mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-06 12:09:26 +08:00
f0fe0e16e1
immediately. Remove code handling relocatable linking. * elf32-avr.c (elf32_avr_relocate_section): Likewise. * elf32-cris.c (cris_elf_relocate_section): Likewise. * elf32-fr30.c (elf32_frv_relocate_section): Likewise. * elf32-h8300.c (elf32_h8_relocate_section): Likewise. * elf32-hppa.c (elf32_hppa_relocate_section): Likewise. * elf32-ip2k.c (ip2k_elf_relocate_section): Likewise. * elf32-sparc.c (elf32_sparc_relocate_section): Likewise. * elf32-v850.c (v850_elf_relocate_section): Likewise. * elf32-vax.c (elf_vax_relocate_section): Likewise. * elf64-sparc.c (sparc64_elf_relocate_section): Likewise. * elf32-avr.c (elf_backend_rela_normal): Define. * elf32-cris.c: Likewise. * elf32-fr30.c: Likewise. * elf32-h8300.c: Likewise. * elf32-hppa.c: Likewise. * elf32-ip2k.c: Likewise. * elf32-sparc.c: Likewise. * elf32-v850.c: Likewise. * elf32-vax.c: Likewise. * elf64-hppa.c: Likewise. * elf64-sparc.c: Likewise. * elf32-fr30.c (elf32_frv_relocate_section): Edit comment. * elf32-i860.c (elf32_i860_relocate_section): Likewise. * elf32-ip2k.c (ip2k_elf_relocate_section): Likewise. * elf32-m32r.c (m32r_elf_relocate_section): Likewise. * elf32-openrisc.c (openrisc_elf_relocate_section): Likewise. * elf32-xstormy16.c (xstormy16_elf_relocate_section): Likewise. * elf-m10200.c (USE_RELA): Don't define. * elf-m10300.c: Likewise. * elf32-i370.c: Likewise. * elf32-ip2k.c: Likewise. * elf32-m68k.c: Likewise. * elf32-mcore.c: Likewise. * elf32-ppc.c: Likewise. * elf32-s390.c: Likewise. * elf32-vax.c: Likewise. * elf64-ppc.c: Likewise. * elf64-s390.c: Likewise. * elf64-x86-64.c: Likewise. * elfxx-ia64.c: Likewise. * elf32-avr.c (USE_REL): Don't undef. * elf32-ip2k.c: Likewise.
4473 lines
129 KiB
C
4473 lines
129 KiB
C
/* BFD back-end for HP PA-RISC ELF files.
|
|
Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
|
|
2002 Free Software Foundation, Inc.
|
|
|
|
Original code by
|
|
Center for Software Science
|
|
Department of Computer Science
|
|
University of Utah
|
|
Largely rewritten by Alan Modra <alan@linuxcare.com.au>
|
|
|
|
This file is part of BFD, the Binary File Descriptor library.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
|
|
|
#include "bfd.h"
|
|
#include "sysdep.h"
|
|
#include "libbfd.h"
|
|
#include "elf-bfd.h"
|
|
#include "elf/hppa.h"
|
|
#include "libhppa.h"
|
|
#include "elf32-hppa.h"
|
|
#define ARCH_SIZE 32
|
|
#include "elf32-hppa.h"
|
|
#include "elf-hppa.h"
|
|
|
|
/* In order to gain some understanding of code in this file without
|
|
knowing all the intricate details of the linker, note the
|
|
following:
|
|
|
|
Functions named elf32_hppa_* are called by external routines, other
|
|
functions are only called locally. elf32_hppa_* functions appear
|
|
in this file more or less in the order in which they are called
|
|
from external routines. eg. elf32_hppa_check_relocs is called
|
|
early in the link process, elf32_hppa_finish_dynamic_sections is
|
|
one of the last functions. */
|
|
|
|
/* We use two hash tables to hold information for linking PA ELF objects.
|
|
|
|
The first is the elf32_hppa_link_hash_table which is derived
|
|
from the standard ELF linker hash table. We use this as a place to
|
|
attach other hash tables and static information.
|
|
|
|
The second is the stub hash table which is derived from the
|
|
base BFD hash table. The stub hash table holds the information
|
|
necessary to build the linker stubs during a link.
|
|
|
|
There are a number of different stubs generated by the linker.
|
|
|
|
Long branch stub:
|
|
: ldil LR'X,%r1
|
|
: be,n RR'X(%sr4,%r1)
|
|
|
|
PIC long branch stub:
|
|
: b,l .+8,%r1
|
|
: addil LR'X - ($PIC_pcrel$0 - 4),%r1
|
|
: be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
|
|
|
|
Import stub to call shared library routine from normal object file
|
|
(single sub-space version)
|
|
: addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
|
|
: ldw RR'lt_ptr+ltoff(%r1),%r21
|
|
: bv %r0(%r21)
|
|
: ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
|
|
|
|
Import stub to call shared library routine from shared library
|
|
(single sub-space version)
|
|
: addil LR'ltoff,%r19 ; get procedure entry point
|
|
: ldw RR'ltoff(%r1),%r21
|
|
: bv %r0(%r21)
|
|
: ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
|
|
|
|
Import stub to call shared library routine from normal object file
|
|
(multiple sub-space support)
|
|
: addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
|
|
: ldw RR'lt_ptr+ltoff(%r1),%r21
|
|
: ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
|
|
: ldsid (%r21),%r1
|
|
: mtsp %r1,%sr0
|
|
: be 0(%sr0,%r21) ; branch to target
|
|
: stw %rp,-24(%sp) ; save rp
|
|
|
|
Import stub to call shared library routine from shared library
|
|
(multiple sub-space support)
|
|
: addil LR'ltoff,%r19 ; get procedure entry point
|
|
: ldw RR'ltoff(%r1),%r21
|
|
: ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
|
|
: ldsid (%r21),%r1
|
|
: mtsp %r1,%sr0
|
|
: be 0(%sr0,%r21) ; branch to target
|
|
: stw %rp,-24(%sp) ; save rp
|
|
|
|
Export stub to return from shared lib routine (multiple sub-space support)
|
|
One of these is created for each exported procedure in a shared
|
|
library (and stored in the shared lib). Shared lib routines are
|
|
called via the first instruction in the export stub so that we can
|
|
do an inter-space return. Not required for single sub-space.
|
|
: bl,n X,%rp ; trap the return
|
|
: nop
|
|
: ldw -24(%sp),%rp ; restore the original rp
|
|
: ldsid (%rp),%r1
|
|
: mtsp %r1,%sr0
|
|
: be,n 0(%sr0,%rp) ; inter-space return */
|
|
|
|
#define PLT_ENTRY_SIZE 8
|
|
#define GOT_ENTRY_SIZE 4
|
|
#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
|
|
|
|
static const bfd_byte plt_stub[] =
|
|
{
|
|
0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
|
|
0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
|
|
0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
|
|
#define PLT_STUB_ENTRY (3*4)
|
|
0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
|
|
0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
|
|
0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
|
|
0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
|
|
};
|
|
|
|
/* Section name for stubs is the associated section name plus this
|
|
string. */
|
|
#define STUB_SUFFIX ".stub"
|
|
|
|
/* We don't need to copy certain PC- or GP-relative dynamic relocs
|
|
into a shared object's dynamic section. All the relocs of the
|
|
limited class we are interested in, are absolute. */
|
|
#ifndef RELATIVE_DYNRELOCS
|
|
#define RELATIVE_DYNRELOCS 0
|
|
#define IS_ABSOLUTE_RELOC(r_type) 1
|
|
#endif
|
|
|
|
enum elf32_hppa_stub_type {
|
|
hppa_stub_long_branch,
|
|
hppa_stub_long_branch_shared,
|
|
hppa_stub_import,
|
|
hppa_stub_import_shared,
|
|
hppa_stub_export,
|
|
hppa_stub_none
|
|
};
|
|
|
|
struct elf32_hppa_stub_hash_entry {
|
|
|
|
/* Base hash table entry structure. */
|
|
struct bfd_hash_entry root;
|
|
|
|
/* The stub section. */
|
|
asection *stub_sec;
|
|
|
|
/* Offset within stub_sec of the beginning of this stub. */
|
|
bfd_vma stub_offset;
|
|
|
|
/* Given the symbol's value and its section we can determine its final
|
|
value when building the stubs (so the stub knows where to jump. */
|
|
bfd_vma target_value;
|
|
asection *target_section;
|
|
|
|
enum elf32_hppa_stub_type stub_type;
|
|
|
|
/* The symbol table entry, if any, that this was derived from. */
|
|
struct elf32_hppa_link_hash_entry *h;
|
|
|
|
/* Where this stub is being called from, or, in the case of combined
|
|
stub sections, the first input section in the group. */
|
|
asection *id_sec;
|
|
};
|
|
|
|
struct elf32_hppa_link_hash_entry {
|
|
|
|
struct elf_link_hash_entry elf;
|
|
|
|
/* A pointer to the most recently used stub hash entry against this
|
|
symbol. */
|
|
struct elf32_hppa_stub_hash_entry *stub_cache;
|
|
|
|
/* Used to count relocations for delayed sizing of relocation
|
|
sections. */
|
|
struct elf32_hppa_dyn_reloc_entry {
|
|
|
|
/* Next relocation in the chain. */
|
|
struct elf32_hppa_dyn_reloc_entry *next;
|
|
|
|
/* The input section of the reloc. */
|
|
asection *sec;
|
|
|
|
/* Number of relocs copied in this section. */
|
|
bfd_size_type count;
|
|
|
|
#if RELATIVE_DYNRELOCS
|
|
/* Number of relative relocs copied for the input section. */
|
|
bfd_size_type relative_count;
|
|
#endif
|
|
} *dyn_relocs;
|
|
|
|
/* Set if the only reason we need a .plt entry is for a non-PIC to
|
|
PIC function call. */
|
|
unsigned int pic_call:1;
|
|
|
|
/* Set if this symbol is used by a plabel reloc. */
|
|
unsigned int plabel:1;
|
|
};
|
|
|
|
struct elf32_hppa_link_hash_table {
|
|
|
|
/* The main hash table. */
|
|
struct elf_link_hash_table elf;
|
|
|
|
/* The stub hash table. */
|
|
struct bfd_hash_table stub_hash_table;
|
|
|
|
/* Linker stub bfd. */
|
|
bfd *stub_bfd;
|
|
|
|
/* Linker call-backs. */
|
|
asection * (*add_stub_section) PARAMS ((const char *, asection *));
|
|
void (*layout_sections_again) PARAMS ((void));
|
|
|
|
/* Array to keep track of which stub sections have been created, and
|
|
information on stub grouping. */
|
|
struct map_stub {
|
|
/* This is the section to which stubs in the group will be
|
|
attached. */
|
|
asection *link_sec;
|
|
/* The stub section. */
|
|
asection *stub_sec;
|
|
} *stub_group;
|
|
|
|
/* Assorted information used by elf32_hppa_size_stubs. */
|
|
unsigned int bfd_count;
|
|
int top_index;
|
|
asection **input_list;
|
|
Elf_Internal_Sym **all_local_syms;
|
|
|
|
/* Short-cuts to get to dynamic linker sections. */
|
|
asection *sgot;
|
|
asection *srelgot;
|
|
asection *splt;
|
|
asection *srelplt;
|
|
asection *sdynbss;
|
|
asection *srelbss;
|
|
|
|
/* Used during a final link to store the base of the text and data
|
|
segments so that we can perform SEGREL relocations. */
|
|
bfd_vma text_segment_base;
|
|
bfd_vma data_segment_base;
|
|
|
|
/* Whether we support multiple sub-spaces for shared libs. */
|
|
unsigned int multi_subspace:1;
|
|
|
|
/* Flags set when various size branches are detected. Used to
|
|
select suitable defaults for the stub group size. */
|
|
unsigned int has_12bit_branch:1;
|
|
unsigned int has_17bit_branch:1;
|
|
unsigned int has_22bit_branch:1;
|
|
|
|
/* Set if we need a .plt stub to support lazy dynamic linking. */
|
|
unsigned int need_plt_stub:1;
|
|
|
|
/* Small local sym to section mapping cache. */
|
|
struct sym_sec_cache sym_sec;
|
|
};
|
|
|
|
/* Various hash macros and functions. */
|
|
#define hppa_link_hash_table(p) \
|
|
((struct elf32_hppa_link_hash_table *) ((p)->hash))
|
|
|
|
#define hppa_stub_hash_lookup(table, string, create, copy) \
|
|
((struct elf32_hppa_stub_hash_entry *) \
|
|
bfd_hash_lookup ((table), (string), (create), (copy)))
|
|
|
|
static struct bfd_hash_entry *stub_hash_newfunc
|
|
PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
|
|
|
|
static struct bfd_hash_entry *hppa_link_hash_newfunc
|
|
PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
|
|
|
|
static struct bfd_link_hash_table *elf32_hppa_link_hash_table_create
|
|
PARAMS ((bfd *));
|
|
|
|
static void elf32_hppa_link_hash_table_free
|
|
PARAMS ((struct bfd_link_hash_table *));
|
|
|
|
/* Stub handling functions. */
|
|
static char *hppa_stub_name
|
|
PARAMS ((const asection *, const asection *,
|
|
const struct elf32_hppa_link_hash_entry *,
|
|
const Elf_Internal_Rela *));
|
|
|
|
static struct elf32_hppa_stub_hash_entry *hppa_get_stub_entry
|
|
PARAMS ((const asection *, const asection *,
|
|
struct elf32_hppa_link_hash_entry *,
|
|
const Elf_Internal_Rela *,
|
|
struct elf32_hppa_link_hash_table *));
|
|
|
|
static struct elf32_hppa_stub_hash_entry *hppa_add_stub
|
|
PARAMS ((const char *, asection *, struct elf32_hppa_link_hash_table *));
|
|
|
|
static enum elf32_hppa_stub_type hppa_type_of_stub
|
|
PARAMS ((asection *, const Elf_Internal_Rela *,
|
|
struct elf32_hppa_link_hash_entry *, bfd_vma));
|
|
|
|
static boolean hppa_build_one_stub
|
|
PARAMS ((struct bfd_hash_entry *, PTR));
|
|
|
|
static boolean hppa_size_one_stub
|
|
PARAMS ((struct bfd_hash_entry *, PTR));
|
|
|
|
/* BFD and elf backend functions. */
|
|
static boolean elf32_hppa_object_p PARAMS ((bfd *));
|
|
|
|
static boolean elf32_hppa_add_symbol_hook
|
|
PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
|
|
const char **, flagword *, asection **, bfd_vma *));
|
|
|
|
static boolean elf32_hppa_create_dynamic_sections
|
|
PARAMS ((bfd *, struct bfd_link_info *));
|
|
|
|
static void elf32_hppa_copy_indirect_symbol
|
|
PARAMS ((struct elf_link_hash_entry *, struct elf_link_hash_entry *));
|
|
|
|
static boolean elf32_hppa_check_relocs
|
|
PARAMS ((bfd *, struct bfd_link_info *,
|
|
asection *, const Elf_Internal_Rela *));
|
|
|
|
static asection *elf32_hppa_gc_mark_hook
|
|
PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
|
|
struct elf_link_hash_entry *, Elf_Internal_Sym *));
|
|
|
|
static boolean elf32_hppa_gc_sweep_hook
|
|
PARAMS ((bfd *, struct bfd_link_info *,
|
|
asection *, const Elf_Internal_Rela *));
|
|
|
|
static void elf32_hppa_hide_symbol
|
|
PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *, boolean));
|
|
|
|
static boolean elf32_hppa_adjust_dynamic_symbol
|
|
PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
|
|
|
|
static boolean mark_PIC_calls
|
|
PARAMS ((struct elf_link_hash_entry *, PTR));
|
|
|
|
static boolean allocate_plt_static
|
|
PARAMS ((struct elf_link_hash_entry *, PTR));
|
|
|
|
static boolean allocate_dynrelocs
|
|
PARAMS ((struct elf_link_hash_entry *, PTR));
|
|
|
|
static boolean readonly_dynrelocs
|
|
PARAMS ((struct elf_link_hash_entry *, PTR));
|
|
|
|
