mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-21 04:42:53 +08:00
f0f63663f0
Committed by Andrew Cagney. * s390-tdep.c (s390_sigtramp_frame_unwind_cache): Account for alignment padding when accessing ucontext struct members.
3103 lines
92 KiB
C
3103 lines
92 KiB
C
/* Target-dependent code for GDB, the GNU debugger.
|
|
|
|
Copyright 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
|
|
|
|
Contributed by D.J. Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
|
|
for IBM Deutschland Entwicklung GmbH, IBM Corporation.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
|
|
02111-1307, USA. */
|
|
|
|
#include "defs.h"
|
|
#include "arch-utils.h"
|
|
#include "frame.h"
|
|
#include "inferior.h"
|
|
#include "symtab.h"
|
|
#include "target.h"
|
|
#include "gdbcore.h"
|
|
#include "gdbcmd.h"
|
|
#include "objfiles.h"
|
|
#include "tm.h"
|
|
#include "../bfd/bfd.h"
|
|
#include "floatformat.h"
|
|
#include "regcache.h"
|
|
#include "trad-frame.h"
|
|
#include "frame-base.h"
|
|
#include "frame-unwind.h"
|
|
#include "dwarf2-frame.h"
|
|
#include "reggroups.h"
|
|
#include "regset.h"
|
|
#include "value.h"
|
|
#include "gdb_assert.h"
|
|
#include "dis-asm.h"
|
|
#include "solib-svr4.h" /* For struct link_map_offsets. */
|
|
|
|
#include "s390-tdep.h"
|
|
|
|
|
|
/* The tdep structure. */
|
|
|
|
struct gdbarch_tdep
|
|
{
|
|
/* ABI version. */
|
|
enum { ABI_LINUX_S390, ABI_LINUX_ZSERIES } abi;
|
|
|
|
/* Core file register sets. */
|
|
const struct regset *gregset;
|
|
int sizeof_gregset;
|
|
|
|
const struct regset *fpregset;
|
|
int sizeof_fpregset;
|
|
};
|
|
|
|
|
|
/* Register information. */
|
|
|
|
struct s390_register_info
|
|
{
|
|
char *name;
|
|
struct type **type;
|
|
};
|
|
|
|
static struct s390_register_info s390_register_info[S390_NUM_TOTAL_REGS] =
|
|
{
|
|
/* Program Status Word. */
|
|
{ "pswm", &builtin_type_long },
|
|
{ "pswa", &builtin_type_long },
|
|
|
|
/* General Purpose Registers. */
|
|
{ "r0", &builtin_type_long },
|
|
{ "r1", &builtin_type_long },
|
|
{ "r2", &builtin_type_long },
|
|
{ "r3", &builtin_type_long },
|
|
{ "r4", &builtin_type_long },
|
|
{ "r5", &builtin_type_long },
|
|
{ "r6", &builtin_type_long },
|
|
{ "r7", &builtin_type_long },
|
|
{ "r8", &builtin_type_long },
|
|
{ "r9", &builtin_type_long },
|
|
{ "r10", &builtin_type_long },
|
|
{ "r11", &builtin_type_long },
|
|
{ "r12", &builtin_type_long },
|
|
{ "r13", &builtin_type_long },
|
|
{ "r14", &builtin_type_long },
|
|
{ "r15", &builtin_type_long },
|
|
|
|
/* Access Registers. */
|
|
{ "acr0", &builtin_type_int },
|
|
{ "acr1", &builtin_type_int },
|
|
{ "acr2", &builtin_type_int },
|
|
{ "acr3", &builtin_type_int },
|
|
{ "acr4", &builtin_type_int },
|
|
{ "acr5", &builtin_type_int },
|
|
{ "acr6", &builtin_type_int },
|
|
{ "acr7", &builtin_type_int },
|
|
{ "acr8", &builtin_type_int },
|
|
{ "acr9", &builtin_type_int },
|
|
{ "acr10", &builtin_type_int },
|
|
{ "acr11", &builtin_type_int },
|
|
{ "acr12", &builtin_type_int },
|
|
{ "acr13", &builtin_type_int },
|
|
{ "acr14", &builtin_type_int },
|
|
{ "acr15", &builtin_type_int },
|
|
|
|
/* Floating Point Control Word. */
|
|
{ "fpc", &builtin_type_int },
|
|
|
|
/* Floating Point Registers. */
|
|
{ "f0", &builtin_type_double },
|
|
{ "f1", &builtin_type_double },
|
|
{ "f2", &builtin_type_double },
|
|
{ "f3", &builtin_type_double },
|
|
{ "f4", &builtin_type_double },
|
|
{ "f5", &builtin_type_double },
|
|
{ "f6", &builtin_type_double },
|
|
{ "f7", &builtin_type_double },
|
|
{ "f8", &builtin_type_double },
|
|
{ "f9", &builtin_type_double },
|
|
{ "f10", &builtin_type_double },
|
|
{ "f11", &builtin_type_double },
|
|
{ "f12", &builtin_type_double },
|
|
{ "f13", &builtin_type_double },
|
|
{ "f14", &builtin_type_double },
|
|
{ "f15", &builtin_type_double },
|
|
|
|
/* Pseudo registers. */
|
|
{ "pc", &builtin_type_void_func_ptr },
|
|
{ "cc", &builtin_type_int },
|
|
};
|
|
|
|
/* Return the name of register REGNUM. */
|
|
static const char *
|
|
s390_register_name (int regnum)
|
|
{
|
|
gdb_assert (regnum >= 0 && regnum < S390_NUM_TOTAL_REGS);
|
|
return s390_register_info[regnum].name;
|
|
}
|
|
|
|
/* Return the GDB type object for the "standard" data type of data in
|
|
register REGNUM. */
|
|
static struct type *
|
|
s390_register_type (struct gdbarch *gdbarch, int regnum)
|
|
{
|
|
gdb_assert (regnum >= 0 && regnum < S390_NUM_TOTAL_REGS);
|
|
return *s390_register_info[regnum].type;
|
|
}
|
|
|
|
/* DWARF Register Mapping. */
|
|
|
|
static int s390_dwarf_regmap[] =
|
|
{
|
|
/* General Purpose Registers. */
|
|
S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM,
|
|
S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM,
|
|
S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM,
|
|
S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM,
|
|
|
|
/* Floating Point Registers. */
|
|
S390_F0_REGNUM, S390_F2_REGNUM, S390_F4_REGNUM, S390_F6_REGNUM,
|
|
S390_F1_REGNUM, S390_F3_REGNUM, S390_F5_REGNUM, S390_F7_REGNUM,
|
|
S390_F8_REGNUM, S390_F10_REGNUM, S390_F12_REGNUM, S390_F14_REGNUM,
|
|
S390_F9_REGNUM, S390_F11_REGNUM, S390_F13_REGNUM, S390_F15_REGNUM,
|
|
|
|
/* Control Registers (not mapped). */
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
|
|
/* Access Registers. */
|
|
S390_A0_REGNUM, S390_A1_REGNUM, S390_A2_REGNUM, S390_A3_REGNUM,
|
|
S390_A4_REGNUM, S390_A5_REGNUM, S390_A6_REGNUM, S390_A7_REGNUM,
|
|
S390_A8_REGNUM, S390_A9_REGNUM, S390_A10_REGNUM, S390_A11_REGNUM,
|
|
S390_A12_REGNUM, S390_A13_REGNUM, S390_A14_REGNUM, S390_A15_REGNUM,
|
|
|
|
/* Program Status Word. */
|
|
S390_PSWM_REGNUM,
|
|
S390_PSWA_REGNUM
|
|
};
|
|
|
|
/* Convert DWARF register number REG to the appropriate register
|
|
number used by GDB. */
|
|
static int
|
|
s390_dwarf_reg_to_regnum (int reg)
|
|
{
|
|
int regnum = -1;
|
|
|
|
if (reg >= 0 || reg < ARRAY_SIZE (s390_dwarf_regmap))
|
|
regnum = s390_dwarf_regmap[reg];
|
|
|
|
if (regnum == -1)
|
|
warning ("Unmapped DWARF Register #%d encountered\n", reg);
|
|
|
|
return regnum;
|
|
}
|
|
|
|
/* Pseudo registers - PC and condition code. */
|
|
|
|
static void
|
|
s390_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
|
|
int regnum, void *buf)
|
|
{
|
|
ULONGEST val;
|
|
|
|
switch (regnum)
|
|
{
|
|
case S390_PC_REGNUM:
|
|
regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &val);
|
|
store_unsigned_integer (buf, 4, val & 0x7fffffff);
|
|
break;
|
|
|
|
case S390_CC_REGNUM:
|
|
regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &val);
|
|
store_unsigned_integer (buf, 4, (val >> 12) & 3);
|
|
break;
|
|
|
|
default:
|
|
internal_error (__FILE__, __LINE__, "invalid regnum");
|
|
}
|
|
}
|
|
|
|
static void
|
|
s390_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
|
|
int regnum, const void *buf)
|
|
{
|
|
ULONGEST val, psw;
|
|
|
|
switch (regnum)
|
|
{
|
|
case S390_PC_REGNUM:
|
|
val = extract_unsigned_integer (buf, 4);
|
|
regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &psw);
|
|
psw = (psw & 0x80000000) | (val & 0x7fffffff);
|
|
regcache_raw_write_unsigned (regcache, S390_PSWA_REGNUM, psw);
|
|
break;
|
|
|
|
case S390_CC_REGNUM:
|
|
val = extract_unsigned_integer (buf, 4);
|
|
regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &psw);
|
|
psw = (psw & ~((ULONGEST)3 << 12)) | ((val & 3) << 12);
|
|
regcache_raw_write_unsigned (regcache, S390_PSWM_REGNUM, psw);
|
|
break;
|
|
|
|
default:
|
|
internal_error (__FILE__, __LINE__, "invalid regnum");
|
|
}
|
|
}
|
|
|
|
static void
|
|
s390x_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
|
|
int regnum, void *buf)
|
|
{
|
|
ULONGEST val;
|
|
|
|
switch (regnum)
|
|
{
|
|
case S390_PC_REGNUM:
|
|
regcache_raw_read (regcache, S390_PSWA_REGNUM, buf);
|
|
break;
|
|
|
|
case S390_CC_REGNUM:
|
|
regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &val);
|
|
store_unsigned_integer (buf, 4, (val >> 44) & 3);
|
|
break;
|
|
|
|
default:
|
|
internal_error (__FILE__, __LINE__, "invalid regnum");
|
|
}
|
|
}
|
|
|
|
static void
|
|
s390x_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
|
|
int regnum, const void *buf)
|
|
{
|
|
ULONGEST val, psw;
|
|
|
|
switch (regnum)
|
|
{
|
|
case S390_PC_REGNUM:
|
|
regcache_raw_write (regcache, S390_PSWA_REGNUM, buf);
|
|
break;
|
|
|
|
case S390_CC_REGNUM:
|
|
val = extract_unsigned_integer (buf, 4);
|
|
regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &psw);
|
|
psw = (psw & ~((ULONGEST)3 << 44)) | ((val & 3) << 44);
|
|
regcache_raw_write_unsigned (regcache, S390_PSWM_REGNUM, psw);
|
|
break;
|
|
|
|
default:
|
|
internal_error (__FILE__, __LINE__, "invalid regnum");
|
|
}
|
|
}
|
|
|
|
/* 'float' values are stored in the upper half of floating-point
|
|
registers, even though we are otherwise a big-endian platform. */
|
|
|
|
static int
|
|
s390_convert_register_p (int regno, struct type *type)
|
|
{
|
|
return (regno >= S390_F0_REGNUM && regno <= S390_F15_REGNUM)
|
|
&& TYPE_LENGTH (type) < 8;
|
|
}
|
|
|
|
static void
|
|
s390_register_to_value (struct frame_info *frame, int regnum,
|
|
struct type *valtype, void *out)
|
|
{
|
|
char in[8];
|
|
int len = TYPE_LENGTH (valtype);
|
|
gdb_assert (len < 8);
|
|
|
|
get_frame_register (frame, regnum, in);
|
|
memcpy (out, in, len);
|
|
}
|
|
|
|
static void
|
|
s390_value_to_register (struct frame_info *frame, int regnum,
|
|
struct type *valtype, const void *in)
|
|
{
|
|
char out[8];
|
|
int len = TYPE_LENGTH (valtype);
|
|
gdb_assert (len < 8);
|
|
|
|
memset (out, 0, 8);
|
|
memcpy (out, in, len);
|
|
put_frame_register (frame, regnum, out);
|
|
}
|
|
|
|
/* Register groups. */
|
|
|
|
static int
|
|
s390_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
|
|
struct reggroup *group)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
|
|
/* Registers displayed via 'info regs'. */
|
|
if (group == general_reggroup)
|
|
return (regnum >= S390_R0_REGNUM && regnum <= S390_R15_REGNUM)
|
|
|| regnum == S390_PC_REGNUM
|
|
|| regnum == S390_CC_REGNUM;
|
|
|
|
/* Registers displayed via 'info float'. */
|
|
if (group == float_reggroup)
|
|
return (regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM)
|
|
|| regnum == S390_FPC_REGNUM;
|
|
|
|
/* Registers that need to be saved/restored in order to
|
|
push or pop frames. */
|
|
if (group == save_reggroup || group == restore_reggroup)
|
|
return regnum != S390_PSWM_REGNUM && regnum != S390_PSWA_REGNUM;
|
|
|
|
return default_register_reggroup_p (gdbarch, regnum, group);
|
|
}
|
|
|
|
|
|
/* Core file register sets. */
|
|
|
|
int s390_regmap_gregset[S390_NUM_REGS] =
|
|
{
|
|
/* Program Status Word. */
|
|
0x00, 0x04,
|
|
/* General Purpose Registers. */
|
|
0x08, 0x0c, 0x10, 0x14,
|
|
0x18, 0x1c, 0x20, 0x24,
|
|
0x28, 0x2c, 0x30, 0x34,
|
|
0x38, 0x3c, 0x40, 0x44,
|
|
/* Access Registers. */
|
|
0x48, 0x4c, 0x50, 0x54,
|
|
0x58, 0x5c, 0x60, 0x64,
|
|
0x68, 0x6c, 0x70, 0x74,
|
|
0x78, 0x7c, 0x80, 0x84,
|
|
/* Floating Point Control Word. */
|
|
-1,
|
|
/* Floating Point Registers. */
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
};
|
|
|
|
int s390x_regmap_gregset[S390_NUM_REGS] =
|
|
{
|
|
0x00, 0x08,
|
|
/* General Purpose Registers. */
|
|
0x10, 0x18, 0x20, 0x28,
|
|
0x30, 0x38, 0x40, 0x48,
|
|
0x50, 0x58, 0x60, 0x68,
|
|
0x70, 0x78, 0x80, 0x88,
|
|
/* Access Registers. */
|
|
0x90, 0x94, 0x98, 0x9c,
|
|
0xa0, 0xa4, 0xa8, 0xac,
|
|
0xb0, 0xb4, 0xb8, 0xbc,
|
|
0xc0, 0xc4, 0xc8, 0xcc,
|
|
/* Floating Point Control Word. */
|
|
-1,
|
|
/* Floating Point Registers. */
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
};
|
|
|
|
int s390_regmap_fpregset[S390_NUM_REGS] =
|
|
{
|
|
/* Program Status Word. */
|
|
-1, -1,
|
|
/* General Purpose Registers. */
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
/* Access Registers. */
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1,
|
|
/* Floating Point Control Word. */
|
|
0x00,
|
|
/* Floating Point Registers. */
|
|
0x08, 0x10, 0x18, 0x20,
|
|
0x28, 0x30, 0x38, 0x40,
|
|
0x48, 0x50, 0x58, 0x60,
|
|
0x68, 0x70, 0x78, 0x80,
|
|
};
|
|
|
|
/* Supply register REGNUM from the register set REGSET to register cache
|
|
REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
|
|
static void
|
|
s390_supply_regset (const struct regset *regset, struct regcache *regcache,
|
|
int regnum, const void *regs, size_t len)
|
|
{
|
|
const int *offset = regset->descr;
|
|
int i;
|
|
|
|
for (i = 0; i < S390_NUM_REGS; i++)
|
|
{
|
|
if ((regnum == i || regnum == -1) && offset[i] != -1)
|
|
regcache_raw_supply (regcache, i, (const char *)regs + offset[i]);
|
|
}
|
|
}
|
|
|
|
static const struct regset s390_gregset = {
|
|
s390_regmap_gregset,
|
|
s390_supply_regset
|
|
};
|
|
|
|
static const struct regset s390x_gregset = {
|
|
s390x_regmap_gregset,
|
|
s390_supply_regset
|
|
};
|
|
|
|
static const struct regset s390_fpregset = {
|
|
s390_regmap_fpregset,
|
|
s390_supply_regset
|
|
};
|
|
|
|
/* Return the appropriate register set for the core section identified
|
|
by SECT_NAME and SECT_SIZE. */
|
|
const struct regset *
|
|
s390_regset_from_core_section (struct gdbarch *gdbarch,
|
|
const char *sect_name, size_t sect_size)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
|
|
if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
|
|
return tdep->gregset;
|
|
|
|
if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
|
|
return tdep->fpregset;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* Prologue analysis. */
|
|
|
|
/* When we analyze a prologue, we're really doing 'abstract
|
|
interpretation' or 'pseudo-evaluation': running the function's code
|
|
in simulation, but using conservative approximations of the values
|
|
it would have when it actually runs. For example, if our function
|
|
starts with the instruction:
|
|
|
|
ahi r1, 42 # add halfword immediate 42 to r1
|
|
|
|
we don't know exactly what value will be in r1 after executing this
|
|
instruction, but we do know it'll be 42 greater than its original
|
|
value.
