
/* This links all R_MMIX_BASE_PLUS_OFFSET relocs into a special array, and
|
||
when the last such reloc is done, an index-array is sorted according to
|
||
the values and iterated over to produce register numbers (indexed by 0
|
||
from the first allocated register number) and offsets for use in real
|
||
relocation. (N.B.: Relocatable runs are handled, not just punted.)
|
||
|
||
PUSHJ stub accounting is also done here.
|
||
|
||
Symbol- and reloc-reading infrastructure copied from elf-m10200.c. */
|
||
|
||
static bfd_boolean
|
||
mmix_elf_relax_section (bfd *abfd,
|
||
asection *sec,
|
||
struct bfd_link_info *link_info,
|
||
bfd_boolean *again)
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
Elf_Internal_Rela *internal_relocs;
|
||
Elf_Internal_Rela *irel, *irelend;
|
||
asection *bpo_gregs_section = NULL;
|
||
struct bpo_greg_section_info *gregdata;
|
||
struct bpo_reloc_section_info *bpodata
|
||
= mmix_elf_section_data (sec)->bpo.reloc;
|
||
/* The initialization is to quiet compiler warnings. The value is to
|
||
spot a missing actual initialization. */
|
||
size_t bpono = (size_t) -1;
|
||
size_t pjsno = 0;
|
||
Elf_Internal_Sym *isymbuf = NULL;
|
||
bfd_size_type size = sec->rawsize ? sec->rawsize : sec->size;
|
||
|
||
mmix_elf_section_data (sec)->pjs.stubs_size_sum = 0;
|
||
|
||
/* Assume nothing changes. */
|
||
*again = FALSE;
|
||
|
||
/* We don't have to do anything if this section does not have relocs, or
|
||
if this is not a code section. */
|
||
if ((sec->flags & SEC_RELOC) == 0
|
||
|| sec->reloc_count == 0
|
||
|| (sec->flags & SEC_CODE) == 0
|
||
|| (sec->flags & SEC_LINKER_CREATED) != 0
|
||
/* If no R_MMIX_BASE_PLUS_OFFSET relocs and no PUSHJ-stub relocs,
|
||
then nothing to do. */
|
||
|| (bpodata == NULL
|
||
&& mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0))
|
||
return TRUE;
|
||
|
||
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
|
||
if (bpodata != NULL)
|
||
{
|
||
bpo_gregs_section = bpodata->bpo_greg_section;
|
||
gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
|
||
bpono = bpodata->first_base_plus_offset_reloc;
|
||
}
|
||
else
|
||
gregdata = NULL;
|
||
|
||
/* Get a copy of the native relocations. */
|
||
internal_relocs
|
||
= _bfd_elf_link_read_relocs (abfd, sec, NULL,
|
||
(Elf_Internal_Rela *) NULL,
|
||
link_info->keep_memory);
|
||
if (internal_relocs == NULL)
|
||
goto error_return;
|
||
|
||
/* Walk through them looking for relaxing opportunities. */
|
||
irelend = internal_relocs + sec->reloc_count;
|
||
for (irel = internal_relocs; irel < irelend; irel++)
|
||
{
|
||
bfd_vma symval;
|
||
struct elf_link_hash_entry *h = NULL;
|
||
|
||
/* We only process two relocs. */
|
||
if (ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_BASE_PLUS_OFFSET
|
||
&& ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_PUSHJ_STUBBABLE)
|
||
continue;
|
||
|
||
/* We process relocs in a distinctly different way when this is a
|
||
relocatable link (for one, we don't look at symbols), so we avoid
|
||
mixing its code with that for the "normal" relaxation. */
|
||
if (bfd_link_relocatable (link_info))
|
||
{
|
||
/* The only transformation in a relocatable link is to generate
|
||
a full stub at the location of the stub calculated for the
|
||
input section, if the relocated stub location, the end of the
|
||
output section plus earlier stubs, cannot be reached. Thus
|
||
relocatable linking can only lead to worse code, but it still