static boolean clobber_millicode_symbols
|
|
PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
|
|
|
|
static boolean elf32_hppa_size_dynamic_sections
|
|
PARAMS ((bfd *, struct bfd_link_info *));
|
|
|
|
static void group_sections
|
|
PARAMS ((struct elf32_hppa_link_hash_table *, bfd_size_type, boolean));
|
|
|
|
static int get_local_syms
|
|
PARAMS ((bfd *, bfd *, struct bfd_link_info *));
|
|
|
|
static boolean elf32_hppa_final_link
|
|
PARAMS ((bfd *, struct bfd_link_info *));
|
|
|
|
static void hppa_record_segment_addr
|
|
PARAMS ((bfd *, asection *, PTR));
|
|
|
|
static bfd_reloc_status_type final_link_relocate
|
|
PARAMS ((asection *, bfd_byte *, const Elf_Internal_Rela *,
|
|
bfd_vma, struct elf32_hppa_link_hash_table *, asection *,
|
|
struct elf32_hppa_link_hash_entry *));
|
|
|
|
static boolean elf32_hppa_relocate_section
|
|
PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *,
|
|
bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
|
|
|
|
static boolean elf32_hppa_finish_dynamic_symbol
|
|
PARAMS ((bfd *, struct bfd_link_info *,
|
|
struct elf_link_hash_entry *, Elf_Internal_Sym *));
|
|
|
|
static enum elf_reloc_type_class elf32_hppa_reloc_type_class
|
|
PARAMS ((const Elf_Internal_Rela *));
|
|
|
|
static boolean elf32_hppa_finish_dynamic_sections
|
|
PARAMS ((bfd *, struct bfd_link_info *));
|
|
|
|
static void elf32_hppa_post_process_headers
|
|
PARAMS ((bfd *, struct bfd_link_info *));
|
|
|
|
static int elf32_hppa_elf_get_symbol_type
|
|
PARAMS ((Elf_Internal_Sym *, int));
|
|
|
|
/* Assorted hash table functions. */
|
|
|
|
/* Initialize an entry in the stub hash table. */
|
|
|
|
static struct bfd_hash_entry *
|
|
stub_hash_newfunc (entry, table, string)
|
|
struct bfd_hash_entry *entry;
|
|
struct bfd_hash_table *table;
|
|
const char *string;
|
|
{
|
|
/* Allocate the structure if it has not already been allocated by a
|
|
subclass. */
|
|
if (entry == NULL)
|
|
{
|
|
entry = bfd_hash_allocate (table,
|
|
sizeof (struct elf32_hppa_stub_hash_entry));
|
|
if (entry == NULL)
|
|
return entry;
|
|
}
|
|
|
|
/* Call the allocation method of the superclass. */
|
|
entry = bfd_hash_newfunc (entry, table, string);
|
|
if (entry != NULL)
|
|
{
|
|
struct elf32_hppa_stub_hash_entry *eh;
|
|
|
|
/* Initialize the local fields. */
|
|
eh = (struct elf32_hppa_stub_hash_entry *) entry;
|
|
eh->stub_sec = NULL;
|
|
eh->stub_offset = 0;
|
|
eh->target_value = 0;
|
|
eh->target_section = NULL;
|
|
eh->stub_type = hppa_stub_long_branch;
|
|
eh->h = NULL;
|
|
eh->id_sec = NULL;
|
|
}
|
|
|
|
return entry;
|
|
}
|
|
|
|
/* Initialize an entry in the link hash table. */
|
|
|
|
static struct bfd_hash_entry *
|
|
hppa_link_hash_newfunc (entry, table, string)
|
|
struct bfd_hash_entry *entry;
|
|
struct bfd_hash_table *table;
|
|
const char *string;
|
|
{
|
|
/* Allocate the structure if it has not already been allocated by a
|
|
subclass. */
|
|
if (entry == NULL)
|
|
{
|
|
entry = bfd_hash_allocate (table,
|
|
sizeof (struct elf32_hppa_link_hash_entry));
|
|
if (entry == NULL)
|
|
return entry;
|
|
}
|
|
|
|
/* Call the allocation method of the superclass. */
|
|
entry = _bfd_elf_link_hash_newfunc (entry, table, string);
|
|
if (entry != NULL)
|
|
{
|
|
struct elf32_hppa_link_hash_entry *eh;
|
|
|
|
/* Initialize the local fields. */
|
|
eh = (struct elf32_hppa_link_hash_entry *) entry;
|
|
eh->stub_cache = NULL;
|
|
eh->dyn_relocs = NULL;
|
|
eh->pic_call = 0;
|
|
eh->plabel = 0;
|
|
}
|
|
|
|
return entry;
|
|
}
|
|
|
|
/* Create the derived linker hash table. The PA ELF port uses the derived
|
|
hash table to keep information specific to the PA ELF linker (without
|
|
using static variables). */
|
|
|
|
static struct bfd_link_hash_table *
|
|
elf32_hppa_link_hash_table_create (abfd)
|
|
bfd *abfd;
|
|
{
|
|
struct elf32_hppa_link_hash_table *ret;
|
|
bfd_size_type amt = sizeof (*ret);
|
|
|
|
ret = (struct elf32_hppa_link_hash_table *) bfd_malloc (amt);
|
|
if (ret == NULL)
|
|
return NULL;
|
|
|
|
if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, hppa_link_hash_newfunc))
|
|
{
|
|
free (ret);
|
|
return NULL;
|
|
}
|
|
|
|
/* Init the stub hash table too. */
|
|
if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc))
|
|
return NULL;
|
|
|
|
ret->stub_bfd = NULL;
|
|
ret->add_stub_section = NULL;
|
|
ret->layout_sections_again = NULL;
|
|
ret->stub_group = NULL;
|
|
ret->sgot = NULL;
|
|
ret->srelgot = NULL;
|
|
ret->splt = NULL;
|
|
ret->srelplt = NULL;
|
|
ret->sdynbss = NULL;
|
|
ret->srelbss = NULL;
|
|
ret->text_segment_base = (bfd_vma) -1;
|
|
ret->data_segment_base = (bfd_vma) -1;
|
|
ret->multi_subspace = 0;
|
|
ret->has_12bit_branch = 0;
|
|
ret->has_17bit_branch = 0;
|
|
ret->has_22bit_branch = 0;
|
|
ret->need_plt_stub = 0;
|
|
ret->sym_sec.abfd = NULL;
|
|
|
|
return &ret->elf.root;
|
|
}
|
|
|
|
/* Free the derived linker hash table. */
|
|
|
|
static void
|
|
elf32_hppa_link_hash_table_free (hash)
|
|
struct bfd_link_hash_table *hash;
|
|
{
|
|
struct elf32_hppa_link_hash_table *ret
|
|
= (struct elf32_hppa_link_hash_table *) hash;
|
|
|
|
bfd_hash_table_free (&ret->stub_hash_table);
|
|
_bfd_generic_link_hash_table_free (hash);
|
|
}
|
|
|
|
/* Build a name for an entry in the stub hash table. */
|
|
|
|
static char *
|
|
hppa_stub_name (input_section, sym_sec, hash, rel)
|
|
const asection *input_section;
|
|
const asection *sym_sec;
|
|
const struct elf32_hppa_link_hash_entry *hash;
|
|
const Elf_Internal_Rela *rel;
|
|
{
|
|
char *stub_name;
|
|
bfd_size_type len;
|
|
|
|
if (hash)
|
|
{
|
|
len = 8 + 1 + strlen (hash->elf.root.root.string) + 1 + 8 + 1;
|
|
stub_name = bfd_malloc (len);
|
|
if (stub_name != NULL)
|
|
{
|
|
sprintf (stub_name, "%08x_%s+%x",
|
|
input_section->id & 0xffffffff,
|
|
hash->elf.root.root.string,
|
|
(int) rel->r_addend & 0xffffffff);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
|
|
stub_name = bfd_malloc (len);
|
|
if (stub_name != NULL)
|
|
{
|
|
sprintf (stub_name, "%08x_%x:%x+%x",
|
|
input_section->id & 0xffffffff,
|
|
sym_sec->id & 0xffffffff,
|
|
(int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
|
|
(int) rel->r_addend & 0xffffffff);
|
|
}
|
|
}
|
|
return stub_name;
|
|
}
|
|
|
|
/* Look up an entry in the stub hash. Stub entries are cached because
|
|
creating the stub name takes a bit of time. */
|
|
|
|
static struct elf32_hppa_stub_hash_entry *
|
|
hppa_get_stub_entry (input_section, sym_sec, hash, rel, htab)
|
|
const asection *input_section;
|
|
const asection *sym_sec;
|
|
struct elf32_hppa_link_hash_entry *hash;
|
|
const Elf_Internal_Rela *rel;
|
|
struct elf32_hppa_link_hash_table *htab;
|
|
{
|
|
struct elf32_hppa_stub_hash_entry *stub_entry;
|
|
const asection *id_sec;
|
|
|
|
/* If this input section is part of a group of sections sharing one
|
|
stub section, then use the id of the first section in the group.
|
|
Stub names need to include a section id, as there may well be
|
|
more than one stub used to reach say, printf, and we need to
|
|
distinguish between them. */
|
|
id_sec = htab->stub_group[input_section->id].link_sec;
|
|
|
|
if (hash != NULL && hash->stub_cache != NULL
|
|
&& hash->stub_cache->h == hash
|
|
&& hash->stub_cache->id_sec == id_sec)
|
|
{
|
|
stub_entry = hash->stub_cache;
|
|
}
|
|
else
|
|
{
|
|
char *stub_name;
|
|
|
|
stub_name = hppa_stub_name (id_sec, sym_sec, hash, rel);
|
|
if (stub_name == NULL)
|
|
return NULL;
|
|
|
|
stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
|
|
stub_name, false, false);
|
|
if (hash != NULL)
|
|
hash->stub_cache = stub_entry;
|
|
|
|
free (stub_name);
|
|
}
|
|
|
|
return stub_entry;
|
|
}
|
|
|
|
/* Add a new stub entry to the stub hash. Not all fields of the new
|
|
stub entry are initialised. */
|
|
|
|
static struct elf32_hppa_stub_hash_entry *
|
|
hppa_add_stub (stub_name, section, htab)
|
|
const char *stub_name;
|
|
asection *section;
|
|
struct elf32_hppa_link_hash_table *htab;
|
|
{
|
|
asection *link_sec;
|
|
asection *stub_sec;
|
|
struct elf32_hppa_stub_hash_entry *stub_entry;
|
|
|
|
link_sec = htab->stub_group[section->id].link_sec;
|
|
stub_sec = htab->stub_group[section->id].stub_sec;
|
|
if (stub_sec == NULL)
|
|
{
|
|
stub_sec = htab->stub_group[link_sec->id].stub_sec;
|
|
if (stub_sec == NULL)
|
|
{
|
|
size_t namelen;
|
|
bfd_size_type len;
|
|
char *s_name;
|
|
|
|
namelen = strlen (link_sec->name);
|
|
len = namelen + sizeof (STUB_SUFFIX);
|
|
s_name = bfd_alloc (htab->stub_bfd, len);
|
|
if (s_name == NULL)
|
|
return NULL;
|
|
|
|
memcpy (s_name, link_sec->name, namelen);
|
|
memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
|
|
stub_sec = (*htab->add_stub_section) (s_name, link_sec);
|
|
if (stub_sec == NULL)
|
|
return NULL;
|
|
htab->stub_group[link_sec->id].stub_sec = stub_sec;
|
|
}
|
|
htab->stub_group[section->id].stub_sec = stub_sec;
|
|
}
|
|
|
|
/* Enter this entry into the linker stub hash table. */
|
|
stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table, stub_name,
|
|
true, false);
|
|
if (stub_entry == NULL)
|
|
{
|
|
(*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
|
|
bfd_archive_filename (section->owner),
|
|
stub_name);
|
|
return NULL;
|
|
}
|
|
|
|
stub_entry->stub_sec = stub_sec;
|
|
stub_entry->stub_offset = 0;
|
|
stub_entry->id_sec = link_sec;
|
|
return stub_entry;
|
|
}
|
|
|
|
/* Determine the type of stub needed, if any, for a call. */
|
|
|
|
static enum elf32_hppa_stub_type
|
|
hppa_type_of_stub (input_sec, rel, hash, destination)
|
|
asection *input_sec;
|
|
const Elf_Internal_Rela *rel;
|
|
struct elf32_hppa_link_hash_entry *hash;
|
|
bfd_vma destination;
|
|
{
|
|
bfd_vma location;
|
|
bfd_vma branch_offset;
|
|
bfd_vma max_branch_offset;
|
|
unsigned int r_type;
|
|
|
|
if (hash != NULL
|
|
&& hash->elf.plt.offset != (bfd_vma) -1
|
|
&& (hash->elf.dynindx != -1 || hash->pic_call)
|
|
&& !hash->plabel)
|
|
{
|
|
/* We need an import stub. Decide between hppa_stub_import
|
|
and hppa_stub_import_shared later. */
|
|
return hppa_stub_import;
|
|
}
|
|
|
|
/* Determine where the call point is. */
|
|
location = (input_sec->output_offset
|
|
+ input_sec->output_section->vma
|
|
+ rel->r_offset);
|
|
|
|
branch_offset = destination - location - 8;
|
|
r_type = ELF32_R_TYPE (rel->r_info);
|
|
|
|
/* Determine if a long branch stub is needed. parisc branch offsets
|
|
are relative to the second instruction past the branch, ie. +8
|
|
bytes on from the branch instruction location. The offset is
|
|
signed and counts in units of 4 bytes. */
|
|
if (r_type == (unsigned int) R_PARISC_PCREL17F)
|
|
{
|
|
max_branch_offset = (1 << (17-1)) << 2;
|
|
}
|
|
else if (r_type == (unsigned int) R_PARISC_PCREL12F)
|
|
{
|
|
max_branch_offset = (1 << (12-1)) << 2;
|
|
}
|
|
else /* R_PARISC_PCREL22F. */
|
|
{
|
|
max_branch_offset = (1 << (22-1)) << 2;
|
|
}
|
|
|
|
if (branch_offset + max_branch_offset >= 2*max_branch_offset)
|
|
return hppa_stub_long_branch;
|
|
|
|
return hppa_stub_none;
|
|
}
|
|
|
|
/* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
|
|
IN_ARG contains the link info pointer. */
|
|
|
|
#define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
|
|
#define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
|
|
|
|
#define BL_R1 0xe8200000 /* b,l .+8,%r1 */
|
|
#define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
|
|
#define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
|
|
|
|
#define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
|
|
#define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
|
|
#define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
|
|
#define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
|
|
|
|
#define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
|
|
#define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
|
|
|
|
#define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
|
|
#define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
|
|
#define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
|
|
#define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
|
|
|
|
#define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
|
|
#define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
|
|
#define NOP 0x08000240 /* nop */
|
|
#define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
|
|
#define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
|
|
#define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
|
|
|
|
#ifndef R19_STUBS
|
|
#define R19_STUBS 1
|
|
#endif
|
|
|
|
#if R19_STUBS
|
|
#define LDW_R1_DLT LDW_R1_R19
|
|
#else
|
|
#define LDW_R1_DLT LDW_R1_DP
|
|
#endif
|
|
|
|
static boolean
|
|
hppa_build_one_stub (gen_entry, in_arg)
|
|
struct bfd_hash_entry *gen_entry;
|
|
PTR in_arg;
|
|
{
|
|
struct elf32_hppa_stub_hash_entry *stub_entry;
|
|
struct bfd_link_info *info;
|
|
struct elf32_hppa_link_hash_table *htab;
|
|
asection *stub_sec;
|
|
bfd *stub_bfd;
|
|
bfd_byte *loc;
|
|
bfd_vma sym_value;
|
|
bfd_vma insn;
|
|
bfd_vma off;
|
|
int val;
|
|
int size;
|
|
|
|
/* Massage our args to the form they really have. */
|
|
stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
|
|
info = (struct bfd_link_info *) in_arg;
|
|
|
|
htab = hppa_link_hash_table (info);
|
|
stub_sec = stub_entry->stub_sec;
|
|
|
|
/* Make a note of the offset within the stubs for this entry. */
|
|
stub_entry->stub_offset = stub_sec->_raw_size;
|
|
loc = stub_sec->contents + stub_entry->stub_offset;
|
|
|
|
stub_bfd = stub_sec->owner;
|
|
|
|
switch (stub_entry->stub_type)
|
|
{
|
|
case hppa_stub_long_branch:
|
|
/* Create the long branch. A long branch is formed with "ldil"
|
|
loading the upper bits of the target address into a register,
|
|
then branching with "be" which adds in the lower bits.