|
|
|
|
If we then see an instruction like:
|
|
|
|
ahi r1, 22 # add halfword immediate 22 to r1
|
|
|
|
we still don't know what r1's value is, but again, we can say it is
|
|
now 64 greater than its original value.
|
|
|
|
If the next instruction were:
|
|
|
|
lr r2, r1 # set r2 to r1's value
|
|
|
|
then we can say that r2's value is now the original value of r1
|
|
plus 64. And so on.
|
|
|
|
Of course, this can only go so far before it gets unreasonable. If
|
|
we wanted to be able to say anything about the value of r1 after
|
|
the instruction:
|
|
|
|
xr r1, r3 # exclusive-or r1 and r3, place result in r1
|
|
|
|
then things would get pretty complex. But remember, we're just
|
|
doing a conservative approximation; if exclusive-or instructions
|
|
aren't relevant to prologues, we can just say r1's value is now
|
|
'unknown'. We can ignore things that are too complex, if that loss
|
|
of information is acceptable for our application.
|
|
|
|
Once you've reached an instruction that you don't know how to
|
|
simulate, you stop. Now you examine the state of the registers and
|
|
stack slots you've kept track of. For example:
|
|
|
|
- To see how large your stack frame is, just check the value of sp;
|
|
if it's the original value of sp minus a constant, then that
|
|
constant is the stack frame's size. If the sp's value has been
|
|
marked as 'unknown', then that means the prologue has done
|
|
something too complex for us to track, and we don't know the
|
|
frame size.
|
|
|
|
- To see whether we've saved the SP in the current frame's back
|
|
chain slot, we just check whether the current value of the back
|
|
chain stack slot is the original value of the sp.
|
|
|
|
Sure, this takes some work. But prologue analyzers aren't
|
|
quick-and-simple pattern patching to recognize a few fixed prologue
|
|
forms any more; they're big, hairy functions. Along with inferior
|
|
function calls, prologue analysis accounts for a substantial
|
|
portion of the time needed to stabilize a GDB port. So I think
|
|
it's worthwhile to look for an approach that will be easier to
|
|
understand and maintain. In the approach used here:
|
|
|
|
- It's easier to see that the analyzer is correct: you just see
|
|
whether the analyzer properly (albiet conservatively) simulates
|
|
the effect of each instruction.
|
|
|
|
- It's easier to extend the analyzer: you can add support for new
|
|
instructions, and know that you haven't broken anything that
|
|
wasn't already broken before.
|
|
|
|
- It's orthogonal: to gather new information, you don't need to
|
|
complicate the code for each instruction. As long as your domain
|
|
of conservative values is already detailed enough to tell you
|
|
what you need, then all the existing instruction simulations are
|
|
already gathering the right data for you.
|
|
|
|
A 'struct prologue_value' is a conservative approximation of the
|
|
real value the register or stack slot will have. */
|
|
|
|
struct prologue_value {
|
|
|
|
/* What sort of value is this? This determines the interpretation
|
|
of subsequent fields. */
|
|
enum {
|
|
|
|
/* We don't know anything about the value. This is also used for
|
|
values we could have kept track of, when doing so would have
|
|
been too complex and we don't want to bother. The bottom of
|
|
our lattice. */
|
|
pv_unknown,
|
|
|
|
/* A known constant. K is its value. */
|
|
pv_constant,
|
|
|
|
/* The value that register REG originally had *UPON ENTRY TO THE
|
|
FUNCTION*, plus K. If K is zero, this means, obviously, just
|
|
the value REG had upon entry to the function. REG is a GDB
|
|
register number. Before we start interpreting, we initialize
|
|
every register R to { pv_register, R, 0 }. */
|
|
pv_register,
|
|
|
|
} kind;
|
|
|
|
/* The meanings of the following fields depend on 'kind'; see the
|
|
comments for the specific 'kind' values. */
|
|
int reg;
|
|
CORE_ADDR k;
|
|
};
|
|
|
|
|
|
/* Set V to be unknown. */
|
|
static void
|
|
pv_set_to_unknown (struct prologue_value *v)
|
|
{
|
|
v->kind = pv_unknown;
|
|
}
|
|
|
|
|
|
/* Set V to the constant K. */
|
|
static void
|
|
pv_set_to_constant (struct prologue_value *v, CORE_ADDR k)
|
|
{
|
|
v->kind = pv_constant;
|
|
v->k = k;
|
|
}
|
|
|
|
|
|
/* Set V to the original value of register REG, plus K. */
|
|
static void
|
|
pv_set_to_register (struct prologue_value *v, int reg, CORE_ADDR k)
|
|
{
|
|
v->kind = pv_register;
|
|
v->reg = reg;
|
|
v->k = k;
|
|
}
|
|
|
|
|
|
/* If one of *A and *B is a constant, and the other isn't, swap the
|
|
pointers as necessary to ensure that *B points to the constant.
|
|
This can reduce the number of cases we need to analyze in the
|
|
functions below. */
|
|
static void
|
|
pv_constant_last (struct prologue_value **a,
|
|
struct prologue_value **b)
|
|
{
|
|
if ((*a)->kind == pv_constant
|
|
&& (*b)->kind != pv_constant)
|
|
{
|
|
struct prologue_value *temp = *a;
|
|
*a = *b;
|
|
*b = temp;
|
|
}
|
|
}
|
|
|
|
|
|
/* Set SUM to the sum of A and B. SUM, A, and B may point to the same
|
|
'struct prologue_value' object. */
|
|
static void
|
|
pv_add (struct prologue_value *sum,
|
|
struct prologue_value *a,
|
|
struct prologue_value *b)
|
|
{
|
|
pv_constant_last (&a, &b);
|
|
|
|
/* We can handle adding constants to registers, and other constants. */
|
|
if (b->kind == pv_constant
|
|
&& (a->kind == pv_register
|
|
|| a->kind == pv_constant))
|
|
{
|
|
sum->kind = a->kind;
|
|
sum->reg = a->reg; /* not meaningful if a is pv_constant, but
|
|
harmless */
|
|
sum->k = a->k + b->k;
|
|
}
|
|
|
|
/* Anything else we don't know how to add. We don't have a
|
|
representation for, say, the sum of two registers, or a multiple
|
|
of a register's value (adding a register to itself). */
|
|
else
|
|
sum->kind = pv_unknown;
|
|
}
|
|
|
|
|
|
/* Add the constant K to V. */
|
|
static void
|
|
pv_add_constant (struct prologue_value *v, CORE_ADDR k)
|
|
{
|
|
struct prologue_value pv_k;
|
|
|
|
/* Rather than thinking of all the cases we can and can't handle,
|
|
we'll just let pv_add take care of that for us. */
|
|
pv_set_to_constant (&pv_k, k);
|
|
pv_add (v, v, &pv_k);
|
|
}
|
|
|
|
|
|
/* Subtract B from A, and put the result in DIFF.
|
|
|
|
This isn't quite the same as negating B and adding it to A, since
|
|
we don't have a representation for the negation of anything but a
|
|
constant. For example, we can't negate { pv_register, R1, 10 },
|
|
but we do know that { pv_register, R1, 10 } minus { pv_register,
|
|
R1, 5 } is { pv_constant, <ignored>, 5 }.
|
|
|
|
This means, for example, that we can subtract two stack addresses;
|
|
they're both relative to the original SP. Since the frame pointer
|
|
is set based on the SP, its value will be the original SP plus some
|
|
constant (probably zero), so we can use its value just fine. */
|
|
static void
|
|
pv_subtract (struct prologue_value *diff,
|
|
struct prologue_value *a,
|
|
struct prologue_value *b)
|
|
{
|
|
pv_constant_last (&a, &b);
|
|
|
|
/* We can subtract a constant from another constant, or from a
|
|
register. */
|
|
if (b->kind == pv_constant
|
|
&& (a->kind == pv_register
|
|
|| a->kind == pv_constant))
|
|
{
|
|
diff->kind = a->kind;
|
|
diff->reg = a->reg; /* not always meaningful, but harmless */
|
|
diff->k = a->k - b->k;
|
|
}
|
|
|
|
/* We can subtract a register from itself, yielding a constant. */
|
|
else if (a->kind == pv_register
|
|
&& b->kind == pv_register
|
|
&& a->reg == b->reg)
|
|
{
|
|
diff->kind = pv_constant;
|
|
diff->k = a->k - b->k;
|
|
}
|
|
|
|
/* We don't know how to subtract anything else. */
|
|
else
|
|
diff->kind = pv_unknown;
|
|
}
|
|
|
|
|
|
/* Set AND to the logical and of A and B. */
|
|
static void
|
|
pv_logical_and (struct prologue_value *and,
|
|
struct prologue_value *a,
|
|
struct prologue_value *b)
|
|
{
|
|
pv_constant_last (&a, &b);
|
|
|
|
/* We can 'and' two constants. */
|
|
if (a->kind == pv_constant
|
|
&& b->kind == pv_constant)
|
|
{
|
|
and->kind = pv_constant;
|
|
and->k = a->k & b->k;
|
|
}
|
|
|
|
/* We can 'and' anything with the constant zero. */
|
|
else if (b->kind == pv_constant
|
|
&& b->k == 0)
|
|
{
|
|
and->kind = pv_constant;
|
|
and->k = 0;
|
|
}
|
|
|
|
/* We can 'and' anything with ~0. */
|
|
else if (b->kind == pv_constant
|
|
&& b->k == ~ (CORE_ADDR) 0)
|
|
*and = *a;
|
|
|
|
/* We can 'and' a register with itself. */
|
|
else if (a->kind == pv_register
|
|
&& b->kind == pv_register
|
|
&& a->reg == b->reg
|
|
&& a->k == b->k)
|
|
*and = *a;
|
|
|
|
/* Otherwise, we don't know. */
|
|
else
|
|
pv_set_to_unknown (and);
|
|
}
|
|
|
|
|
|
/* Return non-zero iff A and B are identical expressions.
|
|
|
|
This is not the same as asking if the two values are equal; the
|
|
result of such a comparison would have to be a pv_boolean, and
|
|
asking whether two 'unknown' values were equal would give you
|
|
pv_maybe. Same for comparing, say, { pv_register, R1, 0 } and {
|
|
pv_register, R2, 0}. Instead, this is asking whether the two
|
|
representations are the same. */
|
|
static int
|
|
pv_is_identical (struct prologue_value *a,
|
|
struct prologue_value *b)
|
|
{
|
|
if (a->kind != b->kind)
|
|
return 0;
|
|
|
|
switch (a->kind)
|
|
{
|
|
case pv_unknown:
|
|
return 1;
|
|
case pv_constant:
|
|
return (a->k == b->k);
|
|
case pv_register:
|
|
return (a->reg == b->reg && a->k == b->k);
|
|
default:
|
|
gdb_assert (0);
|
|
}
|
|
}
|
|
|
|
|
|
/* Return non-zero if A is the original value of register number R
|
|
plus K, zero otherwise. */
|
|
static int
|
|
pv_is_register (struct prologue_value *a, int r, CORE_ADDR k)
|
|
{
|
|
return (a->kind == pv_register
|
|
&& a->reg == r
|
|
&& a->k == k);
|
|
}
|
|
|
|
|
|
/* A prologue-value-esque boolean type, including "maybe", when we
|
|
can't figure out whether something is true or not. */
|
|
enum pv_boolean {
|
|
pv_maybe,
|
|
pv_definite_yes,
|
|
pv_definite_no,
|
|
};
|
|
|
|
|
|
/* Decide whether a reference to SIZE bytes at ADDR refers exactly to
|
|
an element of an array. The array starts at ARRAY_ADDR, and has
|
|
ARRAY_LEN values of ELT_SIZE bytes each. If ADDR definitely does
|
|
refer to an array element, set *I to the index of the referenced
|
|
element in the array, and return pv_definite_yes. If it definitely
|
|
doesn't, return pv_definite_no. If we can't tell, return pv_maybe.