|
||
works. */
|
||
if (ELF64_R_TYPE (irel->r_info) == R_MMIX_PUSHJ_STUBBABLE)
|
||
{
|
||
/* If we can reach the end of the output-section and beyond
|
||
any current stubs, then we don't need a stub for this
|
||
reloc. The relaxed order of output stub allocation may
|
||
not exactly match the straightforward order, so we always
|
||
assume presence of output stubs, which will allow
|
||
relaxation only on relocations indifferent to the
|
||
presence of output stub allocations for other relocations
|
||
and thus the order of output stub allocation. */
|
||
if (bfd_check_overflow (complain_overflow_signed,
|
||
19,
|
||
0,
|
||
bfd_arch_bits_per_address (abfd),
|
||
/* Output-stub location. */
|
||
sec->output_section->rawsize
|
||
+ (mmix_elf_section_data (sec
|
||
->output_section)
|
||
->pjs.stubs_size_sum)
|
||
/* Location of this PUSHJ reloc. */
|
||
- (sec->output_offset + irel->r_offset)
|
||
/* Don't count *this* stub twice. */
|
||
- (mmix_elf_section_data (sec)
|
||
->pjs.stub_size[pjsno]
|
||
+ MAX_PUSHJ_STUB_SIZE))
|
||
== bfd_reloc_ok)
|
||
mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
|
||
|
||
mmix_elf_section_data (sec)->pjs.stubs_size_sum
|
||
+= mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
|
||
|
||
pjsno++;
|
||
}
|
||
|
||
continue;
|
||
}
|
||
|
||
/* Get the value of the symbol referred to by the reloc. */
|
||
if (ELF64_R_SYM (irel->r_info) < symtab_hdr->sh_info)
|
||
{
|
||
/* A local symbol. */
|
||
Elf_Internal_Sym *isym;
|
||
asection *sym_sec;
|
||
|
||
/* Read this BFD's local symbols if we haven't already. */
|
||
if (isymbuf == NULL)
|
||
{
|
||
isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
|
||
if (isymbuf == NULL)
|
||
isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
|
||
symtab_hdr->sh_info, 0,
|
||
NULL, NULL, NULL);
|
||
if (isymbuf == 0)
|
||
goto error_return;
|
||
}
|
||
|
||
isym = isymbuf + ELF64_R_SYM (irel->r_info);
|
||
if (isym->st_shndx == SHN_UNDEF)
|
||
sym_sec = bfd_und_section_ptr;
|
||
else if (isym->st_shndx == SHN_ABS)
|
||
sym_sec = bfd_abs_section_ptr;
|
||
else if (isym->st_shndx == SHN_COMMON)
|
||
sym_sec = bfd_com_section_ptr;
|
||
else
|
||
sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
|
||
symval = (isym->st_value
|
||
+ sym_sec->output_section->vma
|
||
+ sym_sec->output_offset);
|
||
}
|
||
else
|
||
{
|
||
unsigned long indx;
|
||
|
||
/* An external symbol. */
|
||
indx = ELF64_R_SYM (irel->r_info) - symtab_hdr->sh_info;
|
||
h = elf_sym_hashes (abfd)[indx];
|
||
BFD_ASSERT (h != NULL);
|
||
if (h->root.type == bfd_link_hash_undefweak)
|
||
/* FIXME: for R_MMIX_PUSHJ_STUBBABLE, there are alternatives to
|
||
the canonical value 0 for an unresolved weak symbol to
|
||
consider: as the debug-friendly approach, resolve to "abort"
|
||
(or a port-specific function), or as the space-friendly
|
||
approach resolve to the next instruction (like some other
|
||
ports, notably ARM and AArch64). These alternatives require
|
||
matching code in mmix_elf_perform_relocation or its caller. */
|
||
symval = 0;
|
||
else if (h->root.type == bfd_link_hash_defined
|
||
|| h->root.type == bfd_link_hash_defweak)
|
||
symval = (h->root.u.def.value
|
||
+ h->root.u.def.section->output_section->vma
|
||
+ h->root.u.def.section->output_offset);
|
||
else
|
||
{
|
||
/* This appears to be a reference to an undefined symbol. Just
|
||
ignore it--it will be caught by the regular reloc processing.