|
|
The "be" has its delay slot nullified. */
|
|
sym_value = (stub_entry->target_value
|
|
+ stub_entry->target_section->output_offset
|
|
+ stub_entry->target_section->output_section->vma);
|
|
|
|
val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel);
|
|
insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
|
|
bfd_put_32 (stub_bfd, insn, loc);
|
|
|
|
val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel) >> 2;
|
|
insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
|
|
bfd_put_32 (stub_bfd, insn, loc + 4);
|
|
|
|
size = 8;
|
|
break;
|
|
|
|
case hppa_stub_long_branch_shared:
|
|
/* Branches are relative. This is where we are going to. */
|
|
sym_value = (stub_entry->target_value
|
|
+ stub_entry->target_section->output_offset
|
|
+ stub_entry->target_section->output_section->vma);
|
|
|
|
/* And this is where we are coming from, more or less. */
|
|
sym_value -= (stub_entry->stub_offset
|
|
+ stub_sec->output_offset
|
|
+ stub_sec->output_section->vma);
|
|
|
|
bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
|
|
val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
|
|
insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
|
|
bfd_put_32 (stub_bfd, insn, loc + 4);
|
|
|
|
val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
|
|
insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
|
|
bfd_put_32 (stub_bfd, insn, loc + 8);
|
|
size = 12;
|
|
break;
|
|
|
|
case hppa_stub_import:
|
|
case hppa_stub_import_shared:
|
|
off = stub_entry->h->elf.plt.offset;
|
|
if (off >= (bfd_vma) -2)
|
|
abort ();
|
|
|
|
off &= ~ (bfd_vma) 1;
|
|
sym_value = (off
|
|
+ htab->splt->output_offset
|
|
+ htab->splt->output_section->vma
|
|
- elf_gp (htab->splt->output_section->owner));
|
|
|
|
insn = ADDIL_DP;
|
|
#if R19_STUBS
|
|
if (stub_entry->stub_type == hppa_stub_import_shared)
|
|
insn = ADDIL_R19;
|
|
#endif
|
|
val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel),
|
|
insn = hppa_rebuild_insn ((int) insn, val, 21);
|
|
bfd_put_32 (stub_bfd, insn, loc);
|
|
|
|
/* It is critical to use lrsel/rrsel here because we are using
|
|
two different offsets (+0 and +4) from sym_value. If we use
|
|
lsel/rsel then with unfortunate sym_values we will round
|
|
sym_value+4 up to the next 2k block leading to a mis-match
|
|
between the lsel and rsel value. */
|
|
val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel);
|
|
insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
|
|
bfd_put_32 (stub_bfd, insn, loc + 4);
|
|
|
|
if (htab->multi_subspace)
|
|
{
|
|
val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
|
|
insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
|
|
bfd_put_32 (stub_bfd, insn, loc + 8);
|
|
|
|
bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
|
|
bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
|
|
bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
|
|
bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
|
|
|
|
size = 28;
|
|
}
|
|
else
|
|
{
|
|
bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
|
|
val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
|
|
insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
|
|
bfd_put_32 (stub_bfd, insn, loc + 12);
|
|
|
|
size = 16;
|
|
}
|
|
|
|
if (!info->shared
|
|
&& stub_entry->h != NULL
|
|
&& stub_entry->h->pic_call)
|
|
{
|
|
/* Build the .plt entry needed to call a PIC function from
|
|
statically linked code. We don't need any relocs. */
|
|
bfd *dynobj;
|
|
struct elf32_hppa_link_hash_entry *eh;
|
|
bfd_vma value;
|
|
|
|
dynobj = htab->elf.dynobj;
|
|
eh = (struct elf32_hppa_link_hash_entry *) stub_entry->h;
|
|
|
|
if (eh->elf.root.type != bfd_link_hash_defined
|
|
&& eh->elf.root.type != bfd_link_hash_defweak)
|
|
abort ();
|
|
|
|
value = (eh->elf.root.u.def.value
|
|
+ eh->elf.root.u.def.section->output_offset
|
|
+ eh->elf.root.u.def.section->output_section->vma);
|
|
|
|
/* Fill in the entry in the procedure linkage table.
|
|
|
|
The format of a plt entry is
|
|
<funcaddr>
|
|
<__gp>. */
|
|
|
|
bfd_put_32 (htab->splt->owner, value,
|
|
htab->splt->contents + off);
|
|
value = elf_gp (htab->splt->output_section->owner);
|
|
bfd_put_32 (htab->splt->owner, value,
|
|
htab->splt->contents + off + 4);
|
|
}
|
|
break;
|
|
|
|
case hppa_stub_export:
|
|
/* Branches are relative. This is where we are going to. */
|
|
sym_value = (stub_entry->target_value
|
|
+ stub_entry->target_section->output_offset
|
|
+ stub_entry->target_section->output_section->vma);
|
|
|
|
/* And this is where we are coming from. */
|
|
sym_value -= (stub_entry->stub_offset
|
|
+ stub_sec->output_offset
|
|
+ stub_sec->output_section->vma);
|
|
|
|
if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
|
|
&& (!htab->has_22bit_branch
|
|
|| sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
|
|
{
|
|
(*_bfd_error_handler)
|
|
(_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
|
|
bfd_archive_filename (stub_entry->target_section->owner),
|
|
stub_sec->name,
|
|
(long) stub_entry->stub_offset,
|
|
stub_entry->root.string);
|
|
bfd_set_error (bfd_error_bad_value);
|
|
return false;
|
|
}
|
|
|
|
val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
|
|
if (!htab->has_22bit_branch)
|
|
insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
|
|
else
|
|
insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
|
|
bfd_put_32 (stub_bfd, insn, loc);
|
|
|
|
bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
|
|
bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
|
|
bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
|
|
bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
|
|
bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
|
|
|
|
/* Point the function symbol at the stub. */
|
|
stub_entry->h->elf.root.u.def.section = stub_sec;
|
|
stub_entry->h->elf.root.u.def.value = stub_sec->_raw_size;
|
|
|
|
size = 24;
|
|
break;
|
|
|
|
default:
|
|
BFD_FAIL ();
|
|
return false;
|
|
}
|
|
|
|
stub_sec->_raw_size += size;
|
|
return true;
|
|
}
|
|
|
|
#undef LDIL_R1
|
|
#undef BE_SR4_R1
|
|
#undef BL_R1
|
|
#undef ADDIL_R1
|
|
#undef DEPI_R1
|
|
#undef ADDIL_DP
|
|
#undef LDW_R1_R21
|
|
#undef LDW_R1_DLT
|
|
#undef LDW_R1_R19
|
|
#undef ADDIL_R19
|
|
#undef LDW_R1_DP
|
|
#undef LDSID_R21_R1
|
|
#undef MTSP_R1
|
|
#undef BE_SR0_R21
|
|
#undef STW_RP
|
|
#undef BV_R0_R21
|
|
#undef BL_RP
|
|
#undef NOP
|
|
#undef LDW_RP
|
|
#undef LDSID_RP_R1
|
|
#undef BE_SR0_RP
|
|
|
|
/* As above, but don't actually build the stub. Just bump offset so
|
|
we know stub section sizes. */
|
|
|
|
static boolean
|
|
hppa_size_one_stub (gen_entry, in_arg)
|
|
struct bfd_hash_entry *gen_entry;
|
|
PTR in_arg;
|
|
{
|
|
struct elf32_hppa_stub_hash_entry *stub_entry;
|
|
struct elf32_hppa_link_hash_table *htab;
|
|
int size;
|
|
|
|
/* Massage our args to the form they really have. */
|
|
stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
|
|
htab = (struct elf32_hppa_link_hash_table *) in_arg;
|
|
|
|
if (stub_entry->stub_type == hppa_stub_long_branch)
|
|
size = 8;
|
|
else if (stub_entry->stub_type == hppa_stub_long_branch_shared)
|
|
size = 12;
|
|
else if (stub_entry->stub_type == hppa_stub_export)
|
|
size = 24;
|
|
else /* hppa_stub_import or hppa_stub_import_shared. */
|
|
{
|
|
if (htab->multi_subspace)
|
|
size = 28;
|
|
else
|
|
size = 16;
|
|
}
|
|
|
|
stub_entry->stub_sec->_raw_size += size;
|
|
return true;
|
|
}
|
|
|
|
/* Return nonzero if ABFD represents an HPPA ELF32 file.
|
|
Additionally we set the default architecture and machine. */
|
|
|
|
static boolean
|
|
elf32_hppa_object_p (abfd)
|
|
bfd *abfd;
|
|
{
|
|
Elf_Internal_Ehdr * i_ehdrp;
|
|
unsigned int flags;
|
|
|
|
i_ehdrp = elf_elfheader (abfd);
|
|
if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
|
|
{
|
|
if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX)
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
|
|
return false;
|
|
}
|
|
|
|
flags = i_ehdrp->e_flags;
|
|
switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
|
|
{
|
|
case EFA_PARISC_1_0:
|
|
return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
|
|
case EFA_PARISC_1_1:
|
|
return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
|
|
case EFA_PARISC_2_0:
|
|
return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
|
|
case EFA_PARISC_2_0 | EF_PARISC_WIDE:
|
|
return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Undo the generic ELF code's subtraction of section->vma from the
|
|
value of each external symbol. */
|
|
|
|
static boolean
|
|
elf32_hppa_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
|
|
bfd *abfd ATTRIBUTE_UNUSED;
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED;
|
|
const Elf_Internal_Sym *sym ATTRIBUTE_UNUSED;
|
|
const char **namep ATTRIBUTE_UNUSED;
|
|
flagword *flagsp ATTRIBUTE_UNUSED;
|
|
asection **secp;
|
|
bfd_vma *valp;
|
|
{
|
|
*valp += (*secp)->vma;
|
|
return true;
|
|
}
|
|
|
|
/* Create the .plt and .got sections, and set up our hash table
|
|
short-cuts to various dynamic sections. */
|
|
|
|
static boolean
|
|
elf32_hppa_create_dynamic_sections (abfd, info)
|
|
bfd *abfd;
|
|
struct bfd_link_info *info;
|
|
{
|
|
struct elf32_hppa_link_hash_table *htab;
|
|
|
|
/* Don't try to create the .plt and .got twice. */
|
|
htab = hppa_link_hash_table (info);
|
|
if (htab->splt != NULL)
|
|
return true;
|
|
|
|
/* Call the generic code to do most of the work. */
|
|
if (! _bfd_elf_create_dynamic_sections (abfd, info))
|
|
return false;
|
|
|
|
htab->splt = bfd_get_section_by_name (abfd, ".plt");
|
|
htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
|
|
|
|
htab->sgot = bfd_get_section_by_name (abfd, ".got");
|
|
htab->srelgot = bfd_make_section (abfd, ".rela.got");
|
|
if (htab->srelgot == NULL
|
|
|| ! bfd_set_section_flags (abfd, htab->srelgot,
|
|
(SEC_ALLOC
|
|
| SEC_LOAD
|
|
| SEC_HAS_CONTENTS
|
|
| SEC_IN_MEMORY
|
|
| SEC_LINKER_CREATED
|
|
| SEC_READONLY))
|
|
|| ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
|
|
return false;
|
|
|
|
htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
|
|
htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Copy the extra info we tack onto an elf_link_hash_entry. */
|
|
|
|
static void
|
|
elf32_hppa_copy_indirect_symbol (dir, ind)
|
|
struct elf_link_hash_entry *dir, *ind;
|
|
{
|
|
struct elf32_hppa_link_hash_entry *edir, *eind;
|
|
|
|
edir = (struct elf32_hppa_link_hash_entry *) dir;
|
|
eind = (struct elf32_hppa_link_hash_entry *) ind;
|
|
|
|
if (eind->dyn_relocs != NULL)
|
|
{
|
|
if (edir->dyn_relocs != NULL)
|
|
{
|
|
struct elf32_hppa_dyn_reloc_entry **pp;
|
|
struct elf32_hppa_dyn_reloc_entry *p;
|
|
|
|
if (ind->root.type == bfd_link_hash_indirect)
|
|
abort ();
|
|
|
|
/* Add reloc counts against the weak sym to the strong sym
|
|
list. Merge any entries against the same section. */
|
|
for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
|
|
{
|
|
struct elf32_hppa_dyn_reloc_entry *q;
|
|
|
|
for (q = edir->dyn_relocs; q != NULL; q = q->next)
|
|
if (q->sec == p->sec)
|
|
{
|
|
#if RELATIVE_DYNRELOCS
|
|
q->relative_count += p->relative_count;
|
|
#endif
|
|
q->count += p->count;
|
|
*pp = p->next;
|
|
break;
|
|
}
|
|
if (q == NULL)
|
|
pp = &p->next;
|
|
}
|
|
*pp = edir->dyn_relocs;
|
|
}
|
|
|
|
edir->dyn_relocs = eind->dyn_relocs;
|
|
eind->dyn_relocs = NULL;
|
|
}
|
|
|
|
_bfd_elf_link_hash_copy_indirect (dir, ind);
|
|
}
|
|
|
|
/* Look through the relocs for a section during the first phase, and
|
|
calculate needed space in the global offset table, procedure linkage
|
|
table, and dynamic reloc sections. At this point we haven't
|
|
necessarily read all the input files. */
|
|
|
|
static boolean
|
|
elf32_hppa_check_relocs (abfd, info, sec, relocs)
|
|
bfd *abfd;
|
|
struct bfd_link_info *info;
|
|
asection *sec;
|
|
const Elf_Internal_Rela *relocs;
|
|
{
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
struct elf_link_hash_entry **sym_hashes;
|
|
const Elf_Internal_Rela *rel;
|
|
const Elf_Internal_Rela *rel_end;
|
|
struct elf32_hppa_link_hash_table *htab;
|
|
asection *sreloc;
|
|
asection *stubreloc;
|
|
|
|
if (info->relocateable)
|
|
return true;
|
|
|
|
htab = hppa_link_hash_table (info);
|
|
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
|
sym_hashes = elf_sym_hashes (abfd);
|
|
sreloc = NULL;
|
|
stubreloc = NULL;
|
|
|
|
rel_end = relocs + sec->reloc_count;
|
|
for (rel = relocs; rel < rel_end; rel++)
|
|
{
|
|
enum {
|
|
NEED_GOT = 1,
|
|
NEED_PLT = 2,
|
|
NEED_DYNREL = 4,
|
|
PLT_PLABEL = 8
|
|
};
|
|
|
|
unsigned int r_symndx, r_type;
|
|
struct elf32_hppa_link_hash_entry *h;
|
|
int need_entry;
|
|
|
|
r_symndx = ELF32_R_SYM (rel->r_info);
|
|
|
|
if (r_symndx < symtab_hdr->sh_info)
|
|
h = NULL;
|
|
else
|
|
h = ((struct elf32_hppa_link_hash_entry *)
|
|
sym_hashes[r_symndx - symtab_hdr->sh_info]);
|
|
|
|
r_type = ELF32_R_TYPE (rel->r_info);
|
|
|
|
switch (r_type)
|
|
{
|
|
case R_PARISC_DLTIND14F:
|
|
case R_PARISC_DLTIND14R:
|
|
case R_PARISC_DLTIND21L:
|
|
/* This symbol requires a global offset table entry. */
|
|
need_entry = NEED_GOT;
|
|
|
|
/* Mark this section as containing PIC code. */
|
|
sec->flags |= SEC_HAS_GOT_REF;
|
|
break;
|
|
|
|
case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
|
|
case R_PARISC_PLABEL21L:
|
|
case R_PARISC_PLABEL32:
|
|
/* If the addend is non-zero, we break badly. */
|
|
if (rel->r_addend != 0)
|
|
abort ();
|
|
|
|
/* If we are creating a shared library, then we need to
|
|
create a PLT entry for all PLABELs, because PLABELs with
|
|
local symbols may be passed via a pointer to another
|
|
object. Additionally, output a dynamic relocation
|
|
pointing to the PLT entry.