|
|
|
|
If the reference does touch the array, but doesn't fall exactly on
|
|
an element boundary, or doesn't refer to the whole element, return
|
|
pv_maybe. */
|
|
static enum pv_boolean
|
|
pv_is_array_ref (struct prologue_value *addr,
|
|
CORE_ADDR size,
|
|
struct prologue_value *array_addr,
|
|
CORE_ADDR array_len,
|
|
CORE_ADDR elt_size,
|
|
int *i)
|
|
{
|
|
struct prologue_value offset;
|
|
|
|
/* Note that, since ->k is a CORE_ADDR, and CORE_ADDR is unsigned,
|
|
if addr is *before* the start of the array, then this isn't going
|
|
to be negative... */
|
|
pv_subtract (&offset, addr, array_addr);
|
|
|
|
if (offset.kind == pv_constant)
|
|
{
|
|
/* This is a rather odd test. We want to know if the SIZE bytes
|
|
at ADDR don't overlap the array at all, so you'd expect it to
|
|
be an || expression: "if we're completely before || we're
|
|
completely after". But with unsigned arithmetic, things are
|
|
different: since it's a number circle, not a number line, the
|
|
right values for offset.k are actually one contiguous range. */
|
|
if (offset.k <= -size
|
|
&& offset.k >= array_len * elt_size)
|
|
return pv_definite_no;
|
|
else if (offset.k % elt_size != 0
|
|
|| size != elt_size)
|
|
return pv_maybe;
|
|
else
|
|
{
|
|
*i = offset.k / elt_size;
|
|
return pv_definite_yes;
|
|
}
|
|
}
|
|
else
|
|
return pv_maybe;
|
|
}
|
|
|
|
|
|
|
|
/* Decoding S/390 instructions. */
|
|
|
|
/* Named opcode values for the S/390 instructions we recognize. Some
|
|
instructions have their opcode split across two fields; those are the
|
|
op1_* and op2_* enums. */
|
|
enum
|
|
{
|
|
op1_lhi = 0xa7, op2_lhi = 0x08,
|
|
op1_lghi = 0xa7, op2_lghi = 0x09,
|
|
op_lr = 0x18,
|
|
op_lgr = 0xb904,
|
|
op_l = 0x58,
|
|
op1_ly = 0xe3, op2_ly = 0x58,
|
|
op1_lg = 0xe3, op2_lg = 0x04,
|
|
op_lm = 0x98,
|
|
op1_lmy = 0xeb, op2_lmy = 0x98,
|
|
op1_lmg = 0xeb, op2_lmg = 0x04,
|
|
op_st = 0x50,
|
|
op1_sty = 0xe3, op2_sty = 0x50,
|
|
op1_stg = 0xe3, op2_stg = 0x24,
|
|
op_std = 0x60,
|
|
op_stm = 0x90,
|
|
op1_stmy = 0xeb, op2_stmy = 0x90,
|
|
op1_stmg = 0xeb, op2_stmg = 0x24,
|
|
op1_aghi = 0xa7, op2_aghi = 0x0b,
|
|
op1_ahi = 0xa7, op2_ahi = 0x0a,
|
|
op_ar = 0x1a,
|
|
op_agr = 0xb908,
|
|
op_a = 0x5a,
|
|
op1_ay = 0xe3, op2_ay = 0x5a,
|
|
op1_ag = 0xe3, op2_ag = 0x08,
|
|
op_sr = 0x1b,
|
|
op_sgr = 0xb909,
|
|
op_s = 0x5b,
|
|
op1_sy = 0xe3, op2_sy = 0x5b,
|
|
op1_sg = 0xe3, op2_sg = 0x09,
|
|
op_nr = 0x14,
|
|
op_ngr = 0xb980,
|
|
op_la = 0x41,
|
|
op1_lay = 0xe3, op2_lay = 0x71,
|
|
op1_larl = 0xc0, op2_larl = 0x00,
|
|
op_basr = 0x0d,
|
|
op_bas = 0x4d,
|
|
op_bcr = 0x07,
|
|
op_bc = 0x0d,
|
|
op1_bras = 0xa7, op2_bras = 0x05,
|
|
op1_brasl= 0xc0, op2_brasl= 0x05,
|
|
op1_brc = 0xa7, op2_brc = 0x04,
|
|
op1_brcl = 0xc0, op2_brcl = 0x04,
|
|
};
|
|
|
|
|
|
/* Read a single instruction from address AT. */
|
|
|
|
#define S390_MAX_INSTR_SIZE 6
|
|
static int
|
|
s390_readinstruction (bfd_byte instr[], CORE_ADDR at)
|
|
{
|
|
static int s390_instrlen[] = { 2, 4, 4, 6 };
|
|
int instrlen;
|
|
|
|
if (read_memory_nobpt (at, &instr[0], 2))
|
|
return -1;
|
|
instrlen = s390_instrlen[instr[0] >> 6];
|
|
if (instrlen > 2)
|
|
{
|
|
if (read_memory_nobpt (at + 2, &instr[2], instrlen - 2))
|
|
return -1;
|
|
}
|
|
return instrlen;
|
|
}
|
|
|
|
|
|
/* The functions below are for recognizing and decoding S/390
|
|
instructions of various formats. Each of them checks whether INSN
|
|
is an instruction of the given format, with the specified opcodes.
|
|
If it is, it sets the remaining arguments to the values of the
|
|
instruction's fields, and returns a non-zero value; otherwise, it
|
|
returns zero.
|
|
|
|
These functions' arguments appear in the order they appear in the
|
|
instruction, not in the machine-language form. So, opcodes always
|
|
come first, even though they're sometimes scattered around the
|
|
instructions. And displacements appear before base and extension
|
|
registers, as they do in the assembly syntax, not at the end, as
|
|
they do in the machine language. */
|
|
static int
|
|
is_ri (bfd_byte *insn, int op1, int op2, unsigned int *r1, int *i2)
|
|
{
|
|
if (insn[0] == op1 && (insn[1] & 0xf) == op2)
|
|
{
|
|
*r1 = (insn[1] >> 4) & 0xf;
|
|
/* i2 is a 16-bit signed quantity. */
|
|
*i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
|
|
return 1;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
is_ril (bfd_byte *insn, int op1, int op2,
|
|
unsigned int *r1, int *i2)
|
|
{
|
|
if (insn[0] == op1 && (insn[1] & 0xf) == op2)
|
|
{
|
|
*r1 = (insn[1] >> 4) & 0xf;
|
|
/* i2 is a signed quantity. If the host 'int' is 32 bits long,
|
|
no sign extension is necessary, but we don't want to assume
|
|
that. */
|
|
*i2 = (((insn[2] << 24)
|
|
| (insn[3] << 16)
|
|
| (insn[4] << 8)
|
|
| (insn[5])) ^ 0x80000000) - 0x80000000;
|
|
return 1;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
is_rr (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
|
|
{
|
|
if (insn[0] == op)
|
|
{
|
|
*r1 = (insn[1] >> 4) & 0xf;
|
|
*r2 = insn[1] & 0xf;
|
|
return 1;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
is_rre (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
|
|
{
|
|
if (((insn[0] << 8) | insn[1]) == op)
|
|
{
|
|
/* Yes, insn[3]. insn[2] is unused in RRE format. */
|
|
*r1 = (insn[3] >> 4) & 0xf;
|
|
*r2 = insn[3] & 0xf;
|
|
return 1;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
is_rs (bfd_byte *insn, int op,
|
|
unsigned int *r1, unsigned int *r3, unsigned int *d2, unsigned int *b2)
|
|
{
|
|
if (insn[0] == op)
|
|
{
|
|
*r1 = (insn[1] >> 4) & 0xf;
|
|
*r3 = insn[1] & 0xf;
|
|
*b2 = (insn[2] >> 4) & 0xf;
|
|
*d2 = ((insn[2] & 0xf) << 8) | insn[3];
|
|
return 1;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
is_rsy (bfd_byte *insn, int op1, int op2,
|
|
unsigned int *r1, unsigned int *r3, unsigned int *d2, unsigned int *b2)
|
|
{
|
|
if (insn[0] == op1
|
|
&& insn[5] == op2)
|
|
{
|
|
*r1 = (insn[1] >> 4) & 0xf;
|
|
*r3 = insn[1] & 0xf;
|
|
*b2 = (insn[2] >> 4) & 0xf;
|
|
/* The 'long displacement' is a 20-bit signed integer. */
|
|
*d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12))
|
|
^ 0x80000) - 0x80000;
|
|
return 1;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
is_rx (bfd_byte *insn, int op,
|
|
unsigned int *r1, unsigned int *d2, unsigned int *x2, unsigned int *b2)
|
|
{
|
|
if (insn[0] == op)
|
|
{
|
|
*r1 = (insn[1] >> 4) & 0xf;
|
|
*x2 = insn[1] & 0xf;
|
|
*b2 = (insn[2] >> 4) & 0xf;
|
|
*d2 = ((insn[2] & 0xf) << 8) | insn[3];
|
|
return 1;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
is_rxy (bfd_byte *insn, int op1, int op2,
|
|
unsigned int *r1, unsigned int *d2, unsigned int *x2, unsigned int *b2)
|
|
{
|
|
if (insn[0] == op1
|
|
&& insn[5] == op2)
|
|
{
|
|
*r1 = (insn[1] >> 4) & 0xf;
|
|
*x2 = insn[1] & 0xf;
|
|
*b2 = (insn[2] >> 4) & 0xf;
|
|
/* The 'long displacement' is a 20-bit signed integer. */
|
|
*d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12))
|
|
^ 0x80000) - 0x80000;
|
|
return 1;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Set ADDR to the effective address for an X-style instruction, like:
|
|
|
|
L R1, D2(X2, B2)
|
|
|
|
Here, X2 and B2 are registers, and D2 is a signed 20-bit
|
|
constant; the effective address is the sum of all three. If either
|
|
X2 or B2 are zero, then it doesn't contribute to the sum --- this
|
|
means that r0 can't be used as either X2 or B2.
|
|
|
|
GPR is an array of general register values, indexed by GPR number,
|
|
not GDB register number. */
|
|
static void
|
|
compute_x_addr (struct prologue_value *addr,
|
|
struct prologue_value *gpr,
|
|
int d2, unsigned int x2, unsigned int b2)
|
|
{
|
|
/* We can't just add stuff directly in addr; it might alias some of
|
|
the registers we need to read. */
|
|
struct prologue_value result;
|
|
|
|
pv_set_to_constant (&result, d2);
|
|
if (x2)
|
|
pv_add (&result, &result, &gpr[x2]);
|
|
if (b2)
|
|
pv_add (&result, &result, &gpr[b2]);
|
|
|
|
*addr = result;
|
|
}
|
|
|
|
|
|
/* The number of GPR and FPR spill slots in an S/390 stack frame. We
|
|
track general-purpose registers r2 -- r15, and floating-point
|
|
registers f0, f2, f4, and f6. */
|
|
#define S390_NUM_SPILL_SLOTS (14 + 4)
|
|
#define S390_NUM_GPRS 16
|
|
#define S390_NUM_FPRS 16
|
|
|
|
struct s390_prologue_data {
|
|
|
|
/* The size of a GPR or FPR. */
|
|
int gpr_size;
|
|
int fpr_size;
|
|
|
|
/* The general-purpose registers. */
|
|
struct prologue_value gpr[S390_NUM_GPRS];
|
|
|
|
/* The floating-point registers. */
|
|
struct prologue_value fpr[S390_NUM_FPRS];
|
|
|
|
/* The register spill stack slots in the caller's frame ---
|
|
general-purpose registers r2 through r15, and floating-point
|
|
registers. spill[i] is where gpr i+2 gets spilled;
|
|
spill[(14, 15, 16, 17)] is where (f0, f2, f4, f6) get spilled. */
|
|
struct prologue_value spill[S390_NUM_SPILL_SLOTS];
|
|
|
|
/* The value of the back chain slot. This is only valid if the stack
|
|
pointer is known to be less than its original value --- that is,
|
|
if we have indeed allocated space on the stack. */
|
|
struct prologue_value back_chain;
|
|
};
|
|
|
|
|
|
/* If the SIZE bytes at ADDR are a stack slot we're actually tracking,
|
|
return pv_definite_yes and set *STACK to point to the slot. If
|
|
we're sure that they are not any of our stack slots, then return
|
|
pv_definite_no. Otherwise, return pv_maybe.
|
|
|
|
DATA describes our current state (registers and stack slots). */
|
|
static enum pv_boolean
|
|
s390_on_stack (struct prologue_value *addr,
|
|
CORE_ADDR size,
|
|
struct s390_prologue_data *data,
|
|
struct prologue_value **stack)
|
|
{
|
|
struct prologue_value gpr_spill_addr;
|
|
struct prologue_value fpr_spill_addr;
|
|
struct prologue_value back_chain_addr;
|
|
int i;
|
|
enum pv_boolean b;
|
|
|
|
/* Construct the addresses of the spill arrays and the back chain. */
|
|
pv_set_to_register (&gpr_spill_addr, S390_SP_REGNUM, 2 * data->gpr_size);
|
|
pv_set_to_register (&fpr_spill_addr, S390_SP_REGNUM, 16 * data->gpr_size);
|
|
back_chain_addr = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
|
|
|
|
/* We have to check for GPR and FPR references using two separate
|
|
calls to pv_is_array_ref, since the GPR and FPR spill slots are
|
|
different sizes. (SPILL is an array, but the thing it tracks
|
|
isn't really an array.) */
|
|
|
|
/* Was it a reference to the GPR spill array? */
|
|
b = pv_is_array_ref (addr, size, &gpr_spill_addr, 14, data->gpr_size, &i);
|
|
if (b == pv_definite_yes)
|
|
{
|
|
*stack = &data->spill[i];
|
|
return pv_definite_yes;
|
|
}
|
|
if (b == pv_maybe)
|
|
return pv_maybe;
|
|
|
|
/* Was it a reference to the FPR spill array? */
|
|
b = pv_is_array_ref (addr, size, &fpr_spill_addr, 4, data->fpr_size, &i);
|
|
if (b == pv_definite_yes)
|
|
{
|
|
*stack = &data->spill[14 + i];
|
|
return pv_definite_yes;
|
|
}
|
|
if (b == pv_maybe)
|
|
return pv_maybe;
|
|
|
|
/* Was it a reference to the back chain?
|
|
This isn't quite right. We ought to check whether we have
|
|
actually allocated any new frame at all. */
|
|
b = pv_is_array_ref (addr, size, &back_chain_addr, 1, data->gpr_size, &i);
|
|
if (b == pv_definite_yes)
|
|
{
|
|
*stack = &data->back_chain;
|
|
return pv_definite_yes;
|
|
}
|
|
if (b == pv_maybe)
|
|
return pv_maybe;
|
|
|
|
/* All the above queries returned definite 'no's. */
|
|
return pv_definite_no;
|
|
}
|
|
|
|
|
|
/* Do a SIZE-byte store of VALUE to ADDR. */
|
|
static void
|
|
s390_store (struct prologue_value *addr,
|
|
CORE_ADDR size,
|
|
struct prologue_value *value,
|
|
struct s390_prologue_data *data)
|
|
{
|
|
struct prologue_value *stack;
|
|
|
|
/* We can do it if it's definitely a reference to something on the stack. */
|
|
if (s390_on_stack (addr, size, data, &stack) == pv_definite_yes)
|
|
{
|
|
*stack = *value;
|
|
return;
|
|
}
|
|
|
|
/* Note: If s390_on_stack returns pv_maybe, you might think we should
|
|
forget our cached values, as any of those might have been hit.