|
||
We need to keep BPO reloc accounting consistent, though
|
||
else we'll abort instead of emitting an error message. */
|
||
if (ELF64_R_TYPE (irel->r_info) == R_MMIX_BASE_PLUS_OFFSET
|
||
&& gregdata != NULL)
|
||
{
|
||
gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
|
||
bpono++;
|
||
}
|
||
continue;
|
||
}
|
||
}
|
||
|
||
if (ELF64_R_TYPE (irel->r_info) == (int) R_MMIX_PUSHJ_STUBBABLE)
|
||
{
|
||
bfd_vma value = symval + irel->r_addend;
|
||
bfd_vma dot
|
||
= (sec->output_section->vma
|
||
+ sec->output_offset
|
||
+ irel->r_offset);
|
||
bfd_vma stubaddr
|
||
= (sec->output_section->vma
|
||
+ sec->output_offset
|
||
+ size
|
||
+ mmix_elf_section_data (sec)->pjs.stubs_size_sum);
|
||
|
||
if ((value & 3) == 0
|
||
&& bfd_check_overflow (complain_overflow_signed,
|
||
19,
|
||
0,
|
||
bfd_arch_bits_per_address (abfd),
|
||
value - dot
|
||
- (value > dot
|
||
? mmix_elf_section_data (sec)
|
||
->pjs.stub_size[pjsno]
|
||
: 0))
|
||
== bfd_reloc_ok)
|
||
/* If the reloc fits, no stub is needed. */
|
||
mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
|
||
else
|
||
/* Maybe we can get away with just a JMP insn? */
|
||
if ((value & 3) == 0
|
||
&& bfd_check_overflow (complain_overflow_signed,
|
||
27,
|
||
0,
|
||
bfd_arch_bits_per_address (abfd),
|
||
value - stubaddr
|
||
- (value > dot
|
||
? mmix_elf_section_data (sec)
|
||
->pjs.stub_size[pjsno] - 4
|
||
: 0))
|
||
== bfd_reloc_ok)
|
||
/* Yep, account for a stub consisting of a single JMP insn. */
|
||
mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 4;
|
||
else
|
||
/* Nope, go for the full insn stub. It doesn't seem useful to
|
||
emit the intermediate sizes; those will only be useful for
|
||
a >64M program assuming contiguous code. */
|
||
mmix_elf_section_data (sec)->pjs.stub_size[pjsno]
|
||
= MAX_PUSHJ_STUB_SIZE;
|
||
|
||
mmix_elf_section_data (sec)->pjs.stubs_size_sum
|
||
+= mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
|
||
pjsno++;
|
||
continue;
|
||
}
|
||
|
||
/* We're looking at a R_MMIX_BASE_PLUS_OFFSET reloc. */
|
||
|
||
gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono]].value
|
||
= symval + irel->r_addend;
|
||
gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono++]].valid = TRUE;
|
||
gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
|
||
}
|
||
|
||
/* Check if that was the last BPO-reloc. If so, sort the values and
|
||
calculate how many registers we need to cover them. Set the size of
|
||
the linker gregs, and if the number of registers changed, indicate
|
||
that we need to relax some more because we have more work to do. */
|
||
if (gregdata != NULL
|
||
&& gregdata->n_remaining_bpo_relocs_this_relaxation_round == 0)
|
||
{
|
||
size_t i;
|
||
bfd_vma prev_base;
|
||
size_t regindex;
|
||
|
||
/* First, reset the remaining relocs for the next round. */
|
||
gregdata->n_remaining_bpo_relocs_this_relaxation_round
|
||
= gregdata->n_bpo_relocs;
|
||
|
||
qsort (gregdata->reloc_request,
|
||
gregdata->n_max_bpo_relocs,
|
||
sizeof (struct bpo_reloc_request),
|
||
bpo_reloc_request_sort_fn);
|
||
|
||
/* Recalculate indexes. When we find a change (however unlikely
|
||
after the initial iteration), we know we need to relax again,
|
||
since items in the GREG-array are sorted by increasing value and
|
||
stored in the relaxation phase. */
|
||
for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
|
||
if (gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
|
||
!= i)
|
||
{
|
||
gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
|
||
= i;
|
||
*again = TRUE;
|
||
}
|
||
|
||
/* Allocate register numbers (indexing from 0). Stop at the first
|
||
non-valid reloc. */
|
||
for (i = 0, regindex = 0, prev_base = gregdata->reloc_request[0].value;
|
||
i < gregdata->n_bpo_relocs;
|
||
i++)
|
||
{
|
||
if (gregdata->reloc_request[i].value > prev_base + 255)
|
||
{
|
||
regindex++;
|
||
prev_base = gregdata->reloc_request[i].value;