|
|
For executables, the original 32-bit ABI allowed two
|
|
different styles of PLABELs (function pointers): For
|
|
global functions, the PLABEL word points into the .plt
|
|
two bytes past a (function address, gp) pair, and for
|
|
local functions the PLABEL points directly at the
|
|
function. The magic +2 for the first type allows us to
|
|
differentiate between the two. As you can imagine, this
|
|
is a real pain when it comes to generating code to call
|
|
functions indirectly or to compare function pointers.
|
|
We avoid the mess by always pointing a PLABEL into the
|
|
.plt, even for local functions. */
|
|
need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
|
|
break;
|
|
|
|
case R_PARISC_PCREL12F:
|
|
htab->has_12bit_branch = 1;
|
|
goto branch_common;
|
|
|
|
case R_PARISC_PCREL17C:
|
|
case R_PARISC_PCREL17F:
|
|
htab->has_17bit_branch = 1;
|
|
goto branch_common;
|
|
|
|
case R_PARISC_PCREL22F:
|
|
htab->has_22bit_branch = 1;
|
|
branch_common:
|
|
/* Function calls might need to go through the .plt, and
|
|
might require long branch stubs. */
|
|
if (h == NULL)
|
|
{
|
|
/* We know local syms won't need a .plt entry, and if
|
|
they need a long branch stub we can't guarantee that
|
|
we can reach the stub. So just flag an error later
|
|
if we're doing a shared link and find we need a long
|
|
branch stub. */
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
/* Global symbols will need a .plt entry if they remain
|
|
global, and in most cases won't need a long branch
|
|
stub. Unfortunately, we have to cater for the case
|
|
where a symbol is forced local by versioning, or due
|
|
to symbolic linking, and we lose the .plt entry. */
|
|
need_entry = NEED_PLT;
|
|
if (h->elf.type == STT_PARISC_MILLI)
|
|
need_entry = 0;
|
|
}
|
|
break;
|
|
|
|
case R_PARISC_SEGBASE: /* Used to set segment base. */
|
|
case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
|
|
case R_PARISC_PCREL14F: /* PC relative load/store. */
|
|
case R_PARISC_PCREL14R:
|
|
case R_PARISC_PCREL17R: /* External branches. */
|
|
case R_PARISC_PCREL21L: /* As above, and for load/store too. */
|
|
/* We don't need to propagate the relocation if linking a
|
|
shared object since these are section relative. */
|
|
continue;
|
|
|
|
case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
|
|
case R_PARISC_DPREL14R:
|
|
case R_PARISC_DPREL21L:
|
|
if (info->shared)
|
|
{
|
|
(*_bfd_error_handler)
|
|
(_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
|
|
bfd_archive_filename (abfd),
|
|
elf_hppa_howto_table[r_type].name);
|
|
bfd_set_error (bfd_error_bad_value);
|
|
return false;
|
|
}
|
|
/* Fall through. */
|
|
|
|
case R_PARISC_DIR17F: /* Used for external branches. */
|
|
case R_PARISC_DIR17R:
|
|
case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
|
|
case R_PARISC_DIR14R:
|
|
case R_PARISC_DIR21L: /* As above, and for ext branches too. */
|
|
#if 0
|
|
/* Help debug shared library creation. Any of the above
|
|
relocs can be used in shared libs, but they may cause
|
|
pages to become unshared. */
|
|
if (info->shared)
|
|
{
|
|
(*_bfd_error_handler)
|
|
(_("%s: relocation %s should not be used when making a shared object; recompile with -fPIC"),
|
|
bfd_archive_filename (abfd),
|
|
elf_hppa_howto_table[r_type].name);
|
|
}
|
|
/* Fall through. */
|
|
#endif
|
|
|
|
case R_PARISC_DIR32: /* .word relocs. */
|
|
/* We may want to output a dynamic relocation later. */
|
|
need_entry = NEED_DYNREL;
|
|
break;
|
|
|
|
/* This relocation describes the C++ object vtable hierarchy.
|
|
Reconstruct it for later use during GC. */
|
|
case R_PARISC_GNU_VTINHERIT:
|
|
if (!_bfd_elf32_gc_record_vtinherit (abfd, sec,
|
|
&h->elf, rel->r_offset))
|
|
return false;
|
|
continue;
|
|
|
|
/* This relocation describes which C++ vtable entries are actually
|
|
used. Record for later use during GC. */
|
|
case R_PARISC_GNU_VTENTRY:
|
|
if (!_bfd_elf32_gc_record_vtentry (abfd, sec,
|
|
&h->elf, rel->r_addend))
|
|
return false;
|
|
continue;
|
|
|
|
default:
|
|
continue;
|
|
}
|
|
|
|
/* Now carry out our orders. */
|
|
if (need_entry & NEED_GOT)
|
|
{
|
|
/* Allocate space for a GOT entry, as well as a dynamic
|
|
relocation for this entry. */
|
|
if (htab->sgot == NULL)
|
|
{
|
|
if (htab->elf.dynobj == NULL)
|
|
htab->elf.dynobj = abfd;
|
|
if (!elf32_hppa_create_dynamic_sections (htab->elf.dynobj, info))
|
|
return false;
|
|
}
|
|
|
|
if (h != NULL)
|
|
{
|
|
h->elf.got.refcount += 1;
|
|
}
|
|
else
|
|
{
|
|
bfd_signed_vma *local_got_refcounts;
|
|
|
|
/* This is a global offset table entry for a local symbol. */
|
|
local_got_refcounts = elf_local_got_refcounts (abfd);
|
|
if (local_got_refcounts == NULL)
|
|
{
|
|
bfd_size_type size;
|
|
|
|
/* Allocate space for local got offsets and local
|
|
plt offsets. Done this way to save polluting
|
|
elf_obj_tdata with another target specific
|
|
pointer. */
|
|
size = symtab_hdr->sh_info;
|
|
size *= 2 * sizeof (bfd_signed_vma);
|
|
local_got_refcounts = ((bfd_signed_vma *)
|
|
bfd_zalloc (abfd, size));
|
|
if (local_got_refcounts == NULL)
|
|
return false;
|
|
elf_local_got_refcounts (abfd) = local_got_refcounts;
|
|
}
|
|
local_got_refcounts[r_symndx] += 1;
|
|
}
|
|
}
|
|
|
|
if (need_entry & NEED_PLT)
|
|
{
|
|
/* If we are creating a shared library, and this is a reloc
|
|
against a weak symbol or a global symbol in a dynamic
|
|
object, then we will be creating an import stub and a
|
|
.plt entry for the symbol. Similarly, on a normal link
|
|
to symbols defined in a dynamic object we'll need the
|
|
import stub and a .plt entry. We don't know yet whether
|
|
the symbol is defined or not, so make an entry anyway and
|
|
clean up later in adjust_dynamic_symbol. */
|
|
if ((sec->flags & SEC_ALLOC) != 0)
|
|
{
|
|
if (h != NULL)
|
|
{
|
|
h->elf.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
|
|
h->elf.plt.refcount += 1;
|
|
|
|
/* If this .plt entry is for a plabel, mark it so
|
|
that adjust_dynamic_symbol will keep the entry
|
|
even if it appears to be local. */
|
|
if (need_entry & PLT_PLABEL)
|
|
h->plabel = 1;
|
|
}
|
|
else if (need_entry & PLT_PLABEL)
|
|
{
|
|
bfd_signed_vma *local_got_refcounts;
|
|
bfd_signed_vma *local_plt_refcounts;
|
|
|
|
local_got_refcounts = elf_local_got_refcounts (abfd);
|
|
if (local_got_refcounts == NULL)
|
|
{
|
|
bfd_size_type size;
|
|
|
|
/* Allocate space for local got offsets and local
|
|
plt offsets. */
|
|
size = symtab_hdr->sh_info;
|
|
size *= 2 * sizeof (bfd_signed_vma);
|
|
local_got_refcounts = ((bfd_signed_vma *)
|
|
bfd_zalloc (abfd, size));
|
|
if (local_got_refcounts == NULL)
|
|
return false;
|
|
elf_local_got_refcounts (abfd) = local_got_refcounts;
|
|
}
|
|
local_plt_refcounts = (local_got_refcounts
|
|
+ symtab_hdr->sh_info);
|
|
local_plt_refcounts[r_symndx] += 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (need_entry & NEED_DYNREL)
|
|
{
|
|
/* Flag this symbol as having a non-got, non-plt reference
|
|
so that we generate copy relocs if it turns out to be
|
|
dynamic. */
|
|
if (h != NULL && !info->shared)
|
|
h->elf.elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
|
|
|
|
/* If we are creating a shared library then we need to copy
|
|
the reloc into the shared library. However, if we are
|
|
linking with -Bsymbolic, we need only copy absolute
|
|
relocs or relocs against symbols that are not defined in
|
|
an object we are including in the link. PC- or DP- or
|
|
DLT-relative relocs against any local sym or global sym
|
|
with DEF_REGULAR set, can be discarded. At this point we
|
|
have not seen all the input files, so it is possible that
|
|
DEF_REGULAR is not set now but will be set later (it is
|
|
never cleared). We account for that possibility below by
|
|
storing information in the dyn_relocs field of the
|
|
hash table entry.
|
|
|
|
A similar situation to the -Bsymbolic case occurs when
|
|
creating shared libraries and symbol visibility changes
|
|
render the symbol local.
|
|
|
|
As it turns out, all the relocs we will be creating here
|
|
are absolute, so we cannot remove them on -Bsymbolic
|
|
links or visibility changes anyway. A STUB_REL reloc
|
|
is absolute too, as in that case it is the reloc in the
|
|
stub we will be creating, rather than copying the PCREL
|
|
reloc in the branch.
|
|
|
|
If on the other hand, we are creating an executable, we
|
|
may need to keep relocations for symbols satisfied by a
|
|
dynamic library if we manage to avoid copy relocs for the
|
|
symbol. */
|
|
if ((info->shared
|
|
&& (sec->flags & SEC_ALLOC) != 0
|
|
&& (IS_ABSOLUTE_RELOC (r_type)
|
|
|| (h != NULL
|
|
&& (!info->symbolic
|
|
|| h->elf.root.type == bfd_link_hash_defweak
|
|
|| (h->elf.elf_link_hash_flags
|
|
& ELF_LINK_HASH_DEF_REGULAR) == 0))))
|
|
|| (!info->shared
|
|
&& (sec->flags & SEC_ALLOC) != 0
|
|
&& h != NULL
|
|
&& (h->elf.root.type == bfd_link_hash_defweak
|
|
|| (h->elf.elf_link_hash_flags
|
|
& ELF_LINK_HASH_DEF_REGULAR) == 0)))
|
|
{
|
|
struct elf32_hppa_dyn_reloc_entry *p;
|
|
struct elf32_hppa_dyn_reloc_entry **head;
|
|
|
|
/* Create a reloc section in dynobj and make room for
|
|
this reloc. */
|
|
if (sreloc == NULL)
|
|
{
|
|
char *name;
|
|
bfd *dynobj;
|
|
|
|
name = (bfd_elf_string_from_elf_section
|
|
(abfd,
|
|
elf_elfheader (abfd)->e_shstrndx,
|
|
elf_section_data (sec)->rel_hdr.sh_name));
|
|
if (name == NULL)
|
|
{
|
|
(*_bfd_error_handler)
|
|
(_("Could not find relocation section for %s"),
|
|
sec->name);
|
|
bfd_set_error (bfd_error_bad_value);
|
|
return false;
|
|
}
|
|
|
|
if (htab->elf.dynobj == NULL)
|
|
htab->elf.dynobj = abfd;
|
|
|
|
dynobj = htab->elf.dynobj;
|
|
sreloc = bfd_get_section_by_name (dynobj, name);
|
|
if (sreloc == NULL)
|
|
{
|
|
flagword flags;
|
|
|
|
sreloc = bfd_make_section (dynobj, name);
|
|
flags = (SEC_HAS_CONTENTS | SEC_READONLY
|
|
| SEC_IN_MEMORY | SEC_LINKER_CREATED);
|
|
if ((sec->flags & SEC_ALLOC) != 0)
|
|
flags |= SEC_ALLOC | SEC_LOAD;
|
|
if (sreloc == NULL
|
|
|| !bfd_set_section_flags (dynobj, sreloc, flags)
|
|
|| !bfd_set_section_alignment (dynobj, sreloc, 2))
|
|
return false;
|
|
}
|
|
|
|
elf_section_data (sec)->sreloc = sreloc;
|
|
}
|
|
|
|
/* If this is a global symbol, we count the number of
|
|
relocations we need for this symbol. */
|
|
if (h != NULL)
|
|
{
|
|
head = &h->dyn_relocs;
|
|
}
|
|
else
|
|
{
|
|
/* Track dynamic relocs needed for local syms too.