|
|
|
|
However, we make the assumption that --since the fields we track
|
|
are save areas private to compiler, and never directly exposed to
|
|
the user-- every access to our data is explicit. Hence, every
|
|
memory access we cannot follow can't hit our data. */
|
|
}
|
|
|
|
/* Do a SIZE-byte load from ADDR into VALUE. */
|
|
static void
|
|
s390_load (struct prologue_value *addr,
|
|
CORE_ADDR size,
|
|
struct prologue_value *value,
|
|
struct s390_prologue_data *data)
|
|
{
|
|
struct prologue_value *stack;
|
|
|
|
/* If it's a load from an in-line constant pool, then we can
|
|
simulate that, under the assumption that the code isn't
|
|
going to change between the time the processor actually
|
|
executed it creating the current frame, and the time when
|
|
we're analyzing the code to unwind past that frame. */
|
|
if (addr->kind == pv_constant)
|
|
{
|
|
struct section_table *secp;
|
|
secp = target_section_by_addr (¤t_target, addr->k);
|
|
if (secp != NULL
|
|
&& (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
|
|
& SEC_READONLY))
|
|
{
|
|
pv_set_to_constant (value, read_memory_integer (addr->k, size));
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* If it's definitely a reference to something on the stack,
|
|
we can do that. */
|
|
if (s390_on_stack (addr, size, data, &stack) == pv_definite_yes)
|
|
{
|
|
*value = *stack;
|
|
return;
|
|
}
|
|
|
|
/* Otherwise, we don't know the value. */
|
|
pv_set_to_unknown (value);
|
|
}
|
|
|
|
|
|
/* Analyze the prologue of the function starting at START_PC,
|
|
continuing at most until CURRENT_PC. Initialize DATA to
|
|
hold all information we find out about the state of the registers
|
|
and stack slots. Return the address of the instruction after
|
|
the last one that changed the SP, FP, or back chain; or zero
|
|
on error. */
|
|
static CORE_ADDR
|
|
s390_analyze_prologue (struct gdbarch *gdbarch,
|
|
CORE_ADDR start_pc,
|
|
CORE_ADDR current_pc,
|
|
struct s390_prologue_data *data)
|
|
{
|
|
int word_size = gdbarch_ptr_bit (gdbarch) / 8;
|
|
|
|
/* Our return value:
|
|
The address of the instruction after the last one that changed
|
|
the SP, FP, or back chain; zero if we got an error trying to
|
|
read memory. */
|
|
CORE_ADDR result = start_pc;
|
|
|
|
/* The current PC for our abstract interpretation. */
|
|
CORE_ADDR pc;
|
|
|
|
/* The address of the next instruction after that. */
|
|
CORE_ADDR next_pc;
|
|
|
|
/* Set up everything's initial value. */
|
|
{
|
|
int i;
|
|
|
|
/* For the purpose of prologue tracking, we consider the GPR size to
|
|
be equal to the ABI word size, even if it is actually larger
|
|
(i.e. when running a 32-bit binary under a 64-bit kernel). */
|
|
data->gpr_size = word_size;
|
|
data->fpr_size = 8;
|
|
|
|
for (i = 0; i < S390_NUM_GPRS; i++)
|
|
pv_set_to_register (&data->gpr[i], S390_R0_REGNUM + i, 0);
|
|
|
|
for (i = 0; i < S390_NUM_FPRS; i++)
|
|
pv_set_to_register (&data->fpr[i], S390_F0_REGNUM + i, 0);
|
|
|
|
for (i = 0; i < S390_NUM_SPILL_SLOTS; i++)
|
|
pv_set_to_unknown (&data->spill[i]);
|
|
|
|
pv_set_to_unknown (&data->back_chain);
|
|
}
|
|
|
|
/* Start interpreting instructions, until we hit the frame's
|
|
current PC or the first branch instruction. */
|
|
for (pc = start_pc; pc > 0 && pc < current_pc; pc = next_pc)
|
|
{
|
|
bfd_byte insn[S390_MAX_INSTR_SIZE];
|
|
int insn_len = s390_readinstruction (insn, pc);
|
|
|
|
/* Fields for various kinds of instructions. */
|
|
unsigned int b2, r1, r2, x2, r3;
|
|
int i2, d2;
|
|
|
|
/* The values of SP, FP, and back chain before this instruction,
|
|
for detecting instructions that change them. */
|
|
struct prologue_value pre_insn_sp, pre_insn_fp, pre_insn_back_chain;
|
|
|
|
/* If we got an error trying to read the instruction, report it. */
|
|
if (insn_len < 0)
|
|
{
|
|
result = 0;
|
|
break;
|
|
}
|
|
|
|
next_pc = pc + insn_len;
|
|
|
|
pre_insn_sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
|
|
pre_insn_fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
|
|
pre_insn_back_chain = data->back_chain;
|
|
|
|
/* LHI r1, i2 --- load halfword immediate */
|
|
if (word_size == 4
|
|
&& is_ri (insn, op1_lhi, op2_lhi, &r1, &i2))
|
|
pv_set_to_constant (&data->gpr[r1], i2);
|
|
|
|
/* LGHI r1, i2 --- load halfword immediate (64-bit version) */
|
|
else if (word_size == 8
|
|
&& is_ri (insn, op1_lghi, op2_lghi, &r1, &i2))
|
|
pv_set_to_constant (&data->gpr[r1], i2);
|
|
|
|
/* LR r1, r2 --- load from register */
|
|
else if (word_size == 4
|
|
&& is_rr (insn, op_lr, &r1, &r2))
|
|
data->gpr[r1] = data->gpr[r2];
|
|
|
|
/* LGR r1, r2 --- load from register (64-bit version) */
|
|
else if (word_size == 8
|
|
&& is_rre (insn, op_lgr, &r1, &r2))
|
|
data->gpr[r1] = data->gpr[r2];
|
|
|
|
/* L r1, d2(x2, b2) --- load */
|
|
else if (word_size == 4
|
|
&& is_rx (insn, op_l, &r1, &d2, &x2, &b2))
|
|
{
|
|
struct prologue_value addr;
|
|
|
|
compute_x_addr (&addr, data->gpr, d2, x2, b2);
|
|
s390_load (&addr, 4, &data->gpr[r1], data);
|
|
}
|
|
|
|
/* LY r1, d2(x2, b2) --- load (long-displacement version) */
|
|
else if (word_size == 4
|
|
&& is_rxy (insn, op1_ly, op2_ly, &r1, &d2, &x2, &b2))
|
|
{
|
|
struct prologue_value addr;
|
|
|
|
compute_x_addr (&addr, data->gpr, d2, x2, b2);
|
|
s390_load (&addr, 4, &data->gpr[r1], data);
|
|
}
|
|
|
|
/* LG r1, d2(x2, b2) --- load (64-bit version) */
|
|
else if (word_size == 8
|
|
&& is_rxy (insn, op1_lg, op2_lg, &r1, &d2, &x2, &b2))
|
|
{
|
|
struct prologue_value addr;
|
|
|
|
compute_x_addr (&addr, data->gpr, d2, x2, b2);
|
|
s390_load (&addr, 8, &data->gpr[r1], data);
|
|
}
|
|
|
|
/* ST r1, d2(x2, b2) --- store */
|
|
else if (word_size == 4
|
|
&& is_rx (insn, op_st, &r1, &d2, &x2, &b2))
|
|
{
|
|
struct prologue_value addr;
|
|
|
|
compute_x_addr (&addr, data->gpr, d2, x2, b2);
|
|
s390_store (&addr, 4, &data->gpr[r1], data);
|
|
}
|
|
|
|
/* STY r1, d2(x2, b2) --- store (long-displacement version) */
|
|
else if (word_size == 4
|
|
&& is_rxy (insn, op1_sty, op2_sty, &r1, &d2, &x2, &b2))
|
|
{
|
|
struct prologue_value addr;
|
|
|
|
compute_x_addr (&addr, data->gpr, d2, x2, b2);
|
|
s390_store (&addr, 4, &data->gpr[r1], data);
|
|
}
|
|
|
|
/* STG r1, d2(x2, b2) --- store (64-bit version) */
|
|
else if (word_size == 8
|
|
&& is_rxy (insn, op1_stg, op2_stg, &r1, &d2, &x2, &b2))
|
|
{
|
|
struct prologue_value addr;
|
|
|
|
compute_x_addr (&addr, data->gpr, d2, x2, b2);
|
|
s390_store (&addr, 8, &data->gpr[r1], data);
|
|
}
|
|
|
|
/* STD r1, d2(x2,b2) --- store floating-point register */
|
|
else if (is_rx (insn, op_std, &r1, &d2, &x2, &b2))
|
|
{
|
|
struct prologue_value addr;
|
|
|
|
compute_x_addr (&addr, data->gpr, d2, x2, b2);
|
|
s390_store (&addr, 8, &data->fpr[r1], data);
|
|
}
|
|
|
|
/* STM r1, r3, d2(b2) --- store multiple */
|
|
else if (word_size == 4
|
|
&& is_rs (insn, op_stm, &r1, &r3, &d2, &b2))
|
|
{
|
|
int regnum;
|
|
int offset;
|
|
struct prologue_value addr;
|
|
|
|
for (regnum = r1, offset = 0;
|
|
regnum <= r3;
|
|
regnum++, offset += 4)
|
|
{
|
|
compute_x_addr (&addr, data->gpr, d2 + offset, 0, b2);
|
|
s390_store (&addr, 4, &data->gpr[regnum], data);
|
|
}
|
|
}
|
|
|
|
/* STMY r1, r3, d2(b2) --- store multiple (long-displacement version) */
|
|
else if (word_size == 4
|
|
&& is_rsy (insn, op1_stmy, op2_stmy, &r1, &r3, &d2, &b2))
|
|
{
|
|
int regnum;
|
|
int offset;
|
|
struct prologue_value addr;
|
|
|
|
for (regnum = r1, offset = 0;
|
|
regnum <= r3;
|
|
regnum++, offset += 4)
|
|
{
|
|
compute_x_addr (&addr, data->gpr, d2 + offset, 0, b2);
|
|
s390_store (&addr, 4, &data->gpr[regnum], data);
|
|
}
|
|
}
|
|
|
|
/* STMG r1, r3, d2(b2) --- store multiple (64-bit version) */
|
|
else if (word_size == 8
|
|
&& is_rsy (insn, op1_stmg, op2_stmg, &r1, &r3, &d2, &b2))
|
|
{
|
|
int regnum;
|
|
int offset;
|
|
struct prologue_value addr;
|
|
|
|
for (regnum = r1, offset = 0;
|
|
regnum <= r3;
|
|
regnum++, offset += 8)
|
|
{
|
|
compute_x_addr (&addr, data->gpr, d2 + offset, 0, b2);
|
|
s390_store (&addr, 8, &data->gpr[regnum], data);
|
|
}
|
|
}
|
|
|
|
/* AHI r1, i2 --- add halfword immediate */
|
|
else if (word_size == 4
|
|
&& is_ri (insn, op1_ahi, op2_ahi, &r1, &i2))
|
|
pv_add_constant (&data->gpr[r1], i2);
|
|
|
|
/* AGHI r1, i2 --- add halfword immediate (64-bit version) */
|
|
else if (word_size == 8
|
|
&& is_ri (insn, op1_aghi, op2_aghi, &r1, &i2))
|
|
pv_add_constant (&data->gpr[r1], i2);
|
|
|
|
/* AR r1, r2 -- add register */
|
|
else if (word_size == 4
|
|
&& is_rr (insn, op_ar, &r1, &r2))
|
|
pv_add (&data->gpr[r1], &data->gpr[r1], &data->gpr[r2]);
|
|
|
|
/* AGR r1, r2 -- add register (64-bit version) */
|
|
else if (word_size == 8
|
|
&& is_rre (insn, op_agr, &r1, &r2))
|
|
pv_add (&data->gpr[r1], &data->gpr[r1], &data->gpr[r2]);
|
|
|
|
/* A r1, d2(x2, b2) -- add */
|
|
else if (word_size == 4
|
|
&& is_rx (insn, op_a, &r1, &d2, &x2, &b2))
|
|
{
|
|
struct prologue_value addr;
|
|
struct prologue_value value;
|
|
|
|
compute_x_addr (&addr, data->gpr, d2, x2, b2);
|
|
s390_load (&addr, 4, &value, data);
|
|
|
|
pv_add (&data->gpr[r1], &data->gpr[r1], &value);
|
|
}
|
|
|
|
/* AY r1, d2(x2, b2) -- add (long-displacement version) */
|
|
else if (word_size == 4
|
|
&& is_rxy (insn, op1_ay, op2_ay, &r1, &d2, &x2, &b2))
|
|
{
|
|
struct prologue_value addr;
|
|
struct prologue_value value;
|
|
|
|
compute_x_addr (&addr, data->gpr, d2, x2, b2);
|
|
s390_load (&addr, 4, &value, data);
|
|
|
|
pv_add (&data->gpr[r1], &data->gpr[r1], &value);
|
|
}
|
|
|
|
/* AG r1, d2(x2, b2) -- add (64-bit version) */
|
|
else if (word_size == 8
|
|
&& is_rxy (insn, op1_ag, op2_ag, &r1, &d2, &x2, &b2))
|
|
{
|
|
struct prologue_value addr;
|
|
struct prologue_value value;
|
|
|
|
compute_x_addr (&addr, data->gpr, d2, x2, b2);
|
|
s390_load (&addr, 8, &value, data);
|
|
|
|
pv_add (&data->gpr[r1], &data->gpr[r1], &value);
|
|
}
|
|
|
|
/* SR r1, r2 -- subtract register */
|
|
else if (word_size == 4
|
|
&& is_rr (insn, op_sr, &r1, &r2))
|
|
pv_subtract (&data->gpr[r1], &data->gpr[r1], &data->gpr[r2]);
|
|
|
|
/* SGR r1, r2 -- subtract register (64-bit version) */
|
|
else if (word_size == 8
|
|
&& is_rre (insn, op_sgr, &r1, &r2))
|
|
pv_subtract (&data->gpr[r1], &data->gpr[r1], &data->gpr[r2]);
|
|
|
|
/* S r1, d2(x2, b2) -- subtract */
|
|
else if (word_size == 4
|
|
&& is_rx (insn, op_s, &r1, &d2, &x2, &b2))
|
|
{
|
|
struct prologue_value addr;
|
|
struct prologue_value value;
|
|
|
|
compute_x_addr (&addr, data->gpr, d2, x2, b2);
|
|
s390_load (&addr, 4, &value, data);
|
|
|
|
pv_subtract (&data->gpr[r1], &data->gpr[r1], &value);
|
|
}
|
|
|
|
/* SY r1, d2(x2, b2) -- subtract (long-displacement version) */
|
|
else if (word_size == 4
|
|
&& is_rxy (insn, op1_sy, op2_sy, &r1, &d2, &x2, &b2))
|
|
{
|
|
struct prologue_value addr;
|
|
struct prologue_value value;
|
|
|
|
compute_x_addr (&addr, data->gpr, d2, x2, b2);
|
|
s390_load (&addr, 4, &value, data);
|
|
|
|
pv_subtract (&data->gpr[r1], &data->gpr[r1], &value);
|
|
}
|
|
|
|
/* SG r1, d2(x2, b2) -- subtract (64-bit version) */
|
|
else if (word_size == 8
|
|
&& is_rxy (insn, op1_sg, op2_sg, &r1, &d2, &x2, &b2))
|
|
{
|
|
struct prologue_value addr;
|
|
struct prologue_value value;
|
|
|
|
compute_x_addr (&addr, data->gpr, d2, x2, b2);
|
|
s390_load (&addr, 8, &value, data);
|
|
|
|
pv_subtract (&data->gpr[r1], &data->gpr[r1], &value);