|
||
}
|
||
gregdata->reloc_request[i].regindex = regindex;
|
||
gregdata->reloc_request[i].offset
|
||
= gregdata->reloc_request[i].value - prev_base;
|
||
}
|
||
|
||
/* If it's not the same as the last time, we need to relax again,
|
||
because the size of the section has changed. I'm not sure we
|
||
actually need to do any adjustments since the shrinking happens
|
||
at the start of this section, but better safe than sorry. */
|
||
if (gregdata->n_allocated_bpo_gregs != regindex + 1)
|
||
{
|
||
gregdata->n_allocated_bpo_gregs = regindex + 1;
|
||
*again = TRUE;
|
||
}
|
||
|
||
bpo_gregs_section->size = (regindex + 1) * 8;
|
||
}
|
||
|
||
if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
|
||
{
|
||
if (! link_info->keep_memory)
|
||
free (isymbuf);
|
||
else
|
||
{
|
||
/* Cache the symbols for elf_link_input_bfd. */
|
||
symtab_hdr->contents = (unsigned char *) isymbuf;
|
||
}
|
||
}
|
||
|
||
BFD_ASSERT(pjsno == mmix_elf_section_data (sec)->pjs.n_pushj_relocs);
|
||
|
||
if (internal_relocs != NULL
|
||
&& elf_section_data (sec)->relocs != internal_relocs)
|
||
free (internal_relocs);
|
||
|
||
if (sec->size < size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
|
||
abort ();
|
||
|
||
if (sec->size > size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
|
||
{
|
||
sec->size = size + mmix_elf_section_data (sec)->pjs.stubs_size_sum;
|
||
*again = TRUE;
|
||
}
|
||
|
||
return TRUE;
|
||
|
||
error_return:
|
||
if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
|
||
free (isymbuf);
|
||
if (internal_relocs != NULL
|
||
&& elf_section_data (sec)->relocs != internal_relocs)
|
||
free (internal_relocs);
|
||
return FALSE;
|
||
}
|
||
|
||
#define ELF_ARCH bfd_arch_mmix
|
||
#define ELF_MACHINE_CODE EM_MMIX
|
||
|
||
/* According to mmix-doc page 36 (paragraph 45), this should be (1LL << 48LL).
|
||
However, that's too much for something somewhere in the linker part of
|
||
BFD; perhaps the start-address has to be a non-zero multiple of this
|
||
number, or larger than this number. The symptom is that the linker
|
||
complains: "warning: allocated section `.text' not in segment". We
|
||
settle for 64k; the page-size used in examples is 8k.
|
||
#define ELF_MAXPAGESIZE 0x10000
|
||
|
||
Unfortunately, this causes excessive padding in the supposedly small
|
||
for-education programs that are the expected usage (where people would
|
||
inspect output). We stick to 256 bytes just to have *some* default
|
||
alignment. */
|
||
#define ELF_MAXPAGESIZE 0x100
|
||
|
||
#define TARGET_BIG_SYM mmix_elf64_vec
|
||
#define TARGET_BIG_NAME "elf64-mmix"
|
||
|
||
#define elf_info_to_howto_rel NULL
|
||
#define elf_info_to_howto mmix_info_to_howto_rela
|
||
#define elf_backend_relocate_section mmix_elf_relocate_section
|
||
#define elf_backend_gc_mark_hook mmix_elf_gc_mark_hook
|
||
|
||
#define elf_backend_link_output_symbol_hook \
|
||
mmix_elf_link_output_symbol_hook
|
||
#define elf_backend_add_symbol_hook mmix_elf_add_symbol_hook
|
||
|
||
#define elf_backend_check_relocs mmix_elf_check_relocs
|
||
#define elf_backend_symbol_processing mmix_elf_symbol_processing
|
||
#define elf_backend_omit_section_dynsym _bfd_elf_omit_section_dynsym_all
|
||
|
||
#define bfd_elf64_bfd_copy_link_hash_symbol_type \
|
||
_bfd_generic_copy_link_hash_symbol_type
|
||
|
||
#define bfd_elf64_bfd_is_local_label_name \
|
||
mmix_elf_is_local_label_name
|
||
|
||
#define elf_backend_may_use_rel_p 0
|
||
#define elf_backend_may_use_rela_p 1
|
||
#define elf_backend_default_use_rela_p 1
|
||
|
||
#define elf_backend_can_gc_sections 1
|
||
#define elf_backend_section_from_bfd_section \
|
||
mmix_elf_section_from_bfd_section
|
||
|
||
#define bfd_elf64_new_section_hook mmix_elf_new_section_hook
|
||
#define bfd_elf64_bfd_final_link mmix_elf_final_link
|
||
#define bfd_elf64_bfd_relax_section mmix_elf_relax_section
|
||
|
||
#include "elf64-target.h"
|