|
|
We really need local syms available to do this
|
|
easily. Oh well. */
|
|
|
|
asection *s;
|
|
s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
|
|
sec, r_symndx);
|
|
if (s == NULL)
|
|
return false;
|
|
|
|
head = ((struct elf32_hppa_dyn_reloc_entry **)
|
|
&elf_section_data (s)->local_dynrel);
|
|
}
|
|
|
|
p = *head;
|
|
if (p == NULL || p->sec != sec)
|
|
{
|
|
p = ((struct elf32_hppa_dyn_reloc_entry *)
|
|
bfd_alloc (htab->elf.dynobj,
|
|
(bfd_size_type) sizeof *p));
|
|
if (p == NULL)
|
|
return false;
|
|
p->next = *head;
|
|
*head = p;
|
|
p->sec = sec;
|
|
p->count = 0;
|
|
#if RELATIVE_DYNRELOCS
|
|
p->relative_count = 0;
|
|
#endif
|
|
}
|
|
|
|
p->count += 1;
|
|
#if RELATIVE_DYNRELOCS
|
|
if (!IS_ABSOLUTE_RELOC (rtype))
|
|
p->relative_count += 1;
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Return the section that should be marked against garbage collection
|
|
for a given relocation. */
|
|
|
|
static asection *
|
|
elf32_hppa_gc_mark_hook (sec, info, rel, h, sym)
|
|
asection *sec;
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED;
|
|
Elf_Internal_Rela *rel;
|
|
struct elf_link_hash_entry *h;
|
|
Elf_Internal_Sym *sym;
|
|
{
|
|
if (h != NULL)
|
|
{
|
|
switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
|
|
{
|
|
case R_PARISC_GNU_VTINHERIT:
|
|
case R_PARISC_GNU_VTENTRY:
|
|
break;
|
|
|
|
default:
|
|
switch (h->root.type)
|
|
{
|
|
case bfd_link_hash_defined:
|
|
case bfd_link_hash_defweak:
|
|
return h->root.u.def.section;
|
|
|
|
case bfd_link_hash_common:
|
|
return h->root.u.c.p->section;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Update the got and plt entry reference counts for the section being
|
|
removed. */
|
|
|
|
static boolean
|
|
elf32_hppa_gc_sweep_hook (abfd, info, sec, relocs)
|
|
bfd *abfd;
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED;
|
|
asection *sec;
|
|
const Elf_Internal_Rela *relocs;
|
|
{
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
struct elf_link_hash_entry **sym_hashes;
|
|
bfd_signed_vma *local_got_refcounts;
|
|
bfd_signed_vma *local_plt_refcounts;
|
|
const Elf_Internal_Rela *rel, *relend;
|
|
unsigned long r_symndx;
|
|
struct elf_link_hash_entry *h;
|
|
struct elf32_hppa_link_hash_table *htab;
|
|
bfd *dynobj;
|
|
|
|
elf_section_data (sec)->local_dynrel = NULL;
|
|
|
|
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
|
sym_hashes = elf_sym_hashes (abfd);
|
|
local_got_refcounts = elf_local_got_refcounts (abfd);
|
|
local_plt_refcounts = local_got_refcounts;
|
|
if (local_plt_refcounts != NULL)
|
|
local_plt_refcounts += symtab_hdr->sh_info;
|
|
htab = hppa_link_hash_table (info);
|
|
dynobj = htab->elf.dynobj;
|
|
if (dynobj == NULL)
|
|
return true;
|
|
|
|
relend = relocs + sec->reloc_count;
|
|
for (rel = relocs; rel < relend; rel++)
|
|
switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
|
|
{
|
|
case R_PARISC_DLTIND14F:
|
|
case R_PARISC_DLTIND14R:
|
|
case R_PARISC_DLTIND21L:
|
|
r_symndx = ELF32_R_SYM (rel->r_info);
|
|
if (r_symndx >= symtab_hdr->sh_info)
|
|
{
|
|
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
|
if (h->got.refcount > 0)
|
|
h->got.refcount -= 1;
|
|
}
|
|
else if (local_got_refcounts != NULL)
|
|
{
|
|
if (local_got_refcounts[r_symndx] > 0)
|
|
local_got_refcounts[r_symndx] -= 1;
|
|
}
|
|
break;
|
|
|
|
case R_PARISC_PCREL12F:
|
|
case R_PARISC_PCREL17C:
|
|
case R_PARISC_PCREL17F:
|
|
case R_PARISC_PCREL22F:
|
|
r_symndx = ELF32_R_SYM (rel->r_info);
|
|
if (r_symndx >= symtab_hdr->sh_info)
|
|
{
|
|
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
|
if (h->plt.refcount > 0)
|
|
h->plt.refcount -= 1;
|
|
}
|
|
break;
|
|
|
|
case R_PARISC_PLABEL14R:
|
|
case R_PARISC_PLABEL21L:
|
|
case R_PARISC_PLABEL32:
|
|
r_symndx = ELF32_R_SYM (rel->r_info);
|
|
if (r_symndx >= symtab_hdr->sh_info)
|
|
{
|
|
struct elf32_hppa_link_hash_entry *eh;
|
|
struct elf32_hppa_dyn_reloc_entry **pp;
|
|
struct elf32_hppa_dyn_reloc_entry *p;
|
|
|
|
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
|
|
|
if (h->plt.refcount > 0)
|
|
h->plt.refcount -= 1;
|
|
|
|
eh = (struct elf32_hppa_link_hash_entry *) h;
|
|
|
|
for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
|
|
if (p->sec == sec)
|
|
{
|
|
#if RELATIVE_DYNRELOCS
|
|
if (!IS_ABSOLUTE_RELOC (rtype))
|
|
p->relative_count -= 1;
|
|
#endif
|
|
p->count -= 1;
|
|
if (p->count == 0)
|
|
*pp = p->next;
|
|
break;
|
|
}
|
|
}
|
|
else if (local_plt_refcounts != NULL)
|
|
{
|
|
if (local_plt_refcounts[r_symndx] > 0)
|
|
local_plt_refcounts[r_symndx] -= 1;
|
|
}
|
|
break;
|
|
|
|
case R_PARISC_DIR32:
|
|
r_symndx = ELF32_R_SYM (rel->r_info);
|
|
if (r_symndx >= symtab_hdr->sh_info)
|
|
{
|
|
struct elf32_hppa_link_hash_entry *eh;
|
|
struct elf32_hppa_dyn_reloc_entry **pp;
|
|
struct elf32_hppa_dyn_reloc_entry *p;
|
|
|
|
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
|
|
|
eh = (struct elf32_hppa_link_hash_entry *) h;
|
|
|
|
for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
|
|
if (p->sec == sec)
|
|
{
|
|
#if RELATIVE_DYNRELOCS
|
|
if (!IS_ABSOLUTE_RELOC (R_PARISC_DIR32))
|
|
p->relative_count -= 1;
|
|
#endif
|
|
p->count -= 1;
|
|
if (p->count == 0)
|
|
*pp = p->next;
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Our own version of hide_symbol, so that we can keep plt entries for
|
|
plabels. */
|
|
|
|
static void
|
|
elf32_hppa_hide_symbol (info, h, force_local)
|
|
struct bfd_link_info *info;
|
|
struct elf_link_hash_entry *h;
|
|
boolean force_local;
|
|
{
|
|
if (force_local)
|
|
{
|
|
h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
|
|
if (h->dynindx != -1)
|
|
{
|
|
h->dynindx = -1;
|
|
_bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
|
|
h->dynstr_index);
|
|
}
|
|
}
|
|
|
|
if (! ((struct elf32_hppa_link_hash_entry *) h)->plabel)
|
|
{
|
|
h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
|
|
h->plt.offset = (bfd_vma) -1;
|
|
}
|
|
}
|
|
|
|
/* This is the condition under which elf32_hppa_finish_dynamic_symbol
|
|
will be called from elflink.h. If elflink.h doesn't call our
|
|
finish_dynamic_symbol routine, we'll need to do something about
|
|
initializing any .plt and .got entries in elf32_hppa_relocate_section. */
|
|
#define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
|
|
((DYN) \
|
|
&& ((INFO)->shared \
|
|
|| ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
|
|
&& ((H)->dynindx != -1 \
|
|
|| ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
|
|
|
|
/* Adjust a symbol defined by a dynamic object and referenced by a
|
|
regular object. The current definition is in some section of the
|
|
dynamic object, but we're not including those sections. We have to
|
|
change the definition to something the rest of the link can
|
|
understand. */
|
|
|
|
static boolean
|
|
elf32_hppa_adjust_dynamic_symbol (info, h)
|
|
struct bfd_link_info *info;
|
|
struct elf_link_hash_entry *h;
|
|
{
|
|
struct elf32_hppa_link_hash_table *htab;
|
|
struct elf32_hppa_link_hash_entry *eh;
|
|
struct elf32_hppa_dyn_reloc_entry *p;
|
|
asection *s;
|
|
unsigned int power_of_two;
|
|
|
|
/* If this is a function, put it in the procedure linkage table. We
|
|
will fill in the contents of the procedure linkage table later. */
|
|
if (h->type == STT_FUNC
|
|
|| (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
|
|
{
|
|
if (h->plt.refcount <= 0
|
|
|| ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
|
|
&& h->root.type != bfd_link_hash_defweak
|
|
&& ! ((struct elf32_hppa_link_hash_entry *) h)->plabel
|
|
&& (!info->shared || info->symbolic)))
|
|
{
|
|
/* The .plt entry is not needed when:
|
|
a) Garbage collection has removed all references to the
|
|
symbol, or
|
|
b) We know for certain the symbol is defined in this
|
|
object, and it's not a weak definition, nor is the symbol
|
|
used by a plabel relocation. Either this object is the
|
|
application or we are doing a shared symbolic link. */
|
|
|
|
/* As a special sop to the hppa ABI, we keep a .plt entry
|
|
for functions in sections containing PIC code. */
|
|
if (!info->shared
|
|
&& h->plt.refcount > 0
|
|
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
|
|
&& (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0)
|
|
((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
|
|
else
|
|
{
|
|
h->plt.offset = (bfd_vma) -1;
|
|
h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
else
|
|
h->plt.offset = (bfd_vma) -1;
|
|
|
|
/* If this is a weak symbol, and there is a real definition, the
|
|
processor independent code will have arranged for us to see the
|
|
real definition first, and we can just use the same value. */
|
|
if (h->weakdef != NULL)
|
|
{
|
|
if (h->weakdef->root.type != bfd_link_hash_defined
|
|
&& h->weakdef->root.type != bfd_link_hash_defweak)
|
|
abort ();
|
|
h->root.u.def.section = h->weakdef->root.u.def.section;
|
|
h->root.u.def.value = h->weakdef->root.u.def.value;
|
|
return true;
|
|
}
|
|
|
|
/* This is a reference to a symbol defined by a dynamic object which
|
|
is not a function. */
|
|
|
|
/* If we are creating a shared library, we must presume that the
|
|
only references to the symbol are via the global offset table.
|
|
For such cases we need not do anything here; the relocations will
|
|
be handled correctly by relocate_section. */
|
|
if (info->shared)
|
|
return true;
|
|
|
|
/* If there are no references to this symbol that do not use the
|
|
GOT, we don't need to generate a copy reloc. */
|
|
if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
|
|
return true;
|
|
|
|
eh = (struct elf32_hppa_link_hash_entry *) h;
|
|
for (p = eh->dyn_relocs; p != NULL; p = p->next)
|
|
{
|
|
s = p->sec->output_section;
|
|
if (s != NULL && (s->flags & SEC_READONLY) != 0)
|
|
break;
|
|
}
|
|
|
|
/* If we didn't find any dynamic relocs in read-only sections, then
|
|
we'll be keeping the dynamic relocs and avoiding the copy reloc. */
|
|
if (p == NULL)
|
|
{
|
|
h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
|
|
return true;
|
|
}
|
|
|
|
/* We must allocate the symbol in our .dynbss section, which will
|
|
become part of the .bss section of the executable. There will be
|
|
an entry for this symbol in the .dynsym section. The dynamic
|
|
object will contain position independent code, so all references
|
|
from the dynamic object to this symbol will go through the global
|
|
offset table. The dynamic linker will use the .dynsym entry to
|
|
determine the address it must put in the global offset table, so
|
|
both the dynamic object and the regular object will refer to the
|
|
same memory location for the variable. */
|
|
|
|
htab = hppa_link_hash_table (info);
|
|
|
|
/* We must generate a COPY reloc to tell the dynamic linker to
|
|
copy the initial value out of the dynamic object and into the
|
|
runtime process image. */
|
|
if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
|
|
{
|
|
htab->srelbss->_raw_size += sizeof (Elf32_External_Rela);
|
|
h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
|
|
}
|
|
|
|
/* We need to figure out the alignment required for this symbol. I
|
|
have no idea how other ELF linkers handle this. */
|
|
|
|
power_of_two = bfd_log2 (h->size);
|
|
if (power_of_two > 3)
|
|
power_of_two = 3;
|
|
|
|
/* Apply the required alignment. */
|
|
s = htab->sdynbss;
|
|
s->_raw_size = BFD_ALIGN (s->_raw_size,
|
|
(bfd_size_type) (1 << power_of_two));
|
|
if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
|
|
{
|
|
if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
|
|
return false;
|
|
}
|
|
|
|
/* Define the symbol as being at this point in the section. */
|
|
h->root.u.def.section = s;
|
|
h->root.u.def.value = s->_raw_size;
|
|
|
|
/* Increment the section size to make room for the symbol. */
|
|
s->_raw_size += h->size;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Called via elf_link_hash_traverse to create .plt entries for an
|
|
application that uses statically linked PIC functions. Similar to
|
|
the first part of elf32_hppa_adjust_dynamic_symbol. */
|
|
|
|
static boolean
|
|
mark_PIC_calls (h, inf)
|
|
struct elf_link_hash_entry *h;
|
|
PTR inf ATTRIBUTE_UNUSED;
|
|
{
|
|
if (h->root.type == bfd_link_hash_warning)
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
|
|
|
if (! (h->plt.refcount > 0
|
|
&& (h->root.type == bfd_link_hash_defined
|
|
|| h->root.type == bfd_link_hash_defweak)
|
|
&& (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0))
|
|
{
|
|
h->plt.offset = (bfd_vma) -1;
|
|
h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
|
|
return true;
|
|
}
|
|
|
|
h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
|
|
((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Allocate space in the .plt for entries that won't have relocations.
|
|
ie. pic_call and plabel entries. */
|
|
|
|
static boolean
|
|
allocate_plt_static (h, inf)
|
|
struct elf_link_hash_entry *h;
|
|
PTR inf;
|
|
{
|
|
struct bfd_link_info *info;
|
|
struct elf32_hppa_link_hash_table *htab;
|
|
asection *s;
|
|
|
|
if (h->root.type == bfd_link_hash_indirect)
|
|
return true;
|
|
|
|
if (h->root.type == bfd_link_hash_warning)
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
|
|
|
info = (struct bfd_link_info *) inf;
|
|
htab = hppa_link_hash_table (info);
|
|
if (((struct elf32_hppa_link_hash_entry *) h)->pic_call)
|
|
{
|
|
/* Make an entry in the .plt section for non-pic code that is
|
|
calling pic code. */
|
|
((struct elf32_hppa_link_hash_entry *) h)->plabel = 0;
|
|
s = htab->splt;
|
|
h->plt.offset = s->_raw_size;
|
|
s->_raw_size += PLT_ENTRY_SIZE;
|
|
}
|
|
else if (htab->elf.dynamic_sections_created
|
|
&& h->plt.refcount > 0)
|
|
{
|
|
/* Make sure this symbol is output as a dynamic symbol.
|
|
Undefined weak syms won't yet be marked as dynamic. */
|
|
if (h->dynindx == -1
|
|
&& (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
|
|
&& h->type != STT_PARISC_MILLI)
|
|
{
|
|
if (! bfd_elf32_link_record_dynamic_symbol (info, h))
|
|
return false;
|
|
}
|
|
|
|
if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
|
|
{
|
|
/* Allocate these later. From this point on, h->plabel
|
|
means that the plt entry is only used by a plabel.