|
|
}
|
|
|
|
/* NR r1, r2 --- logical and */
|
|
else if (word_size == 4
|
|
&& is_rr (insn, op_nr, &r1, &r2))
|
|
pv_logical_and (&data->gpr[r1], &data->gpr[r1], &data->gpr[r2]);
|
|
|
|
/* NGR r1, r2 >--- logical and (64-bit version) */
|
|
else if (word_size == 8
|
|
&& is_rre (insn, op_ngr, &r1, &r2))
|
|
pv_logical_and (&data->gpr[r1], &data->gpr[r1], &data->gpr[r2]);
|
|
|
|
/* LA r1, d2(x2, b2) --- load address */
|
|
else if (is_rx (insn, op_la, &r1, &d2, &x2, &b2))
|
|
compute_x_addr (&data->gpr[r1], data->gpr, d2, x2, b2);
|
|
|
|
/* LAY r1, d2(x2, b2) --- load address (long-displacement version) */
|
|
else if (is_rxy (insn, op1_lay, op2_lay, &r1, &d2, &x2, &b2))
|
|
compute_x_addr (&data->gpr[r1], data->gpr, d2, x2, b2);
|
|
|
|
/* LARL r1, i2 --- load address relative long */
|
|
else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2))
|
|
pv_set_to_constant (&data->gpr[r1], pc + i2 * 2);
|
|
|
|
/* BASR r1, 0 --- branch and save
|
|
Since r2 is zero, this saves the PC in r1, but doesn't branch. */
|
|
else if (is_rr (insn, op_basr, &r1, &r2)
|
|
&& r2 == 0)
|
|
pv_set_to_constant (&data->gpr[r1], next_pc);
|
|
|
|
/* BRAS r1, i2 --- branch relative and save */
|
|
else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2))
|
|
{
|
|
pv_set_to_constant (&data->gpr[r1], next_pc);
|
|
next_pc = pc + i2 * 2;
|
|
|
|
/* We'd better not interpret any backward branches. We'll
|
|
never terminate. */
|
|
if (next_pc <= pc)
|
|
break;
|
|
}
|
|
|
|
/* Terminate search when hitting any other branch instruction. */
|
|
else if (is_rr (insn, op_basr, &r1, &r2)
|
|
|| is_rx (insn, op_bas, &r1, &d2, &x2, &b2)
|
|
|| is_rr (insn, op_bcr, &r1, &r2)
|
|
|| is_rx (insn, op_bc, &r1, &d2, &x2, &b2)
|
|
|| is_ri (insn, op1_brc, op2_brc, &r1, &i2)
|
|
|| is_ril (insn, op1_brcl, op2_brcl, &r1, &i2)
|
|
|| is_ril (insn, op1_brasl, op2_brasl, &r2, &i2))
|
|
break;
|
|
|
|
else
|
|
/* An instruction we don't know how to simulate. The only
|
|
safe thing to do would be to set every value we're tracking
|
|
to 'unknown'. Instead, we'll be optimistic: we assume that
|
|
we *can* interpret every instruction that the compiler uses
|
|
to manipulate any of the data we're interested in here --
|
|
then we can just ignore anything else. */
|
|
;
|
|
|
|
/* Record the address after the last instruction that changed
|
|
the FP, SP, or backlink. Ignore instructions that changed
|
|
them back to their original values --- those are probably
|
|
restore instructions. (The back chain is never restored,
|
|
just popped.) */
|
|
{
|
|
struct prologue_value *sp = &data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
|
|
struct prologue_value *fp = &data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
|
|
|
|
if ((! pv_is_identical (&pre_insn_sp, sp)
|
|
&& ! pv_is_register (sp, S390_SP_REGNUM, 0))
|
|
|| (! pv_is_identical (&pre_insn_fp, fp)
|
|
&& ! pv_is_register (fp, S390_FRAME_REGNUM, 0))
|
|
|| ! pv_is_identical (&pre_insn_back_chain, &data->back_chain))
|
|
result = next_pc;
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Advance PC across any function entry prologue instructions to reach
|
|
some "real" code. */
|
|
static CORE_ADDR
|
|
s390_skip_prologue (CORE_ADDR pc)
|
|
{
|
|
struct s390_prologue_data data;
|
|
CORE_ADDR skip_pc;
|
|
skip_pc = s390_analyze_prologue (current_gdbarch, pc, (CORE_ADDR)-1, &data);
|
|
return skip_pc ? skip_pc : pc;
|
|
}
|
|
|
|
/* Return true if we are in the functin's epilogue, i.e. after the
|
|
instruction that destroyed the function's stack frame. */
|
|
static int
|
|
s390_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
|
|
{
|
|
int word_size = gdbarch_ptr_bit (gdbarch) / 8;
|
|
|
|
/* In frameless functions, there's not frame to destroy and thus
|
|
we don't care about the epilogue.
|
|
|
|
In functions with frame, the epilogue sequence is a pair of
|
|
a LM-type instruction that restores (amongst others) the
|
|
return register %r14 and the stack pointer %r15, followed
|
|
by a branch 'br %r14' --or equivalent-- that effects the
|
|
actual return.
|
|
|
|
In that situation, this function needs to return 'true' in
|
|
exactly one case: when pc points to that branch instruction.
|
|
|
|
Thus we try to disassemble the one instructions immediately
|
|
preceeding pc and check whether it is an LM-type instruction
|
|
modifying the stack pointer.
|
|
|
|
Note that disassembling backwards is not reliable, so there
|
|
is a slight chance of false positives here ... */
|
|
|
|
bfd_byte insn[6];
|
|
unsigned int r1, r3, b2;
|
|
int d2;
|
|
|
|
if (word_size == 4
|
|
&& !read_memory_nobpt (pc - 4, insn, 4)
|
|
&& is_rs (insn, op_lm, &r1, &r3, &d2, &b2)
|
|
&& r3 == S390_SP_REGNUM - S390_R0_REGNUM)
|
|
return 1;
|
|
|
|
if (word_size == 4
|
|
&& !read_memory_nobpt (pc - 6, insn, 6)
|
|
&& is_rsy (insn, op1_lmy, op2_lmy, &r1, &r3, &d2, &b2)
|
|
&& r3 == S390_SP_REGNUM - S390_R0_REGNUM)
|
|
return 1;
|
|
|
|
if (word_size == 8
|
|
&& !read_memory_nobpt (pc - 6, insn, 6)
|
|
&& is_rsy (insn, op1_lmg, op2_lmg, &r1, &r3, &d2, &b2)
|
|
&& r3 == S390_SP_REGNUM - S390_R0_REGNUM)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Normal stack frames. */
|
|
|
|
struct s390_unwind_cache {
|
|
|
|
CORE_ADDR func;
|
|
CORE_ADDR frame_base;
|
|
CORE_ADDR local_base;
|
|
|
|
struct trad_frame_saved_reg *saved_regs;
|
|
};
|
|
|
|
static int
|
|
s390_prologue_frame_unwind_cache (struct frame_info *next_frame,
|
|
struct s390_unwind_cache *info)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (next_frame);
|
|
int word_size = gdbarch_ptr_bit (gdbarch) / 8;
|
|
struct s390_prologue_data data;
|
|
struct prologue_value *fp = &data.gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
|
|
struct prologue_value *sp = &data.gpr[S390_SP_REGNUM - S390_R0_REGNUM];
|
|
int slot_num;
|
|
CORE_ADDR slot_addr;
|
|
CORE_ADDR func;
|
|
CORE_ADDR result;
|
|
ULONGEST reg;
|
|
CORE_ADDR prev_sp;
|
|
int frame_pointer;
|
|
int size;
|
|
|
|
/* Try to find the function start address. If we can't find it, we don't
|
|
bother searching for it -- with modern compilers this would be mostly
|
|
pointless anyway. Trust that we'll either have valid DWARF-2 CFI data
|
|
or else a valid backchain ... */
|
|
func = frame_func_unwind (next_frame);
|
|
if (!func)
|
|
return 0;
|
|
|
|
/* Try to analyze the prologue. */
|
|
result = s390_analyze_prologue (gdbarch, func,
|
|
frame_pc_unwind (next_frame), &data);
|
|
if (!result)
|
|
return 0;
|
|
|
|
/* If this was successful, we should have found the instruction that
|
|
sets the stack pointer register to the previous value of the stack
|
|
pointer minus the frame size. */
|
|
if (sp->kind != pv_register || sp->reg != S390_SP_REGNUM)
|
|
return 0;
|
|
|
|
/* A frame size of zero at this point can mean either a real
|
|
frameless function, or else a failure to find the prologue.
|
|
Perform some sanity checks to verify we really have a
|
|
frameless function. */
|
|
if (sp->k == 0)
|
|
{
|
|
/* If the next frame is a NORMAL_FRAME, this frame *cannot* have frame
|
|
size zero. This is only possible if the next frame is a sentinel
|
|
frame, a dummy frame, or a signal trampoline frame. */
|
|
/* FIXME: cagney/2004-05-01: This sanity check shouldn't be
|
|
needed, instead the code should simpliy rely on its
|
|
analysis. */
|
|
if (get_frame_type (next_frame) == NORMAL_FRAME)
|
|
return 0;
|
|
|
|
/* If we really have a frameless function, %r14 must be valid
|
|
-- in particular, it must point to a different function. */
|
|
reg = frame_unwind_register_unsigned (next_frame, S390_RETADDR_REGNUM);
|
|
reg = gdbarch_addr_bits_remove (gdbarch, reg) - 1;
|
|
if (get_pc_function_start (reg) == func)
|
|
{
|
|
/* However, there is one case where it *is* valid for %r14
|
|
to point to the same function -- if this is a recursive
|
|
call, and we have stopped in the prologue *before* the
|
|
stack frame was allocated.
|
|
|
|
Recognize this case by looking ahead a bit ... */
|
|
|
|
struct s390_prologue_data data2;
|
|
struct prologue_value *sp = &data2.gpr[S390_SP_REGNUM - S390_R0_REGNUM];
|
|
|
|
if (!(s390_analyze_prologue (gdbarch, func, (CORE_ADDR)-1, &data2)
|
|
&& sp->kind == pv_register
|
|
&& sp->reg == S390_SP_REGNUM
|
|
&& sp->k != 0))
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
/* OK, we've found valid prologue data. */
|
|
size = -sp->k;
|
|
|
|
/* If the frame pointer originally also holds the same value
|
|
as the stack pointer, we're probably using it. If it holds
|
|
some other value -- even a constant offset -- it is most
|
|
likely used as temp register. */
|
|
if (pv_is_identical (sp, fp))
|
|
frame_pointer = S390_FRAME_REGNUM;
|
|
else
|
|
frame_pointer = S390_SP_REGNUM;
|
|
|
|
/* If we've detected a function with stack frame, we'll still have to
|
|
treat it as frameless if we're currently within the function epilog
|
|
code at a point where the frame pointer has already been restored.
|
|
This can only happen in an innermost frame. */
|
|
/* FIXME: cagney/2004-05-01: This sanity check shouldn't be needed,
|
|
instead the code should simpliy rely on its analysis. */
|
|
if (size > 0 && get_frame_type (next_frame) != NORMAL_FRAME)
|
|
{
|
|
/* See the comment in s390_in_function_epilogue_p on why this is
|
|
not completely reliable ... */
|
|
if (s390_in_function_epilogue_p (gdbarch, frame_pc_unwind (next_frame)))
|
|
{
|
|
memset (&data, 0, sizeof (data));
|
|
size = 0;
|
|
frame_pointer = S390_SP_REGNUM;
|
|
}
|
|
}
|
|
|
|
/* Once we know the frame register and the frame size, we can unwind
|
|
the current value of the frame register from the next frame, and
|
|
add back the frame size to arrive that the previous frame's
|
|
stack pointer value. */
|
|
prev_sp = frame_unwind_register_unsigned (next_frame, frame_pointer) + size;
|
|
|
|
/* Scan the spill array; if a spill slot says it holds the
|
|
original value of some register, then record that slot's
|
|
address as the place that register was saved. */
|
|
|
|
/* Slots for %r2 .. %r15. */
|
|
for (slot_num = 0, slot_addr = prev_sp + 2 * data.gpr_size;
|
|
slot_num < 14;
|
|
slot_num++, slot_addr += data.gpr_size)
|
|
{
|
|
struct prologue_value *slot = &data.spill[slot_num];
|
|
|
|
if (slot->kind == pv_register
|
|
&& slot->k == 0)
|
|
info->saved_regs[slot->reg].addr = slot_addr;
|
|
}
|
|
|
|
/* Slots for %f0 .. %f6. */
|
|
for (slot_num = 14, slot_addr = prev_sp + 16 * data.gpr_size;
|
|
slot_num < S390_NUM_SPILL_SLOTS;
|
|
slot_num++, slot_addr += data.fpr_size)
|
|
{
|
|
struct prologue_value *slot = &data.spill[slot_num];
|
|
|
|
if (slot->kind == pv_register
|
|
&& slot->k == 0)
|
|
info->saved_regs[slot->reg].addr = slot_addr;
|
|
}
|
|
|
|
/* Function return will set PC to %r14. */
|
|
info->saved_regs[S390_PC_REGNUM] = info->saved_regs[S390_RETADDR_REGNUM];
|
|
|
|
/* In frameless functions, we unwind simply by moving the return
|
|
address to the PC. However, if we actually stored to the
|
|
save area, use that -- we might only think the function frameless
|
|
because we're in the middle of the prologue ... */
|
|
if (size == 0
|
|
&& !trad_frame_addr_p (info->saved_regs, S390_PC_REGNUM))
|
|
{
|
|
info->saved_regs[S390_PC_REGNUM].realreg = S390_RETADDR_REGNUM;
|
|
}
|
|
|
|
/* Another sanity check: unless this is a frameless function,
|
|
we should have found spill slots for SP and PC.