|
|
We'll be using a normal plt entry for this symbol, so
|
|
clear the plabel indicator. */
|
|
((struct elf32_hppa_link_hash_entry *) h)->plabel = 0;
|
|
}
|
|
else if (((struct elf32_hppa_link_hash_entry *) h)->plabel)
|
|
{
|
|
/* Make an entry in the .plt section for plabel references
|
|
that won't have a .plt entry for other reasons. */
|
|
s = htab->splt;
|
|
h->plt.offset = s->_raw_size;
|
|
s->_raw_size += PLT_ENTRY_SIZE;
|
|
}
|
|
else
|
|
{
|
|
/* No .plt entry needed. */
|
|
h->plt.offset = (bfd_vma) -1;
|
|
h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
h->plt.offset = (bfd_vma) -1;
|
|
h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Allocate space in .plt, .got and associated reloc sections for
|
|
global syms. */
|
|
|
|
static boolean
|
|
allocate_dynrelocs (h, inf)
|
|
struct elf_link_hash_entry *h;
|
|
PTR inf;
|
|
{
|
|
struct bfd_link_info *info;
|
|
struct elf32_hppa_link_hash_table *htab;
|
|
asection *s;
|
|
struct elf32_hppa_link_hash_entry *eh;
|
|
struct elf32_hppa_dyn_reloc_entry *p;
|
|
|
|
if (h->root.type == bfd_link_hash_indirect)
|
|
return true;
|
|
|
|
if (h->root.type == bfd_link_hash_warning)
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
|
|
|
info = (struct bfd_link_info *) inf;
|
|
htab = hppa_link_hash_table (info);
|
|
if (htab->elf.dynamic_sections_created
|
|
&& h->plt.offset != (bfd_vma) -1
|
|
&& !((struct elf32_hppa_link_hash_entry *) h)->pic_call
|
|
&& !((struct elf32_hppa_link_hash_entry *) h)->plabel)
|
|
{
|
|
/* Make an entry in the .plt section. */
|
|
s = htab->splt;
|
|
h->plt.offset = s->_raw_size;
|
|
s->_raw_size += PLT_ENTRY_SIZE;
|
|
|
|
/* We also need to make an entry in the .rela.plt section. */
|
|
htab->srelplt->_raw_size += sizeof (Elf32_External_Rela);
|
|
htab->need_plt_stub = 1;
|
|
}
|
|
|
|
if (h->got.refcount > 0)
|
|
{
|
|
/* Make sure this symbol is output as a dynamic symbol.
|
|
Undefined weak syms won't yet be marked as dynamic. */
|
|
if (h->dynindx == -1
|
|
&& (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
|
|
&& h->type != STT_PARISC_MILLI)
|
|
{
|
|
if (! bfd_elf32_link_record_dynamic_symbol (info, h))
|
|
return false;
|
|
}
|
|
|
|
s = htab->sgot;
|
|
h->got.offset = s->_raw_size;
|
|
s->_raw_size += GOT_ENTRY_SIZE;
|
|
if (htab->elf.dynamic_sections_created
|
|
&& (info->shared
|
|
|| (h->dynindx != -1
|
|
&& h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0))
|
|
{
|
|
htab->srelgot->_raw_size += sizeof (Elf32_External_Rela);
|
|
}
|
|
}
|
|
else
|
|
h->got.offset = (bfd_vma) -1;
|
|
|
|
eh = (struct elf32_hppa_link_hash_entry *) h;
|
|
if (eh->dyn_relocs == NULL)
|
|
return true;
|
|
|
|
/* If this is a -Bsymbolic shared link, then we need to discard all
|
|
space allocated for dynamic pc-relative relocs against symbols
|
|
defined in a regular object. For the normal shared case, discard
|
|
space for relocs that have become local due to symbol visibility
|
|
changes. */
|
|
if (info->shared)
|
|
{
|
|
#if RELATIVE_DYNRELOCS
|
|
if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
|
|
&& ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
|
|
|| info->symbolic))
|
|
{
|
|
struct elf32_hppa_dyn_reloc_entry **pp;
|
|
|
|
for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
|
|
{
|
|
p->count -= p->relative_count;
|
|
p->relative_count = 0;
|
|
if (p->count == 0)
|
|
*pp = p->next;
|
|
else
|
|
pp = &p->next;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
/* For the non-shared case, discard space for relocs against
|
|
symbols which turn out to need copy relocs or are not
|
|
dynamic. */
|
|
if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
|
|
&& (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
|
|
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
|
|
|| (htab->elf.dynamic_sections_created
|
|
&& (h->root.type == bfd_link_hash_undefweak
|
|
|| h->root.type == bfd_link_hash_undefined))))
|
|
{
|
|
/* Make sure this symbol is output as a dynamic symbol.
|
|
Undefined weak syms won't yet be marked as dynamic. */
|
|
if (h->dynindx == -1
|
|
&& (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
|
|
&& h->type != STT_PARISC_MILLI)
|
|
{
|
|
if (! bfd_elf32_link_record_dynamic_symbol (info, h))
|
|
return false;
|
|
}
|
|
|
|
/* If that succeeded, we know we'll be keeping all the
|
|
relocs. */
|
|
if (h->dynindx != -1)
|
|
goto keep;
|
|
}
|
|
|
|
eh->dyn_relocs = NULL;
|
|
return true;
|
|
|
|
keep: ;
|
|
}
|
|
|
|
/* Finally, allocate space. */
|
|
for (p = eh->dyn_relocs; p != NULL; p = p->next)
|
|
{
|
|
asection *sreloc = elf_section_data (p->sec)->sreloc;
|
|
sreloc->_raw_size += p->count * sizeof (Elf32_External_Rela);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* This function is called via elf_link_hash_traverse to force
|
|
millicode symbols local so they do not end up as globals in the
|
|
dynamic symbol table. We ought to be able to do this in
|
|
adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
|
|
for all dynamic symbols. Arguably, this is a bug in
|
|
elf_adjust_dynamic_symbol. */
|
|
|
|
static boolean
|
|
clobber_millicode_symbols (h, info)
|
|
struct elf_link_hash_entry *h;
|
|
struct bfd_link_info *info;
|
|
{
|
|
if (h->root.type == bfd_link_hash_warning)
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
|
|
|
if (h->type == STT_PARISC_MILLI
|
|
&& (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
|
|
{
|
|
elf32_hppa_hide_symbol (info, h, true);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Find any dynamic relocs that apply to read-only sections. */
|
|
|
|
static boolean
|
|
readonly_dynrelocs (h, inf)
|
|
struct elf_link_hash_entry *h;
|
|
PTR inf;
|
|
{
|
|
struct elf32_hppa_link_hash_entry *eh;
|
|
struct elf32_hppa_dyn_reloc_entry *p;
|
|
|
|
if (h->root.type == bfd_link_hash_warning)
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
|
|
|
eh = (struct elf32_hppa_link_hash_entry *) h;
|
|
for (p = eh->dyn_relocs; p != NULL; p = p->next)
|
|
{
|
|
asection *s = p->sec->output_section;
|
|
|
|
if (s != NULL && (s->flags & SEC_READONLY) != 0)
|
|
{
|
|
struct bfd_link_info *info = (struct bfd_link_info *) inf;
|
|
|
|
info->flags |= DF_TEXTREL;
|
|
|
|
/* Not an error, just cut short the traversal. */
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Set the sizes of the dynamic sections. */
|
|
|
|
static boolean
|
|
elf32_hppa_size_dynamic_sections (output_bfd, info)
|
|
bfd *output_bfd ATTRIBUTE_UNUSED;
|
|
struct bfd_link_info *info;
|
|
{
|
|
struct elf32_hppa_link_hash_table *htab;
|
|
bfd *dynobj;
|
|
bfd *ibfd;
|
|
asection *s;
|
|
boolean relocs;
|
|
|
|
htab = hppa_link_hash_table (info);
|
|
dynobj = htab->elf.dynobj;
|
|
if (dynobj == NULL)
|
|
abort ();
|
|
|
|
if (htab->elf.dynamic_sections_created)
|
|
{
|
|
/* Set the contents of the .interp section to the interpreter. */
|
|
if (! info->shared)
|
|
{
|
|
s = bfd_get_section_by_name (dynobj, ".interp");
|
|
if (s == NULL)
|
|
abort ();
|
|
s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
|
|
s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
|
|
}
|
|
|
|
/* Force millicode symbols local. */
|
|
elf_link_hash_traverse (&htab->elf,
|
|
clobber_millicode_symbols,
|
|
info);
|
|
}
|
|
else
|
|
{
|
|
/* Run through the function symbols, looking for any that are
|
|
PIC, and mark them as needing .plt entries so that %r19 will
|
|
be set up. */
|
|
if (! info->shared)
|
|
elf_link_hash_traverse (&htab->elf, mark_PIC_calls, (PTR) info);
|
|
}
|
|
|
|
/* Set up .got and .plt offsets for local syms, and space for local
|
|
dynamic relocs. */
|
|
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
|
|
{
|
|
bfd_signed_vma *local_got;
|
|
bfd_signed_vma *end_local_got;
|
|
bfd_signed_vma *local_plt;
|
|
bfd_signed_vma *end_local_plt;
|
|
bfd_size_type locsymcount;
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
asection *srel;
|
|
|
|
if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
|
|
continue;
|
|
|
|
for (s = ibfd->sections; s != NULL; s = s->next)
|
|
{
|
|
struct elf32_hppa_dyn_reloc_entry *p;
|
|
|
|
for (p = ((struct elf32_hppa_dyn_reloc_entry *)
|
|
elf_section_data (s)->local_dynrel);
|
|
p != NULL;
|
|
p = p->next)
|
|
{
|
|
if (!bfd_is_abs_section (p->sec)
|
|
&& bfd_is_abs_section (p->sec->output_section))
|
|
{
|
|
/* Input section has been discarded, either because
|
|
it is a copy of a linkonce section or due to
|
|
linker script /DISCARD/, so we'll be discarding
|
|
the relocs too. */
|
|
}
|
|
else if (p->count != 0)
|
|
{
|
|
srel = elf_section_data (p->sec)->sreloc;
|
|
srel->_raw_size += p->count * sizeof (Elf32_External_Rela);
|
|
if ((p->sec->output_section->flags & SEC_READONLY) != 0)
|
|
info->flags |= DF_TEXTREL;
|
|
}
|
|
}
|
|
}
|
|
|
|
local_got = elf_local_got_refcounts (ibfd);
|
|
if (!local_got)
|
|
continue;
|
|
|
|
symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
|
|
locsymcount = symtab_hdr->sh_info;
|
|
end_local_got = local_got + locsymcount;
|
|
s = htab->sgot;
|
|
srel = htab->srelgot;
|
|
for (; local_got < end_local_got; ++local_got)
|
|
{
|
|
if (*local_got > 0)
|
|
{
|
|
*local_got = s->_raw_size;
|
|
s->_raw_size += GOT_ENTRY_SIZE;
|
|
if (info->shared)
|
|
srel->_raw_size += sizeof (Elf32_External_Rela);
|
|
}
|
|
else
|
|
*local_got = (bfd_vma) -1;
|
|
}
|
|
|
|
local_plt = end_local_got;
|
|
end_local_plt = local_plt + locsymcount;
|
|
if (! htab->elf.dynamic_sections_created)
|
|
{
|
|
/* Won't be used, but be safe. */
|
|
for (; local_plt < end_local_plt; ++local_plt)
|
|
*local_plt = (bfd_vma) -1;
|
|
}
|
|
else
|
|
{
|
|
s = htab->splt;
|
|
srel = htab->srelplt;
|
|
for (; local_plt < end_local_plt; ++local_plt)
|
|
{
|
|
if (*local_plt > 0)
|
|
{
|
|
*local_plt = s->_raw_size;
|
|
s->_raw_size += PLT_ENTRY_SIZE;
|
|
if (info->shared)
|
|
srel->_raw_size += sizeof (Elf32_External_Rela);
|
|
}
|
|
else
|
|
*local_plt = (bfd_vma) -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Do all the .plt entries without relocs first. The dynamic linker
|
|
uses the last .plt reloc to find the end of the .plt (and hence
|
|
the start of the .got) for lazy linking. */
|
|
elf_link_hash_traverse (&htab->elf, allocate_plt_static, (PTR) info);
|
|
|
|
/* Allocate global sym .plt and .got entries, and space for global
|
|
sym dynamic relocs. */
|
|
elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
|
|
|
|
/* The check_relocs and adjust_dynamic_symbol entry points have
|
|
determined the sizes of the various dynamic sections. Allocate
|
|
memory for them. */
|
|
relocs = false;
|
|
for (s = dynobj->sections; s != NULL; s = s->next)
|
|
{
|
|
if ((s->flags & SEC_LINKER_CREATED) == 0)
|
|
continue;
|
|
|
|
if (s == htab->splt)
|
|
{
|
|
if (htab->need_plt_stub)
|
|
{
|
|
/* Make space for the plt stub at the end of the .plt
|
|
section. We want this stub right at the end, up
|
|
against the .got section. */
|
|
int gotalign = bfd_section_alignment (dynobj, htab->sgot);
|
|
int pltalign = bfd_section_alignment (dynobj, s);
|
|
bfd_size_type mask;
|
|
|
|
if (gotalign > pltalign)
|
|
bfd_set_section_alignment (dynobj, s, gotalign);
|
|
mask = ((bfd_size_type) 1 << gotalign) - 1;
|
|
s->_raw_size = (s->_raw_size + sizeof (plt_stub) + mask) & ~mask;
|
|
}
|
|
}
|
|
else if (s == htab->sgot)
|
|
;
|
|
else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
|
|
{
|
|
if (s->_raw_size != 0)
|
|
{
|
|
/* Remember whether there are any reloc sections other
|
|
than .rela.plt. */
|
|
if (s != htab->srelplt)
|
|
relocs = true;
|
|
|
|
/* We use the reloc_count field as a counter if we need
|
|
to copy relocs into the output file. */
|
|
s->reloc_count = 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* It's not one of our sections, so don't allocate space. */
|
|
continue;
|
|
}
|
|
|
|
if (s->_raw_size == 0)
|
|
{
|
|
/* If we don't need this section, strip it from the
|
|
output file. This is mostly to handle .rela.bss and
|
|
.rela.plt. We must create both sections in
|
|
create_dynamic_sections, because they must be created
|
|
before the linker maps input sections to output
|
|
sections. The linker does that before
|
|
adjust_dynamic_symbol is called, and it is that
|
|
function which decides whether anything needs to go
|
|
into these sections. */
|
|
_bfd_strip_section_from_output (info, s);
|
|
continue;
|
|
}
|
|
|
|
/* Allocate memory for the section contents. Zero it, because
|
|
we may not fill in all the reloc sections. */
|
|
s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
|
|
if (s->contents == NULL && s->_raw_size != 0)
|
|
return false;
|
|
}
|
|
|
|
if (htab->elf.dynamic_sections_created)
|
|
{
|
|
/* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
|
|
actually has nothing to do with the PLT, it is how we
|
|
communicate the LTP value of a load module to the dynamic
|
|
linker. */
|
|
#define add_dynamic_entry(TAG, VAL) \
|
|
bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
|
|
|
|
if (!add_dynamic_entry (DT_PLTGOT, 0))
|
|
return false;
|
|
|
|
/* Add some entries to the .dynamic section. We fill in the
|
|
values later, in elf32_hppa_finish_dynamic_sections, but we
|
|
must add the entries now so that we get the correct size for
|
|
the .dynamic section. The DT_DEBUG entry is filled in by the
|
|
dynamic linker and used by the debugger. */
|
|
if (!info->shared)
|
|
{
|
|
if (!add_dynamic_entry (DT_DEBUG, 0))
|
|
return false;
|
|
}
|
|
|
|
if (htab->srelplt->_raw_size != 0)
|
|
{
|
|
if (!add_dynamic_entry (DT_PLTRELSZ, 0)
|
|
|| !add_dynamic_entry (DT_PLTREL, DT_RELA)
|
|
|| !add_dynamic_entry (DT_JMPREL, 0))
|
|
return false;
|
|
}
|
|
|
|
if (relocs)
|
|
{
|
|
if (!add_dynamic_entry (DT_RELA, 0)
|
|
|| !add_dynamic_entry (DT_RELASZ, 0)
|
|
|| !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
|
|
return false;
|
|
|
|
/* If any dynamic relocs apply to a read-only section,
|
|
then we need a DT_TEXTREL entry. */
|
|
if ((info->flags & DF_TEXTREL) == 0)
|
|
elf_link_hash_traverse (&htab->elf, readonly_dynrelocs,
|
|
(PTR) info);
|
|
|
|
if ((info->flags & DF_TEXTREL) != 0)
|
|
{
|
|
if (!add_dynamic_entry (DT_TEXTREL, 0))
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
#undef add_dynamic_entry
|
|
|
|
return true;
|
|
}
|
|
|
|
/* External entry points for sizing and building linker stubs. */
|
|
|
|
/* Set up various things so that we can make a list of input sections
|
|
for each output section included in the link. Returns -1 on error,
|
|
0 when no stubs will be needed, and 1 on success. */
|
|
|
|
int
|
|
elf32_hppa_setup_section_lists (output_bfd, info)
|
|
bfd *output_bfd;
|
|
struct bfd_link_info *info;
|
|
{
|
|
bfd *input_bfd;
|
|
unsigned int bfd_count;
|
|
int top_id, top_index;
|
|
asection *section;
|
|
asection **input_list, **list;
|
|
bfd_size_type amt;
|
|
struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
|
|
|
|
if (htab->elf.root.creator->flavour != bfd_target_elf_flavour)
|
|
return 0;
|
|
|
|
/* Count the number of input BFDs and find the top input section id. */
|
|
for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
|
|
input_bfd != NULL;
|
|
input_bfd = input_bfd->link_next)
|
|
{
|
|
bfd_count += 1;
|
|
for (section = input_bfd->sections;
|
|
section != NULL;
|
|
section = section->next)
|
|
{
|
|
if (top_id < section->id)
|
|
top_id = section->id;
|
|
}
|
|
}
|
|
htab->bfd_count = bfd_count;
|
|
|
|
amt = sizeof (struct map_stub) * (top_id + 1);
|
|
htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
|
|
if (htab->stub_group == NULL)
|
|
return -1;
|
|
|
|
/* We can't use output_bfd->section_count here to find the top output
|
|
section index as some sections may have been removed, and
|
|
_bfd_strip_section_from_output doesn't renumber the indices. */
|
|
for (section = output_bfd->sections, top_index = 0;
|
|
section != NULL;
|
|
section = section->next)
|
|
{
|
|
if (top_index < section->index)
|
|
top_index = section->index;
|
|
}
|
|
|
|
htab->top_index = top_index;
|
|
amt = sizeof (asection *) * (top_index + 1);
|
|
input_list = (asection **) bfd_malloc (amt);
|
|
htab->input_list = input_list;
|
|
if (input_list == NULL)
|
|
return -1;
|
|
|
|
/* For sections we aren't interested in, mark their entries with a
|
|
value we can check later. */
|
|
list = input_list + top_index;
|
|
do
|
|
*list = bfd_abs_section_ptr;
|
|
while (list-- != input_list);
|
|
|
|
for (section = output_bfd->sections;
|
|
section != NULL;
|
|
section = section->next)
|
|
{
|
|
if ((section->flags & SEC_CODE) != 0)
|
|
input_list[section->index] = NULL;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* The linker repeatedly calls this function for each input section,
|
|
in the order that input sections are linked into output sections.
|
|
Build lists of input sections to determine groupings between which
|
|
we may insert linker stubs. */
|
|
|
|
void
|
|
elf32_hppa_next_input_section (info, isec)
|
|
struct bfd_link_info *info;
|
|
asection *isec;
|
|
{
|
|
struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
|
|
|
|
if (isec->output_section->index <= htab->top_index)
|
|
{
|
|
asection **list = htab->input_list + isec->output_section->index;
|
|
if (*list != bfd_abs_section_ptr)
|
|
{
|
|
/* Steal the link_sec pointer for our list. */
|
|
#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
|
|
/* This happens to make the list in reverse order,
|
|
which is what we want. */
|
|
PREV_SEC (isec) = *list;
|
|
*list = isec;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* See whether we can group stub sections together. Grouping stub
|
|
sections may result in fewer stubs. More importantly, we need to
|
|
put all .init* and .fini* stubs at the beginning of the .init or
|
|
.fini output sections respectively, because glibc splits the
|
|
_init and _fini functions into multiple parts. Putting a stub in
|
|
the middle of a function is not a good idea. */
|
|
|
|
static void
|
|
group_sections (htab, stub_group_size, stubs_always_before_branch)
|
|
struct elf32_hppa_link_hash_table *htab;
|
|
bfd_size_type stub_group_size;
|
|
boolean stubs_always_before_branch;
|
|
{
|
|
asection **list = htab->input_list + htab->top_index;
|
|
do
|
|
{
|
|
asection *tail = *list;
|
|
if (tail == bfd_abs_section_ptr)
|
|
continue;
|
|
while (tail != NULL)
|
|
{
|
|
asection *curr;
|
|
asection *prev;
|
|
bfd_size_type total;
|
|
|
|
curr = tail;
|
|
if (tail->_cooked_size)
|
|
total = tail->_cooked_size;
|
|
else
|
|
total = tail->_raw_size;
|
|
while ((prev = PREV_SEC (curr)) != NULL
|
|
&& ((total += curr->output_offset - prev->output_offset)
|
|
< stub_group_size))
|
|
curr = prev;
|
|
|
|
/* OK, the size from the start of CURR to the end is less
|
|
than 240000 bytes and thus can be handled by one stub
|
|
section. (or the tail section is itself larger than
|
|
240000 bytes, in which case we may be toast.)
|
|
We should really be keeping track of the total size of
|
|
stubs added here, as stubs contribute to the final output
|
|
section size. That's a little tricky, and this way will
|
|
only break if stubs added total more than 22144 bytes, or
|
|
2768 long branch stubs. It seems unlikely for more than
|
|
2768 different functions to be called, especially from
|
|
code only 240000 bytes long. This limit used to be
|
|
250000, but c++ code tends to generate lots of little
|
|
functions, and sometimes violated the assumption. */
|
|
do
|
|
{
|
|
prev = PREV_SEC (tail);
|
|
/* Set up this stub group. */
|
|
htab->stub_group[tail->id].link_sec = curr;
|
|
}
|
|
while (tail != curr && (tail = prev) != NULL);
|
|
|
|
/* But wait, there's more! Input sections up to 240000
|
|
bytes before the stub section can be handled by it too. */
|
|
if (!stubs_always_before_branch)
|
|
{
|
|
total = 0;
|
|
while (prev != NULL
|
|
&& ((total += tail->output_offset - prev->output_offset)
|
|
< stub_group_size))
|
|
{
|
|
tail = prev;
|
|
prev = PREV_SEC (tail);
|
|
htab->stub_group[tail->id].link_sec = curr;
|
|
}
|
|
}
|
|
tail = prev;
|
|
}
|
|
}
|
|
while (list-- != htab->input_list);
|
|
free (htab->input_list);
|
|
#undef PREV_SEC
|
|
}
|
|
|
|
/* Read in all local syms for all input bfds, and create hash entries
|
|
for export stubs if we are building a multi-subspace shared lib.
|
|
Returns -1 on error, 1 if export stubs created, 0 otherwise. */
|
|
|
|
static int
|
|
get_local_syms (output_bfd, input_bfd, info)
|
|
bfd *output_bfd;
|
|
bfd *input_bfd;
|
|
struct bfd_link_info *info;
|
|
{
|
|
unsigned int bfd_indx;
|
|
Elf_Internal_Sym *local_syms, **all_local_syms;
|
|
int stub_changed = 0;
|
|
struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
|
|
|
|
/* We want to read in symbol extension records only once. To do this
|
|
we need to read in the local symbols in parallel and save them for
|
|
later use; so hold pointers to the local symbols in an array. */
|
|
bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
|
|
all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt);
|
|
htab->all_local_syms = all_local_syms;
|
|
if (all_local_syms == NULL)
|
|
return -1;
|
|
|
|
/* Walk over all the input BFDs, swapping in local symbols.
|
|
If we are creating a shared library, create hash entries for the
|
|
export stubs. */
|
|
for (bfd_indx = 0;
|
|
input_bfd != NULL;
|
|
input_bfd = input_bfd->link_next, bfd_indx++)
|
|
{
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
|
|
/* We'll need the symbol table in a second. */
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
|
if (symtab_hdr->sh_info == 0)
|
|
continue;
|
|
|
|
/* We need an array of the local symbols attached to the input bfd. */
|
|
local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
|
|
if (local_syms == NULL)
|
|
{
|
|
local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
|
|
symtab_hdr->sh_info, 0,
|
|
NULL, NULL, NULL);
|
|
/* Cache them for elf_link_input_bfd. */
|
|
symtab_hdr->contents = (unsigned char *) local_syms;
|
|
}
|
|
if (local_syms == NULL)
|
|
return -1;
|
|
|
|
all_local_syms[bfd_indx] = local_syms;
|
|
|
|
if (info->shared && htab->multi_subspace)
|
|
{
|
|
struct elf_link_hash_entry **sym_hashes;
|
|
struct elf_link_hash_entry **end_hashes;
|
|
unsigned int symcount;
|
|
|
|
symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
|
|
- symtab_hdr->sh_info);
|
|
sym_hashes = elf_sym_hashes (input_bfd);
|
|
end_hashes = sym_hashes + symcount;
|
|
|
|
/* Look through the global syms for functions; We need to
|
|
build export stubs for all globally visible functions. */
|
|
for (; sym_hashes < end_hashes; sym_hashes++)
|
|
{
|
|
struct elf32_hppa_link_hash_entry *hash;
|
|
|
|
hash = (struct elf32_hppa_link_hash_entry *) *sym_hashes;
|
|
|
|
while (hash->elf.root.type == bfd_link_hash_indirect
|
|
|| hash->elf.root.type == bfd_link_hash_warning)
|
|
hash = ((struct elf32_hppa_link_hash_entry *)
|
|
hash->elf.root.u.i.link);
|
|
|
|
/* At this point in the link, undefined syms have been
|
|
resolved, so we need to check that the symbol was
|
|
defined in this BFD. */
|
|
if ((hash->elf.root.type == bfd_link_hash_defined
|
|
|| hash->elf.root.type == bfd_link_hash_defweak)
|
|
&& hash->elf.type == STT_FUNC
|
|
&& hash->elf.root.u.def.section->output_section != NULL
|
|
&& (hash->elf.root.u.def.section->output_section->owner
|
|
== output_bfd)
|
|
&& hash->elf.root.u.def.section->owner == input_bfd
|
|
&& (hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
|
|
&& !(hash->elf.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)
|
|
&& ELF_ST_VISIBILITY (hash->elf.other) == STV_DEFAULT)
|
|
{
|
|
asection *sec;
|
|
const char *stub_name;
|
|
struct elf32_hppa_stub_hash_entry *stub_entry;
|
|
|
|
sec = hash->elf.root.u.def.section;
|
|
stub_name = hash->elf.root.root.string;
|
|
stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
|
|
stub_name,
|
|
false, false);
|
|
if (stub_entry == NULL)
|
|
{
|
|
stub_entry = hppa_add_stub (stub_name, sec, htab);
|
|
if (!stub_entry)
|
|
return -1;
|
|
|
|
stub_entry->target_value = hash->elf.root.u.def.value;
|
|
stub_entry->target_section = hash->elf.root.u.def.section;
|
|
stub_entry->stub_type = hppa_stub_export;
|
|
stub_entry->h = hash;
|
|
stub_changed = 1;
|
|
}
|
|
else
|
|
{
|
|
(*_bfd_error_handler) (_("%s: duplicate export stub %s"),
|
|
bfd_archive_filename (input_bfd),
|
|
stub_name);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return stub_changed;
|
|
}
|
|
|
|
/* Determine and set the size of the stub section for a final link.