|
|
If not, we cannot unwind further -- this happens e.g. in
|
|
libc's thread_start routine. */
|
|
if (size > 0)
|
|
{
|
|
if (!trad_frame_addr_p (info->saved_regs, S390_SP_REGNUM)
|
|
|| !trad_frame_addr_p (info->saved_regs, S390_PC_REGNUM))
|
|
prev_sp = -1;
|
|
}
|
|
|
|
/* We use the current value of the frame register as local_base,
|
|
and the top of the register save area as frame_base. */
|
|
if (prev_sp != -1)
|
|
{
|
|
info->frame_base = prev_sp + 16*word_size + 32;
|
|
info->local_base = prev_sp - size;
|
|
}
|
|
|
|
info->func = func;
|
|
return 1;
|
|
}
|
|
|
|
static void
|
|
s390_backchain_frame_unwind_cache (struct frame_info *next_frame,
|
|
struct s390_unwind_cache *info)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (next_frame);
|
|
int word_size = gdbarch_ptr_bit (gdbarch) / 8;
|
|
CORE_ADDR backchain;
|
|
ULONGEST reg;
|
|
LONGEST sp;
|
|
|
|
/* Get the backchain. */
|
|
reg = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM);
|
|
backchain = read_memory_unsigned_integer (reg, word_size);
|
|
|
|
/* A zero backchain terminates the frame chain. As additional
|
|
sanity check, let's verify that the spill slot for SP in the
|
|
save area pointed to by the backchain in fact links back to
|
|
the save area. */
|
|
if (backchain != 0
|
|
&& safe_read_memory_integer (backchain + 15*word_size, word_size, &sp)
|
|
&& (CORE_ADDR)sp == backchain)
|
|
{
|
|
/* We don't know which registers were saved, but it will have
|
|
to be at least %r14 and %r15. This will allow us to continue
|
|
unwinding, but other prev-frame registers may be incorrect ... */
|
|
info->saved_regs[S390_SP_REGNUM].addr = backchain + 15*word_size;
|
|
info->saved_regs[S390_RETADDR_REGNUM].addr = backchain + 14*word_size;
|
|
|
|
/* Function return will set PC to %r14. */
|
|
info->saved_regs[S390_PC_REGNUM] = info->saved_regs[S390_RETADDR_REGNUM];
|
|
|
|
/* We use the current value of the frame register as local_base,
|
|
and the top of the register save area as frame_base. */
|
|
info->frame_base = backchain + 16*word_size + 32;
|
|
info->local_base = reg;
|
|
}
|
|
|
|
info->func = frame_pc_unwind (next_frame);
|
|
}
|
|
|
|
static struct s390_unwind_cache *
|
|
s390_frame_unwind_cache (struct frame_info *next_frame,
|
|
void **this_prologue_cache)
|
|
{
|
|
struct s390_unwind_cache *info;
|
|
if (*this_prologue_cache)
|
|
return *this_prologue_cache;
|
|
|
|
info = FRAME_OBSTACK_ZALLOC (struct s390_unwind_cache);
|
|
*this_prologue_cache = info;
|
|
info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
|
|
info->func = -1;
|
|
info->frame_base = -1;
|
|
info->local_base = -1;
|
|
|
|
/* Try to use prologue analysis to fill the unwind cache.
|
|
If this fails, fall back to reading the stack backchain. */
|
|
if (!s390_prologue_frame_unwind_cache (next_frame, info))
|
|
s390_backchain_frame_unwind_cache (next_frame, info);
|
|
|
|
return info;
|
|
}
|
|
|
|
static void
|
|
s390_frame_this_id (struct frame_info *next_frame,
|
|
void **this_prologue_cache,
|
|
struct frame_id *this_id)
|
|
{
|
|
struct s390_unwind_cache *info
|
|
= s390_frame_unwind_cache (next_frame, this_prologue_cache);
|
|
|
|
if (info->frame_base == -1)
|
|
return;
|
|
|
|
*this_id = frame_id_build (info->frame_base, info->func);
|
|
}
|
|
|
|
static void
|
|
s390_frame_prev_register (struct frame_info *next_frame,
|
|
void **this_prologue_cache,
|
|
int regnum, int *optimizedp,
|
|
enum lval_type *lvalp, CORE_ADDR *addrp,
|
|
int *realnump, void *bufferp)
|
|
{
|
|
struct s390_unwind_cache *info
|
|
= s390_frame_unwind_cache (next_frame, this_prologue_cache);
|
|
trad_frame_prev_register (next_frame, info->saved_regs, regnum,
|
|
optimizedp, lvalp, addrp, realnump, bufferp);
|
|
}
|
|
|
|
static const struct frame_unwind s390_frame_unwind = {
|
|
NORMAL_FRAME,
|
|
s390_frame_this_id,
|
|
s390_frame_prev_register
|
|
};
|
|
|
|
static const struct frame_unwind *
|
|
s390_frame_sniffer (struct frame_info *next_frame)
|
|
{
|
|
return &s390_frame_unwind;
|
|
}
|
|
|
|
|
|
/* Code stubs and their stack frames. For things like PLTs and NULL
|
|
function calls (where there is no true frame and the return address
|
|
is in the RETADDR register). */
|
|
|
|
struct s390_stub_unwind_cache
|
|
{
|
|
CORE_ADDR frame_base;
|
|
struct trad_frame_saved_reg *saved_regs;
|
|
};
|
|
|
|
static struct s390_stub_unwind_cache *
|
|
s390_stub_frame_unwind_cache (struct frame_info *next_frame,
|
|
void **this_prologue_cache)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (next_frame);
|
|
int word_size = gdbarch_ptr_bit (gdbarch) / 8;
|
|
struct s390_stub_unwind_cache *info;
|
|
ULONGEST reg;
|
|
|
|
if (*this_prologue_cache)
|
|
return *this_prologue_cache;
|
|
|
|
info = FRAME_OBSTACK_ZALLOC (struct s390_stub_unwind_cache);
|
|
*this_prologue_cache = info;
|
|
info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
|
|
|
|
/* The return address is in register %r14. */
|
|
info->saved_regs[S390_PC_REGNUM].realreg = S390_RETADDR_REGNUM;
|
|
|
|
/* Retrieve stack pointer and determine our frame base. */
|
|
reg = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM);
|
|
info->frame_base = reg + 16*word_size + 32;
|
|
|
|
return info;
|
|
}
|
|
|
|
static void
|
|
s390_stub_frame_this_id (struct frame_info *next_frame,
|
|
void **this_prologue_cache,
|
|
struct frame_id *this_id)
|
|
{
|
|
struct s390_stub_unwind_cache *info
|
|
= s390_stub_frame_unwind_cache (next_frame, this_prologue_cache);
|
|
*this_id = frame_id_build (info->frame_base, frame_pc_unwind (next_frame));
|
|
}
|
|
|
|
static void
|
|
s390_stub_frame_prev_register (struct frame_info *next_frame,
|
|
void **this_prologue_cache,
|
|
int regnum, int *optimizedp,
|
|
enum lval_type *lvalp, CORE_ADDR *addrp,
|
|
int *realnump, void *bufferp)
|
|
{
|
|
struct s390_stub_unwind_cache *info
|
|
= s390_stub_frame_unwind_cache (next_frame, this_prologue_cache);
|
|
trad_frame_prev_register (next_frame, info->saved_regs, regnum,
|
|
optimizedp, lvalp, addrp, realnump, bufferp);
|
|
}
|
|
|
|
static const struct frame_unwind s390_stub_frame_unwind = {
|
|
NORMAL_FRAME,
|
|
s390_stub_frame_this_id,
|
|
s390_stub_frame_prev_register
|
|
};
|
|
|
|
static const struct frame_unwind *
|
|
s390_stub_frame_sniffer (struct frame_info *next_frame)
|
|
{
|
|
CORE_ADDR pc = frame_pc_unwind (next_frame);
|
|
bfd_byte insn[S390_MAX_INSTR_SIZE];
|
|
|
|
/* If the current PC points to non-readable memory, we assume we
|
|
have trapped due to an invalid function pointer call. We handle
|
|
the non-existing current function like a PLT stub. */
|
|
if (in_plt_section (pc, NULL)
|
|
|| s390_readinstruction (insn, pc) < 0)
|
|
return &s390_stub_frame_unwind;
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* Signal trampoline stack frames. */
|
|
|
|
struct s390_sigtramp_unwind_cache {
|
|
CORE_ADDR frame_base;
|
|
struct trad_frame_saved_reg *saved_regs;
|
|
};
|
|
|
|
static struct s390_sigtramp_unwind_cache *
|
|
s390_sigtramp_frame_unwind_cache (struct frame_info *next_frame,
|
|
void **this_prologue_cache)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (next_frame);
|
|
int word_size = gdbarch_ptr_bit (gdbarch) / 8;
|
|
struct s390_sigtramp_unwind_cache *info;
|
|
ULONGEST this_sp, prev_sp;
|
|
CORE_ADDR next_ra, next_cfa, sigreg_ptr;
|
|
int i;
|
|
|
|
if (*this_prologue_cache)
|
|
return *this_prologue_cache;
|
|
|
|
info = FRAME_OBSTACK_ZALLOC (struct s390_sigtramp_unwind_cache);
|
|
*this_prologue_cache = info;
|
|
info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
|
|
|
|
this_sp = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM);
|
|
next_ra = frame_pc_unwind (next_frame);
|
|
next_cfa = this_sp + 16*word_size + 32;
|
|
|
|
/* New-style RT frame:
|
|
retcode + alignment (8 bytes)
|
|
siginfo (128 bytes)
|
|
ucontext (contains sigregs at offset 5 words) */
|
|
if (next_ra == next_cfa)
|
|
{
|
|
sigreg_ptr = next_cfa + 8 + 128 + align_up (5*word_size, 8);
|
|
}
|
|
|
|
/* Old-style RT frame and all non-RT frames:
|
|
old signal mask (8 bytes)
|
|
pointer to sigregs */
|
|
else
|
|
{
|
|
sigreg_ptr = read_memory_unsigned_integer (next_cfa + 8, word_size);
|
|
}
|
|
|
|
/* The sigregs structure looks like this:
|
|
long psw_mask;
|
|
long psw_addr;
|
|
long gprs[16];
|
|
int acrs[16];
|
|
int fpc;
|
|
int __pad;
|
|
double fprs[16]; */
|
|
|
|
/* Let's ignore the PSW mask, it will not be restored anyway. */
|
|
sigreg_ptr += word_size;
|
|
|
|
/* Next comes the PSW address. */
|
|
info->saved_regs[S390_PC_REGNUM].addr = sigreg_ptr;
|
|
sigreg_ptr += word_size;
|
|
|
|
/* Then the GPRs. */
|
|
for (i = 0; i < 16; i++)
|
|
{
|
|
info->saved_regs[S390_R0_REGNUM + i].addr = sigreg_ptr;
|
|
sigreg_ptr += word_size;
|
|
}
|
|
|
|
/* Then the ACRs. */
|
|
for (i = 0; i < 16; i++)
|
|
{
|
|
info->saved_regs[S390_A0_REGNUM + i].addr = sigreg_ptr;
|
|
sigreg_ptr += 4;
|
|
}
|
|
|
|
/* The floating-point control word. */
|
|
info->saved_regs[S390_FPC_REGNUM].addr = sigreg_ptr;
|
|
sigreg_ptr += 8;
|
|
|
|
/* And finally the FPRs. */
|
|
for (i = 0; i < 16; i++)
|
|
{
|
|
info->saved_regs[S390_F0_REGNUM + i].addr = sigreg_ptr;
|
|
sigreg_ptr += 8;
|
|
}
|
|
|
|
/* Restore the previous frame's SP. */
|
|
prev_sp = read_memory_unsigned_integer (
|
|
info->saved_regs[S390_SP_REGNUM].addr,
|
|
word_size);
|
|
|
|
/* Determine our frame base. */
|
|
info->frame_base = prev_sp + 16*word_size + 32;
|
|
|
|
return info;
|
|
}
|
|
|
|
static void
|
|
s390_sigtramp_frame_this_id (struct frame_info *next_frame,
|
|
void **this_prologue_cache,
|
|
struct frame_id *this_id)
|
|
{
|
|
struct s390_sigtramp_unwind_cache *info
|
|
= s390_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
|
|
*this_id = frame_id_build (info->frame_base, frame_pc_unwind (next_frame));
|
|
}
|
|
|
|
static void
|
|
s390_sigtramp_frame_prev_register (struct frame_info *next_frame,
|
|
void **this_prologue_cache,
|
|
int regnum, int *optimizedp,
|
|
enum lval_type *lvalp, CORE_ADDR *addrp,
|
|
int *realnump, void *bufferp)
|
|
{
|
|
struct s390_sigtramp_unwind_cache *info
|
|
= s390_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
|
|
trad_frame_prev_register (next_frame, info->saved_regs, regnum,
|
|
optimizedp, lvalp, addrp, realnump, bufferp);
|
|
}
|
|
|
|
static const struct frame_unwind s390_sigtramp_frame_unwind = {
|
|
SIGTRAMP_FRAME,
|
|
s390_sigtramp_frame_this_id,
|
|
s390_sigtramp_frame_prev_register
|
|
};
|
|
|
|
static const struct frame_unwind *
|
|
s390_sigtramp_frame_sniffer (struct frame_info *next_frame)
|
|
{
|
|
CORE_ADDR pc = frame_pc_unwind (next_frame);
|
|
bfd_byte sigreturn[2];
|
|
|
|
if (read_memory_nobpt (pc, sigreturn, 2))
|
|
return NULL;
|
|
|
|
if (sigreturn[0] != 0x0a /* svc */)
|
|
return NULL;
|
|
|
|
if (sigreturn[1] != 119 /* sigreturn */
|
|
&& sigreturn[1] != 173 /* rt_sigreturn */)
|
|
return NULL;
|
|
|
|
return &s390_sigtramp_frame_unwind;
|
|
}
|
|
|
|
|
|
/* Frame base handling. */
|
|
|
|
static CORE_ADDR
|
|
s390_frame_base_address (struct frame_info *next_frame, void **this_cache)
|
|
{
|
|
struct s390_unwind_cache *info
|
|
= s390_frame_unwind_cache (next_frame, this_cache);
|
|
return info->frame_base;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
s390_local_base_address (struct frame_info *next_frame, void **this_cache)
|
|
{
|
|
struct s390_unwind_cache *info
|
|
= s390_frame_unwind_cache (next_frame, this_cache);
|
|
return info->local_base;
|
|
}
|
|
|
|
static const struct frame_base s390_frame_base = {
|
|
&s390_frame_unwind,
|
|
s390_frame_base_address,
|
|
s390_local_base_address,
|
|
s390_local_base_address
|
|
};
|
|
|
|
static CORE_ADDR
|
|
s390_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
|
{
|
|
ULONGEST pc;
|
|
pc = frame_unwind_register_unsigned (next_frame, S390_PC_REGNUM);
|
|
return gdbarch_addr_bits_remove (gdbarch, pc);
|
|
}
|
|
|
|
static CORE_ADDR
|
|
s390_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
|
{
|
|
ULONGEST sp;
|
|
sp = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM);
|
|
return gdbarch_addr_bits_remove (gdbarch, sp);
|
|
}
|
|
|
|
|
|
/* DWARF-2 frame support. */
|
|
|
|
static void
|
|
s390_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
|
|
struct dwarf2_frame_state_reg *reg)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
|
|
switch (tdep->abi)
|
|
{
|
|
case ABI_LINUX_S390:
|
|
/* Call-saved registers. */
|
|
if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM)
|
|
|| regnum == S390_F4_REGNUM
|
|
|| regnum == S390_F6_REGNUM)
|
|
reg->how = DWARF2_FRAME_REG_SAME_VALUE;
|
|
|
|
/* Call-clobbered registers. */
|
|
else if ((regnum >= S390_R0_REGNUM && regnum <= S390_R5_REGNUM)
|
|
|| (regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM
|
|
&& regnum != S390_F4_REGNUM && regnum != S390_F6_REGNUM))
|
|
reg->how = DWARF2_FRAME_REG_UNDEFINED;
|
|
|
|
/* The return address column. */
|
|
else if (regnum == S390_PC_REGNUM)
|
|
reg->how = DWARF2_FRAME_REG_RA;
|
|
break;
|
|
|
|
case ABI_LINUX_ZSERIES:
|
|
/* Call-saved registers. */
|
|
if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM)
|
|
|| (regnum >= S390_F8_REGNUM && regnum <= S390_F15_REGNUM))
|
|
reg->how = DWARF2_FRAME_REG_SAME_VALUE;
|
|
|
|
/* Call-clobbered registers. */
|
|
else if ((regnum >= S390_R0_REGNUM && regnum <= S390_R5_REGNUM)
|
|
|| (regnum >= S390_F0_REGNUM && regnum <= S390_F7_REGNUM))
|
|
reg->how = DWARF2_FRAME_REG_UNDEFINED;
|
|
|
|
/* The return address column. */
|
|
else if (regnum == S390_PC_REGNUM)
|
|
reg->how = DWARF2_FRAME_REG_RA;
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
/* Dummy function calls. */
|
|
|
|
/* Return non-zero if TYPE is an integer-like type, zero otherwise.
|
|
"Integer-like" types are those that should be passed the way
|
|
integers are: integers, enums, ranges, characters, and booleans. */
|
|
static int
|
|
is_integer_like (struct type *type)
|
|
{
|
|
enum type_code code = TYPE_CODE (type);
|
|
|
|
return (code == TYPE_CODE_INT
|
|
|| code == TYPE_CODE_ENUM
|
|
|| code == TYPE_CODE_RANGE
|
|
|| code == TYPE_CODE_CHAR
|
|
|| code == TYPE_CODE_BOOL);
|
|
}
|
|
|
|
/* Return non-zero if TYPE is a pointer-like type, zero otherwise.
|
|
"Pointer-like" types are those that should be passed the way
|
|
pointers are: pointers and references. */
|
|
static int
|
|
is_pointer_like (struct type *type)
|
|
{
|
|
enum type_code code = TYPE_CODE (type);
|
|
|
|
return (code == TYPE_CODE_PTR
|
|
|| code == TYPE_CODE_REF);
|
|
}
|
|
|
|
|
|
/* Return non-zero if TYPE is a `float singleton' or `double
|
|
singleton', zero otherwise.
|
|
|
|
A `T singleton' is a struct type with one member, whose type is
|
|
either T or a `T singleton'. So, the following are all float
|
|
singletons:
|
|
|
|
struct { float x };
|
|
struct { struct { float x; } x; };
|
|
struct { struct { struct { float x; } x; } x; };
|
|
|
|
... and so on.
|
|
|
|
All such structures are passed as if they were floats or doubles,
|
|
as the (revised) ABI says. */
|
|
static int
|
|
is_float_singleton (struct type *type)
|
|
{
|
|
if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
|
|
{
|
|
struct type *singleton_type = TYPE_FIELD_TYPE (type, 0);
|
|
CHECK_TYPEDEF (singleton_type);
|
|
|
|
return (TYPE_CODE (singleton_type) == TYPE_CODE_FLT
|
|
|| is_float_singleton (singleton_type));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Return non-zero if TYPE is a struct-like type, zero otherwise.
|
|
"Struct-like" types are those that should be passed as structs are:
|
|
structs and unions.
|
|
|
|
As an odd quirk, not mentioned in the ABI, GCC passes float and
|
|
double singletons as if they were a plain float, double, etc. (The
|
|
corresponding union types are handled normally.) So we exclude
|
|
those types here. *shrug* */
|
|
static int
|
|
is_struct_like (struct type *type)
|
|
{
|
|
enum type_code code = TYPE_CODE (type);
|
|
|
|
return (code == TYPE_CODE_UNION
|
|
|| (code == TYPE_CODE_STRUCT && ! is_float_singleton (type)));
|
|
}
|
|
|
|
|
|
/* Return non-zero if TYPE is a float-like type, zero otherwise.
|
|
"Float-like" types are those that should be passed as
|
|
floating-point values are.
|
|
|
|
You'd think this would just be floats, doubles, long doubles, etc.
|
|
But as an odd quirk, not mentioned in the ABI, GCC passes float and
|
|
double singletons as if they were a plain float, double, etc. (The
|
|
corresponding union types are handled normally.) So we include
|
|
those types here. *shrug* */
|
|
static int
|
|
is_float_like (struct type *type)
|
|
{
|
|
return (TYPE_CODE (type) == TYPE_CODE_FLT
|
|
|| is_float_singleton (type));
|
|
}
|
|
|
|
|
|
static int
|
|
is_power_of_two (unsigned int n)
|
|
{
|
|
return ((n & (n - 1)) == 0);
|
|
}
|
|
|
|
/* Return non-zero if TYPE should be passed as a pointer to a copy,
|
|
zero otherwise. */
|
|
static int
|
|
s390_function_arg_pass_by_reference (struct type *type)
|
|
{
|
|
unsigned length = TYPE_LENGTH (type);
|
|
if (length > 8)
|
|
return 1;
|
|
|
|
/* FIXME: All complex and vector types are also returned by reference. */
|
|
return is_struct_like (type) && !is_power_of_two (length);
|
|
}
|
|
|
|
/* Return non-zero if TYPE should be passed in a float register
|
|
if possible. */
|
|
static int
|
|
s390_function_arg_float (struct type *type)
|
|
{
|
|
unsigned length = TYPE_LENGTH (type);
|
|
if (length > 8)
|
|
return 0;
|
|
|
|
return is_float_like (type);
|
|
}
|
|
|
|
/* Return non-zero if TYPE should be passed in an integer register
|
|
(or a pair of integer registers) if possible. */
|
|
static int
|
|
s390_function_arg_integer (struct type *type)
|
|
{
|
|
unsigned length = TYPE_LENGTH (type);
|
|
if (length > 8)
|
|
return 0;
|
|
|
|
return is_integer_like (type)
|
|
|| is_pointer_like (type)
|
|
|| (is_struct_like (type) && is_power_of_two (length));
|
|
}
|
|
|
|
/* Return ARG, a `SIMPLE_ARG', sign-extended or zero-extended to a full
|
|
word as required for the ABI. */
|
|
static LONGEST
|
|
extend_simple_arg (struct value *arg)
|
|
{
|
|
struct type *type = VALUE_TYPE (arg);
|
|
|
|
/* Even structs get passed in the least significant bits of the
|
|
register / memory word. It's not really right to extract them as
|
|
an integer, but it does take care of the extension. */
|
|
if (TYPE_UNSIGNED (type))
|
|
return extract_unsigned_integer (VALUE_CONTENTS (arg),
|
|
TYPE_LENGTH (type));
|
|
else
|
|
return extract_signed_integer (VALUE_CONTENTS (arg),
|
|
TYPE_LENGTH (type));
|
|
}
|
|
|
|
|
|
/* Return the alignment required by TYPE. */
|
|
static int
|
|
alignment_of (struct type *type)
|
|
{
|
|
int alignment;
|
|
|
|
if (is_integer_like (type)
|
|
|| is_pointer_like (type)
|
|
|| TYPE_CODE (type) == TYPE_CODE_FLT)
|
|
alignment = TYPE_LENGTH (type);
|
|
else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
|
|
|| TYPE_CODE (type) == TYPE_CODE_UNION)
|
|
{
|
|
int i;
|
|
|
|
alignment = 1;
|
|
for (i = 0; i < TYPE_NFIELDS (type); i++)
|
|
{
|
|
int field_alignment = alignment_of (TYPE_FIELD_TYPE (type, i));
|
|
|
|
if (field_alignment > alignment)
|
|
alignment = field_alignment;
|
|
}
|
|
}
|
|
else
|
|
alignment = 1;
|
|
|
|
/* Check that everything we ever return is a power of two. Lots of
|
|
code doesn't want to deal with aligning things to arbitrary
|
|
boundaries. */
|
|
gdb_assert ((alignment & (alignment - 1)) == 0);
|
|
|
|
return alignment;
|
|
}
|
|
|
|
|
|
/* Put the actual parameter values pointed to by ARGS[0..NARGS-1] in
|
|
place to be passed to a function, as specified by the "GNU/Linux
|
|
for S/390 ELF Application Binary Interface Supplement".
|
|
|
|
SP is the current stack pointer. We must put arguments, links,
|
|
padding, etc. whereever they belong, and return the new stack
|
|
pointer value.
|
|
|
|
If STRUCT_RETURN is non-zero, then the function we're calling is
|
|
going to return a structure by value; STRUCT_ADDR is the address of
|
|
a block we've allocated for it on the stack.
|
|
|
|
Our caller has taken care of any type promotions needed to satisfy
|
|
prototypes or the old K&R argument-passing rules. */
|
|
static CORE_ADDR
|
|
s390_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
|
|
struct regcache *regcache, CORE_ADDR bp_addr,
|
|
int nargs, struct value **args, CORE_ADDR sp,
|
|
int struct_return, CORE_ADDR struct_addr)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
int word_size = gdbarch_ptr_bit (gdbarch) / 8;
|
|
ULONGEST orig_sp;
|
|
int i;
|
|
|
|
/* If the i'th argument is passed as a reference to a copy, then
|
|
copy_addr[i] is the address of the copy we made. */
|
|
CORE_ADDR *copy_addr = alloca (nargs * sizeof (CORE_ADDR));
|
|
|
|
/* Build the reference-to-copy area. */
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
struct value *arg = args[i];
|
|
struct type *type = VALUE_TYPE (arg);
|
|
unsigned length = TYPE_LENGTH (type);
|
|
|
|
if (s390_function_arg_pass_by_reference (type))
|
|
{
|
|
sp -= length;
|
|
sp = align_down (sp, alignment_of (type));
|
|
write_memory (sp, VALUE_CONTENTS (arg), length);
|
|
copy_addr[i] = sp;
|
|
}
|
|
}
|
|
|
|
/* Reserve space for the parameter area. As a conservative
|
|
simplification, we assume that everything will be passed on the
|
|
stack. Since every argument larger than 8 bytes will be
|
|
passed by reference, we use this simple upper bound. */
|
|
sp -= nargs * 8;
|
|
|
|
/* After all that, make sure it's still aligned on an eight-byte
|
|
boundary. */
|
|
sp = align_down (sp, 8);
|
|
|
|
/* Finally, place the actual parameters, working from SP towards
|
|
higher addresses. The code above is supposed to reserve enough
|
|
space for this. */
|
|
{
|
|
int fr = 0;
|
|
int gr = 2;
|
|
CORE_ADDR starg = sp;
|
|
|
|
/* A struct is returned using general register 2. */
|
|
if (struct_return)
|
|
{
|
|
regcache_cooked_write_unsigned (regcache, S390_R0_REGNUM + gr,
|
|
struct_addr);
|
|
gr++;
|
|
}
|
|
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
struct value *arg = args[i];
|
|
struct type *type = VALUE_TYPE (arg);
|
|
unsigned length = TYPE_LENGTH (type);
|
|
|
|
if (s390_function_arg_pass_by_reference (type))
|
|
{
|
|
if (gr <= 6)
|
|
{
|
|
regcache_cooked_write_unsigned (regcache, S390_R0_REGNUM + gr,
|
|
copy_addr[i]);
|
|
gr++;
|
|
}
|
|
else
|
|
{
|
|
write_memory_unsigned_integer (starg, word_size, copy_addr[i]);
|
|
starg += word_size;
|
|
}
|
|
}
|
|
else if (s390_function_arg_float (type))
|
|
{
|
|
/* The GNU/Linux for S/390 ABI uses FPRs 0 and 2 to pass arguments,
|
|
the GNU/Linux for zSeries ABI uses 0, 2, 4, and 6. */
|
|
if (fr <= (tdep->abi == ABI_LINUX_S390 ? 2 : 6))
|
|
{
|
|
/* When we store a single-precision value in an FP register,
|
|
it occupies the leftmost bits. */
|
|
regcache_cooked_write_part (regcache, S390_F0_REGNUM + fr,
|
|
0, length, VALUE_CONTENTS (arg));
|
|
fr += 2;
|
|
}
|
|
else
|
|
{
|
|
/* When we store a single-precision value in a stack slot,
|
|
it occupies the rightmost bits. */
|
|
starg = align_up (starg + length, word_size);
|
|
write_memory (starg - length, VALUE_CONTENTS (arg), length);
|
|
}
|
|
}
|
|
else if (s390_function_arg_integer (type) && length <= word_size)
|
|
{
|
|
if (gr <= 6)
|
|
{
|
|
/* Integer arguments are always extended to word size. */
|
|
regcache_cooked_write_signed (regcache, S390_R0_REGNUM + gr,
|
|
extend_simple_arg (arg));
|
|
gr++;
|
|
}
|
|
else
|
|
{
|
|
/* Integer arguments are always extended to word size. */
|
|
write_memory_signed_integer (starg, word_size,
|
|
extend_simple_arg (arg));
|
|
starg += word_size;
|
|
}
|
|
}
|
|
else if (s390_function_arg_integer (type) && length == 2*word_size)
|
|
{
|
|
if (gr <= 5)
|
|
{
|
|
regcache_cooked_write (regcache, S390_R0_REGNUM + gr,
|
|
VALUE_CONTENTS (arg));
|
|
regcache_cooked_write (regcache, S390_R0_REGNUM + gr + 1,
|
|
VALUE_CONTENTS (arg) + word_size);
|
|
gr += 2;
|
|
}
|
|
else
|
|
{
|
|
/* If we skipped r6 because we couldn't fit a DOUBLE_ARG
|
|
in it, then don't go back and use it again later. */
|
|
gr = 7;
|
|
|
|
write_memory (starg, VALUE_CONTENTS (arg), length);
|
|
starg += length;
|
|
}
|
|
}
|
|
else
|
|
internal_error (__FILE__, __LINE__, "unknown argument type");
|
|
}
|
|
}
|
|
|
|
/* Allocate the standard frame areas: the register save area, the
|
|
word reserved for the compiler (which seems kind of meaningless),
|
|
and the back chain pointer. */
|
|
sp -= 16*word_size + 32;
|
|
|
|
/* Write the back chain pointer into the first word of the stack
|
|
frame. This is needed to unwind across a dummy frame. */
|
|
regcache_cooked_read_unsigned (regcache, S390_SP_REGNUM, &orig_sp);
|
|
write_memory_unsigned_integer (sp, word_size, orig_sp);
|
|
|
|
/* Store return address. */
|
|
regcache_cooked_write_unsigned (regcache, S390_RETADDR_REGNUM, bp_addr);
|
|
|
|
/* Store updated stack pointer. */
|
|
regcache_cooked_write_unsigned (regcache, S390_SP_REGNUM, sp);
|
|
|
|
/* We need to return the 'stack part' of the frame ID,
|
|
which is actually the top of the register save area
|
|
allocated on the original stack. */
|
|
return orig_sp + 16*word_size + 32;
|
|
}
|
|
|
|
/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
|
|
dummy frame. The frame ID's base needs to match the TOS value
|
|
returned by push_dummy_call, and the PC match the dummy frame's
|
|
breakpoint. */
|
|
static struct frame_id
|
|
s390_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
|
{
|
|
int word_size = gdbarch_ptr_bit (gdbarch) / 8;
|
|
CORE_ADDR this_sp = s390_unwind_sp (gdbarch, next_frame);
|
|
CORE_ADDR prev_sp = read_memory_unsigned_integer (this_sp, word_size);
|
|
|
|
return frame_id_build (prev_sp + 16*word_size + 32,
|
|
frame_pc_unwind (next_frame));
|
|
}
|
|
|
|
static CORE_ADDR
|
|
s390_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
|
|
{
|
|
/* Both the 32- and 64-bit ABI's say that the stack pointer should
|
|
always be aligned on an eight-byte boundary. */
|
|
return (addr & -8);
|
|
}
|
|
|
|
|
|
/* Function return value access. */
|
|
|
|
static enum return_value_convention
|
|
s390_return_value_convention (struct gdbarch *gdbarch, struct type *type)
|
|
{
|
|
int length = TYPE_LENGTH (type);
|
|
if (length > 8)
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
|
|
|
switch (TYPE_CODE (type))
|
|
{
|
|
case TYPE_CODE_STRUCT:
|
|
case TYPE_CODE_UNION:
|
|
case TYPE_CODE_ARRAY:
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
|
|
|
default:
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
}
|
|
|
|
static enum return_value_convention
|
|
s390_return_value (struct gdbarch *gdbarch, struct type *type,
|
|
struct regcache *regcache, void *out, const void *in)
|
|
{
|
|
int word_size = gdbarch_ptr_bit (gdbarch) / 8;
|
|
int length = TYPE_LENGTH (type);
|
|
enum return_value_convention rvc =
|
|
s390_return_value_convention (gdbarch, type);
|
|
if (in)
|
|
{
|
|
switch (rvc)
|
|
{
|
|
case RETURN_VALUE_REGISTER_CONVENTION:
|
|
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
|
{
|
|
/* When we store a single-precision value in an FP register,
|
|
it occupies the leftmost bits. */
|
|
regcache_cooked_write_part (regcache, S390_F0_REGNUM,
|
|
0, length, in);
|
|
}
|
|
else if (length <= word_size)
|
|
{
|
|
/* Integer arguments are always extended to word size. */
|
|
if (TYPE_UNSIGNED (type))
|
|
regcache_cooked_write_unsigned (regcache, S390_R2_REGNUM,
|
|
extract_unsigned_integer (in, length));
|
|
else
|
|
regcache_cooked_write_signed (regcache, S390_R2_REGNUM,
|
|
extract_signed_integer (in, length));
|
|
}
|
|
else if (length == 2*word_size)
|
|
{
|
|
regcache_cooked_write (regcache, S390_R2_REGNUM, in);
|
|
regcache_cooked_write (regcache, S390_R3_REGNUM,
|
|
(const char *)in + word_size);
|
|
}
|
|
else
|
|
internal_error (__FILE__, __LINE__, "invalid return type");
|
|
break;
|
|
|
|
case RETURN_VALUE_STRUCT_CONVENTION:
|
|
error ("Cannot set function return value.");
|
|
break;
|
|
}
|
|
}
|
|
else if (out)
|
|
{
|
|
switch (rvc)
|
|
{
|
|
case RETURN_VALUE_REGISTER_CONVENTION:
|
|
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
|
{
|
|
/* When we store a single-precision value in an FP register,
|
|
it occupies the leftmost bits. */
|
|
regcache_cooked_read_part (regcache, S390_F0_REGNUM,
|
|
0, length, out);
|
|
}
|
|
else if (length <= word_size)
|
|
{
|
|
/* Integer arguments occupy the rightmost bits. */
|
|
regcache_cooked_read_part (regcache, S390_R2_REGNUM,
|
|
word_size - length, length, out);
|
|
}
|
|
else if (length == 2*word_size)
|
|
{
|
|
regcache_cooked_read (regcache, S390_R2_REGNUM, out);
|
|
regcache_cooked_read (regcache, S390_R3_REGNUM,
|
|
(char *)out + word_size);
|
|
}
|
|
else
|
|
internal_error (__FILE__, __LINE__, "invalid return type");
|
|
break;
|
|
|
|
case RETURN_VALUE_STRUCT_CONVENTION:
|
|
error ("Function return value unknown.");
|
|
break;
|
|
}
|
|
}
|
|
|
|
return rvc;
|
|
}
|
|
|
|
|
|
/* Breakpoints. */
|
|
|
|
static const unsigned char *
|
|
s390_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
|
|
{
|
|
static unsigned char breakpoint[] = { 0x0, 0x1 };
|
|
|
|
*lenptr = sizeof (breakpoint);
|
|
return breakpoint;
|
|
}
|
|
|
|
|
|
/* Address handling. */
|
|
|
|
static CORE_ADDR
|
|
s390_addr_bits_remove (CORE_ADDR addr)
|
|
{
|
|
return addr & 0x7fffffff;
|
|
}
|
|
|
|
static int
|
|
s390_address_class_type_flags (int byte_size, int dwarf2_addr_class)
|
|
{
|
|
if (byte_size == 4)
|
|
return TYPE_FLAG_ADDRESS_CLASS_1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static const char *
|
|
s390_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
|
|
{
|
|
if (type_flags & TYPE_FLAG_ADDRESS_CLASS_1)
|
|
return "mode32";
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
static int
|
|
s390_address_class_name_to_type_flags (struct gdbarch *gdbarch, const char *name,
|
|
int *type_flags_ptr)
|
|
{
|
|
if (strcmp (name, "mode32") == 0)
|
|
{
|
|
*type_flags_ptr = TYPE_FLAG_ADDRESS_CLASS_1;
|
|
return 1;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Link map offsets. */
|
|
|
|
static struct link_map_offsets *
|
|
s390_svr4_fetch_link_map_offsets (void)
|
|
{
|
|
static struct link_map_offsets lmo;
|
|
static struct link_map_offsets *lmp = NULL;
|
|
|
|
if (lmp == NULL)
|
|
{
|
|
lmp = &lmo;
|
|
|
|
lmo.r_debug_size = 8;
|
|
|
|
lmo.r_map_offset = 4;
|
|
lmo.r_map_size = 4;
|
|
|
|
lmo.link_map_size = 20;
|
|
|
|
lmo.l_addr_offset = 0;
|
|
lmo.l_addr_size = 4;
|
|
|
|
lmo.l_name_offset = 4;
|
|
lmo.l_name_size = 4;
|
|
|
|
lmo.l_next_offset = 12;
|
|
lmo.l_next_size = 4;
|
|
|
|
lmo.l_prev_offset = 16;
|
|
lmo.l_prev_size = 4;
|
|
}
|
|
|
|
return lmp;
|
|
}
|
|
|
|
static struct link_map_offsets *
|
|
s390x_svr4_fetch_link_map_offsets (void)
|
|
{
|
|
static struct link_map_offsets lmo;
|
|
static struct link_map_offsets *lmp = NULL;
|
|
|
|
if (lmp == NULL)
|
|
{
|
|
lmp = &lmo;
|
|
|
|
lmo.r_debug_size = 16; /* All we need. */
|
|
|
|
lmo.r_map_offset = 8;
|
|
lmo.r_map_size = 8;
|
|
|
|
lmo.link_map_size = 40; /* All we need. */
|
|
|
|
lmo.l_addr_offset = 0;
|
|
lmo.l_addr_size = 8;
|
|
|
|
lmo.l_name_offset = 8;
|
|
lmo.l_name_size = 8;
|
|
|
|
lmo.l_next_offset = 24;
|
|
lmo.l_next_size = 8;
|
|
|
|
lmo.l_prev_offset = 32;
|
|
lmo.l_prev_size = 8;
|
|
}
|
|
|
|
return lmp;
|
|
}
|
|
|
|
|
|
/* Set up gdbarch struct. */
|
|
|
|
static struct gdbarch *
|
|
s390_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
|
{
|
|
struct gdbarch *gdbarch;
|
|
struct gdbarch_tdep *tdep;
|
|
|
|
/* First see if there is already a gdbarch that can satisfy the request. */
|
|
arches = gdbarch_list_lookup_by_info (arches, &info);
|
|
if (arches != NULL)
|
|
return arches->gdbarch;
|
|
|
|
/* None found: is the request for a s390 architecture? */
|
|
if (info.bfd_arch_info->arch != bfd_arch_s390)
|
|
return NULL; /* No; then it's not for us. */
|
|
|
|
/* Yes: create a new gdbarch for the specified machine type. */
|
|
tdep = XCALLOC (1, struct gdbarch_tdep);
|
|
gdbarch = gdbarch_alloc (&info, tdep);
|
|
|
|
set_gdbarch_believe_pcc_promotion (gdbarch, 0);
|
|
set_gdbarch_char_signed (gdbarch, 0);
|
|
|
|
/* Amount PC must be decremented by after a breakpoint. This is
|
|
often the number of bytes returned by BREAKPOINT_FROM_PC but not
|
|
always. */
|
|
set_gdbarch_decr_pc_after_break (gdbarch, 2);
|
|
/* Stack grows downward. */
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, s390_breakpoint_from_pc);
|
|
set_gdbarch_skip_prologue (gdbarch, s390_skip_prologue);
|
|
set_gdbarch_in_function_epilogue_p (gdbarch, s390_in_function_epilogue_p);
|
|
|
|
set_gdbarch_pc_regnum (gdbarch, S390_PC_REGNUM);
|
|
set_gdbarch_sp_regnum (gdbarch, S390_SP_REGNUM);
|
|
set_gdbarch_fp0_regnum (gdbarch, S390_F0_REGNUM);
|
|
set_gdbarch_num_regs (gdbarch, S390_NUM_REGS);
|
|
set_gdbarch_num_pseudo_regs (gdbarch, S390_NUM_PSEUDO_REGS);
|
|
set_gdbarch_register_name (gdbarch, s390_register_name);
|
|
set_gdbarch_register_type (gdbarch, s390_register_type);
|
|
set_gdbarch_stab_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
|
|
set_gdbarch_dwarf_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
|
|
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
|
|
set_gdbarch_convert_register_p (gdbarch, s390_convert_register_p);
|
|
set_gdbarch_register_to_value (gdbarch, s390_register_to_value);
|
|
set_gdbarch_value_to_register (gdbarch, s390_value_to_register);
|
|
set_gdbarch_register_reggroup_p (gdbarch, s390_register_reggroup_p);
|
|
set_gdbarch_regset_from_core_section (gdbarch,
|
|
s390_regset_from_core_section);
|
|
|
|
/* Inferior function calls. */
|
|
set_gdbarch_push_dummy_call (gdbarch, s390_push_dummy_call);
|
|
set_gdbarch_unwind_dummy_id (gdbarch, s390_unwind_dummy_id);
|
|
set_gdbarch_frame_align (gdbarch, s390_frame_align);
|
|
set_gdbarch_return_value (gdbarch, s390_return_value);
|
|
|
|
/* Frame handling. */
|
|
set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
|
|
dwarf2_frame_set_init_reg (gdbarch, s390_dwarf2_frame_init_reg);
|
|
frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
|
|
frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
|
|
frame_unwind_append_sniffer (gdbarch, s390_stub_frame_sniffer);
|
|
frame_unwind_append_sniffer (gdbarch, s390_sigtramp_frame_sniffer);
|
|
frame_unwind_append_sniffer (gdbarch, s390_frame_sniffer);
|
|
frame_base_set_default (gdbarch, &s390_frame_base);
|
|
set_gdbarch_unwind_pc (gdbarch, s390_unwind_pc);
|
|
set_gdbarch_unwind_sp (gdbarch, s390_unwind_sp);
|
|
|
|
switch (info.bfd_arch_info->mach)
|
|
{
|
|
case bfd_mach_s390_31:
|
|
tdep->abi = ABI_LINUX_S390;
|
|
|
|
tdep->gregset = &s390_gregset;
|
|
tdep->sizeof_gregset = s390_sizeof_gregset;
|
|
tdep->fpregset = &s390_fpregset;
|
|
tdep->sizeof_fpregset = s390_sizeof_fpregset;
|
|
|
|
set_gdbarch_addr_bits_remove (gdbarch, s390_addr_bits_remove);
|
|
set_gdbarch_pseudo_register_read (gdbarch, s390_pseudo_register_read);
|
|
set_gdbarch_pseudo_register_write (gdbarch, s390_pseudo_register_write);
|
|
set_solib_svr4_fetch_link_map_offsets (gdbarch,
|
|
s390_svr4_fetch_link_map_offsets);
|
|
|
|
break;
|
|
case bfd_mach_s390_64:
|
|
tdep->abi = ABI_LINUX_ZSERIES;
|
|
|
|
tdep->gregset = &s390x_gregset;
|
|
tdep->sizeof_gregset = s390x_sizeof_gregset;
|
|
tdep->fpregset = &s390_fpregset;
|
|
tdep->sizeof_fpregset = s390_sizeof_fpregset;
|
|
|
|
set_gdbarch_long_bit (gdbarch, 64);
|
|
set_gdbarch_long_long_bit (gdbarch, 64);
|
|
set_gdbarch_ptr_bit (gdbarch, 64);
|
|
set_gdbarch_pseudo_register_read (gdbarch, s390x_pseudo_register_read);
|
|
set_gdbarch_pseudo_register_write (gdbarch, s390x_pseudo_register_write);
|
|
set_solib_svr4_fetch_link_map_offsets (gdbarch,
|
|
s390x_svr4_fetch_link_map_offsets);
|
|
set_gdbarch_address_class_type_flags (gdbarch,
|
|
s390_address_class_type_flags);
|
|
set_gdbarch_address_class_type_flags_to_name (gdbarch,
|
|
s390_address_class_type_flags_to_name);
|
|
set_gdbarch_address_class_name_to_type_flags (gdbarch,
|
|
s390_address_class_name_to_type_flags);
|
|
break;
|
|
}
|
|
|
|
set_gdbarch_print_insn (gdbarch, print_insn_s390);
|
|
|
|
return gdbarch;
|
|
}
|
|
|
|
|
|
|
|
extern initialize_file_ftype _initialize_s390_tdep; /* -Wmissing-prototypes */
|
|
|
|
void
|
|
_initialize_s390_tdep (void)
|
|
{
|
|
|
|
/* Hook us into the gdbarch mechanism. */
|
|
register_gdbarch_init (bfd_arch_s390, s390_gdbarch_init);
|
|
}
|