|
|
|
|
The basic idea here is to examine all the relocations looking for
|
|
PC-relative calls to a target that is unreachable with a "bl"
|
|
instruction. */
|
|
|
|
boolean
|
|
elf32_hppa_size_stubs (output_bfd, stub_bfd, info, multi_subspace, group_size,
|
|
add_stub_section, layout_sections_again)
|
|
bfd *output_bfd;
|
|
bfd *stub_bfd;
|
|
struct bfd_link_info *info;
|
|
boolean multi_subspace;
|
|
bfd_signed_vma group_size;
|
|
asection * (*add_stub_section) PARAMS ((const char *, asection *));
|
|
void (*layout_sections_again) PARAMS ((void));
|
|
{
|
|
bfd_size_type stub_group_size;
|
|
boolean stubs_always_before_branch;
|
|
boolean stub_changed;
|
|
struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
|
|
|
|
/* Stash our params away. */
|
|
htab->stub_bfd = stub_bfd;
|
|
htab->multi_subspace = multi_subspace;
|
|
htab->add_stub_section = add_stub_section;
|
|
htab->layout_sections_again = layout_sections_again;
|
|
stubs_always_before_branch = group_size < 0;
|
|
if (group_size < 0)
|
|
stub_group_size = -group_size;
|
|
else
|
|
stub_group_size = group_size;
|
|
if (stub_group_size == 1)
|
|
{
|
|
/* Default values. */
|
|
stub_group_size = 7680000;
|
|
if (htab->has_17bit_branch || htab->multi_subspace)
|
|
stub_group_size = 240000;
|
|
if (htab->has_12bit_branch)
|
|
stub_group_size = 7500;
|
|
}
|
|
|
|
group_sections (htab, stub_group_size, stubs_always_before_branch);
|
|
|
|
switch (get_local_syms (output_bfd, info->input_bfds, info))
|
|
{
|
|
default:
|
|
if (htab->all_local_syms)
|
|
goto error_ret_free_local;
|
|
return false;
|
|
|
|
case 0:
|
|
stub_changed = false;
|
|
break;
|
|
|
|
case 1:
|
|
stub_changed = true;
|
|
break;
|
|
}
|
|
|
|
while (1)
|
|
{
|
|
bfd *input_bfd;
|
|
unsigned int bfd_indx;
|
|
asection *stub_sec;
|
|
|
|
for (input_bfd = info->input_bfds, bfd_indx = 0;
|
|
input_bfd != NULL;
|
|
input_bfd = input_bfd->link_next, bfd_indx++)
|
|
{
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
asection *section;
|
|
Elf_Internal_Sym *local_syms;
|
|
|
|
/* We'll need the symbol table in a second. */
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
|
if (symtab_hdr->sh_info == 0)
|
|
continue;
|
|
|
|
local_syms = htab->all_local_syms[bfd_indx];
|
|
|
|
/* Walk over each section attached to the input bfd. */
|
|
for (section = input_bfd->sections;
|
|
section != NULL;
|
|
section = section->next)
|
|
{
|
|
Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
|
|
|
|
/* If there aren't any relocs, then there's nothing more
|
|
to do. */
|
|
if ((section->flags & SEC_RELOC) == 0
|
|
|| section->reloc_count == 0)
|
|
continue;
|
|
|
|
/* If this section is a link-once section that will be
|
|
discarded, then don't create any stubs. */
|
|
if (section->output_section == NULL
|
|
|| section->output_section->owner != output_bfd)
|
|
continue;
|
|
|
|
/* Get the relocs. */
|
|
internal_relocs
|
|
= _bfd_elf32_link_read_relocs (input_bfd, section, NULL,
|
|
(Elf_Internal_Rela *) NULL,
|
|
info->keep_memory);
|
|
if (internal_relocs == NULL)
|
|
goto error_ret_free_local;
|
|
|
|
/* Now examine each relocation. */
|
|
irela = internal_relocs;
|
|
irelaend = irela + section->reloc_count;
|
|
for (; irela < irelaend; irela++)
|
|
{
|
|
unsigned int r_type, r_indx;
|
|
enum elf32_hppa_stub_type stub_type;
|
|
struct elf32_hppa_stub_hash_entry *stub_entry;
|
|
asection *sym_sec;
|
|
bfd_vma sym_value;
|
|
bfd_vma destination;
|
|
struct elf32_hppa_link_hash_entry *hash;
|
|
char *stub_name;
|
|
const asection *id_sec;
|
|
|
|
r_type = ELF32_R_TYPE (irela->r_info);
|
|
r_indx = ELF32_R_SYM (irela->r_info);
|
|
|
|
if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
|
|
{
|
|
bfd_set_error (bfd_error_bad_value);
|
|
error_ret_free_internal:
|
|
if (elf_section_data (section)->relocs == NULL)
|
|
free (internal_relocs);
|
|
goto error_ret_free_local;
|
|
}
|
|
|
|
/* Only look for stubs on call instructions. */
|
|
if (r_type != (unsigned int) R_PARISC_PCREL12F
|
|
&& r_type != (unsigned int) R_PARISC_PCREL17F
|
|
&& r_type != (unsigned int) R_PARISC_PCREL22F)
|
|
continue;
|
|
|
|
/* Now determine the call target, its name, value,
|
|
section. */
|
|
sym_sec = NULL;
|
|
sym_value = 0;
|
|
destination = 0;
|
|
hash = NULL;
|
|
if (r_indx < symtab_hdr->sh_info)
|
|
{
|
|
/* It's a local symbol. */
|
|
Elf_Internal_Sym *sym;
|
|
Elf_Internal_Shdr *hdr;
|
|
|
|
sym = local_syms + r_indx;
|
|
hdr = elf_elfsections (input_bfd)[sym->st_shndx];
|
|
sym_sec = hdr->bfd_section;
|
|
if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
|
|
sym_value = sym->st_value;
|
|
destination = (sym_value + irela->r_addend
|
|
+ sym_sec->output_offset
|
|
+ sym_sec->output_section->vma);
|
|
}
|
|
else
|
|
{
|
|
/* It's an external symbol. */
|
|
int e_indx;
|
|
|
|
e_indx = r_indx - symtab_hdr->sh_info;
|
|
hash = ((struct elf32_hppa_link_hash_entry *)
|
|
elf_sym_hashes (input_bfd)[e_indx]);
|
|
|
|
while (hash->elf.root.type == bfd_link_hash_indirect
|
|
|| hash->elf.root.type == bfd_link_hash_warning)
|
|
hash = ((struct elf32_hppa_link_hash_entry *)
|
|
hash->elf.root.u.i.link);
|
|
|
|
if (hash->elf.root.type == bfd_link_hash_defined
|
|
|| hash->elf.root.type == bfd_link_hash_defweak)
|
|
{
|
|
sym_sec = hash->elf.root.u.def.section;
|
|
sym_value = hash->elf.root.u.def.value;
|
|
if (sym_sec->output_section != NULL)
|
|
destination = (sym_value + irela->r_addend
|
|
+ sym_sec->output_offset
|
|
+ sym_sec->output_section->vma);
|
|
}
|
|
else if (hash->elf.root.type == bfd_link_hash_undefweak)
|
|
{
|
|
if (! info->shared)
|
|
continue;
|
|
}
|
|
else if (hash->elf.root.type == bfd_link_hash_undefined)
|
|
{
|
|
if (! (info->shared
|
|
&& !info->no_undefined
|
|
&& (ELF_ST_VISIBILITY (hash->elf.other)
|
|
== STV_DEFAULT)
|
|
&& hash->elf.type != STT_PARISC_MILLI))
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
bfd_set_error (bfd_error_bad_value);
|
|
goto error_ret_free_internal;
|
|
}
|
|
}
|
|
|
|
/* Determine what (if any) linker stub is needed. */
|
|
stub_type = hppa_type_of_stub (section, irela, hash,
|
|
destination);
|
|
if (stub_type == hppa_stub_none)
|
|
continue;
|
|
|
|
/* Support for grouping stub sections. */
|
|
id_sec = htab->stub_group[section->id].link_sec;
|
|
|
|
/* Get the name of this stub. */
|
|
stub_name = hppa_stub_name (id_sec, sym_sec, hash, irela);
|
|
if (!stub_name)
|
|
goto error_ret_free_internal;
|
|
|
|
stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
|
|
stub_name,
|
|
false, false);
|
|
if (stub_entry != NULL)
|
|
{
|
|
/* The proper stub has already been created. */
|
|
free (stub_name);
|
|
continue;
|
|
}
|
|
|
|
stub_entry = hppa_add_stub (stub_name, section, htab);
|
|
if (stub_entry == NULL)
|
|
{
|
|
free (stub_name);
|
|
goto error_ret_free_internal;
|
|
}
|
|
|
|
stub_entry->target_value = sym_value;
|
|
stub_entry->target_section = sym_sec;
|
|
stub_entry->stub_type = stub_type;
|
|
if (info->shared)
|
|
{
|
|
if (stub_type == hppa_stub_import)
|
|
stub_entry->stub_type = hppa_stub_import_shared;
|
|
else if (stub_type == hppa_stub_long_branch)
|
|
stub_entry->stub_type = hppa_stub_long_branch_shared;
|
|
}
|
|
stub_entry->h = hash;
|
|
stub_changed = true;
|
|
}
|
|
|
|
/* We're done with the internal relocs, free them. */
|
|
if (elf_section_data (section)->relocs == NULL)
|
|
free (internal_relocs);
|
|
}
|
|
}
|
|
|
|
if (!stub_changed)
|
|
break;
|
|
|
|
/* OK, we've added some stubs. Find out the new size of the
|
|
stub sections. */
|
|
for (stub_sec = htab->stub_bfd->sections;
|
|
stub_sec != NULL;
|
|
stub_sec = stub_sec->next)
|
|
{
|
|
stub_sec->_raw_size = 0;
|
|
stub_sec->_cooked_size = 0;
|
|
}
|
|
|
|
bfd_hash_traverse (&htab->stub_hash_table, hppa_size_one_stub, htab);
|
|
|
|
/* Ask the linker to do its stuff. */
|
|
(*htab->layout_sections_again) ();
|
|
stub_changed = false;
|
|
}
|
|
|
|
free (htab->all_local_syms);
|
|
return true;
|
|
|
|
error_ret_free_local:
|
|
free (htab->all_local_syms);
|
|
return false;
|
|
}
|
|
|
|
/* For a final link, this function is called after we have sized the
|
|
stubs to provide a value for __gp. */
|
|
|
|
boolean
|
|
elf32_hppa_set_gp (abfd, info)
|
|
bfd *abfd;
|
|
struct bfd_link_info *info;
|
|
{
|
|
struct bfd_link_hash_entry *h;
|
|
asection *sec = NULL;
|
|
bfd_vma gp_val = 0;
|
|
struct elf32_hppa_link_hash_table *htab;
|
|
|
|
htab = hppa_link_hash_table (info);
|
|
h = bfd_link_hash_lookup (&htab->elf.root, "$global$", false, false, false);
|
|
|
|
if (h != NULL
|
|
&& (h->type == bfd_link_hash_defined
|
|
|| h->type == bfd_link_hash_defweak))
|
|
{
|
|
gp_val = h->u.def.value;
|
|
sec = h->u.def.section;
|
|
}
|
|
else
|
|
{
|
|
asection *splt;
|
|
asection *sgot;
|
|
|
|
if (htab->elf.root.creator->flavour == bfd_target_elf_flavour)
|
|
{
|
|
splt = htab->splt;
|
|
sgot = htab->sgot;
|
|
}
|
|
else
|
|
{
|
|
/* If we're not elf, look up the output sections in the
|
|
hope we may actually find them. */
|
|
splt = bfd_get_section_by_name (abfd, ".plt");
|
|
sgot = bfd_get_section_by_name (abfd, ".got");
|
|
}
|
|
|
|
/* Choose to point our LTP at, in this order, one of .plt, .got,
|
|
or .data, if these sections exist. In the case of choosing
|
|
.plt try to make the LTP ideal for addressing anywhere in the
|
|
.plt or .got with a 14 bit signed offset. Typically, the end
|
|
of the .plt is the start of the .got, so choose .plt + 0x2000
|
|
if either the .plt or .got is larger than 0x2000. If both
|
|
the .plt and .got are smaller than 0x2000, choose the end of
|
|
the .plt section. */
|
|
sec = splt;
|
|
if (sec != NULL)
|
|
{
|
|
gp_val = sec->_raw_size;
|
|
if (gp_val > 0x2000 || (sgot && sgot->_raw_size > 0x2000))
|
|
{
|
|
gp_val = 0x2000;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
sec = sgot;
|
|
if (sec != NULL)
|
|
{
|
|
/* We know we don't have a .plt. If .got is large,
|
|
offset our LTP. */
|
|
if (sec->_raw_size > 0x2000)
|
|
gp_val = 0x2000;
|
|
}
|
|
else
|
|
{
|
|
/* No .plt or .got. Who cares what the LTP is? */
|
|
sec = bfd_get_section_by_name (abfd, ".data");
|
|
}
|
|
}
|
|
|
|
if (h != NULL)
|
|
{
|
|
h->type = bfd_link_hash_defined;
|
|
h->u.def.value = gp_val;
|
|
if (sec != NULL)
|
|
h->u.def.section = sec;
|
|
else
|
|
h->u.def.section = bfd_abs_section_ptr;
|
|
}
|
|
}
|
|
|
|
if (sec != NULL && sec->output_section != NULL)
|
|
gp_val += sec->output_section->vma + sec->output_offset;
|
|
|
|
elf_gp (abfd) = gp_val;
|
|
return true;
|
|
}
|
|
|
|
/* Build all the stubs associated with the current output file. The
|
|
stubs are kept in a hash table attached to the main linker hash
|
|
table. We also set up the .plt entries for statically linked PIC
|
|
functions here. This function is called via hppaelf_finish in the
|
|
linker. */
|
|
|
|
boolean
|
|
elf32_hppa_build_stubs (info)
|
|
struct bfd_link_info *info;
|
|
{
|
|
asection *stub_sec;
|
|
struct bfd_hash_table *table;
|
|
struct elf32_hppa_link_hash_table *htab;
|
|
|
|
htab = hppa_link_hash_table (info);
|
|
|
|
for (stub_sec = htab->stub_bfd->sections;
|
|
stub_sec != NULL;
|
|
stub_sec = stub_sec->next)
|
|
{
|
|
bfd_size_type size;
|
|
|
|
/* Allocate memory to hold the linker stubs. */
|
|
size = stub_sec->_raw_size;
|
|
stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
|
|
if (stub_sec->contents == NULL && size != 0)
|
|
return false;
|
|
stub_sec->_raw_size = 0;
|
|
}
|
|
|
|
/* Build the stubs as directed by the stub hash table. */
|
|
table = &htab->stub_hash_table;
|
|
bfd_hash_traverse (table, hppa_build_one_stub, info);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Perform a final link. */
|
|
|
|
static boolean
|
|
elf32_hppa_final_link (abfd, info)
|
|
bfd *abfd;
|
|
struct bfd_link_info *info;
|
|
{
|
|
/* Invoke the regular ELF linker to do all the work. */
|
|
if (!bfd_elf32_bfd_final_link (abfd, info))
|
|
return false;
|
|
|
|
/* If we're producing a final executable, sort the contents of the
|
|
unwind section. */
|
|
return elf_hppa_sort_unwind (abfd);
|
|
}
|
|
|
|
/* Record the lowest address for the data and text segments. */
|
|
|
|
static void
|
|
hppa_record_segment_addr (abfd, section, data)
|
|
bfd *abfd ATTRIBUTE_UNUSED;
|
|
asection *section;
|
|
PTR data;
|
|
{
|
|
struct elf32_hppa_link_hash_table *htab;
|
|
|
|
htab = (struct elf32_hppa_link_hash_table *) data;
|
|
|
|
if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
|
|
{
|
|
bfd_vma value = section->vma - section->filepos;
|
|
|
|
if ((section->flags & SEC_READONLY) != 0)
|
|
{
|
|
if (value < htab->text_segment_base)
|
|
htab->text_segment_base = value;
|
|
}
|
|
else
|
|
{
|
|
if (value < htab->data_segment_base)
|
|
htab->data_segment_base = value;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Perform a relocation as part of a final link. */
|
|
|
|
static bfd_reloc_status_type
|
|
final_link_relocate (input_section, contents, rel, value, htab, sym_sec, h)
|
|
asection *input_section;
|
|
bfd_byte *contents;
|
|
const Elf_Internal_Rela *rel;
|
|
bfd_vma value;
|
|
struct elf32_hppa_link_hash_table *htab;
|
|
asection *sym_sec;
|
|
struct elf32_hppa_link_hash_entry *h;
|
|
{
|
|
int insn;
|
|
unsigned int r_type = ELF32_R_TYPE (rel->r_info);
|
|
reloc_howto_type *howto = elf_hppa_howto_table + r_type;
|
|
int r_format = howto->bitsize;
|
|
enum hppa_reloc_field_selector_type_alt r_field;
|
|
bfd *input_bfd = input_section->owner;
|
|
bfd_vma offset = rel->r_offset;
|
|
bfd_vma max_branch_offset = 0;
|
|
bfd_byte *hit_data = contents + offset;
|
|
bfd_signed_vma addend = rel->r_addend;
|
|
bfd_vma location;
|
|
struct elf32_hppa_stub_hash_entry *stub_entry = NULL;
|
|
int val;
|
|
|
|
if (r_type == R_PARISC_NONE)
|
|
return bfd_reloc_ok;
|
|
|
|
insn = bfd_get_32 (input_bfd, hit_data);
|
|
|
|
/* Find out where we are and where we're going. */
|
|
location = (offset +
|
|
input_section->output_offset +
|
|
input_section->output_section->vma);
|
|
|
|
switch (r_type)
|
|
{
|
|
case R_PARISC_PCREL12F:
|
|
case R_PARISC_PCREL17F:
|
|
case R_PARISC_PCREL22F:
|
|
/* If this call should go via the plt, find the import stub in
|
|
the stub hash. */
|
|
if (sym_sec == NULL
|
|
|| sym_sec->output_section == NULL
|
|
|| (h != NULL
|
|
&& h->elf.plt.offset != (bfd_vma) -1
|
|
&& (h->elf.dynindx != -1 || h->pic_call)
|
|
&& !h->plabel))
|
|
{
|
|
stub_entry = hppa_get_stub_entry (input_section, sym_sec,
|
|
h, rel, htab);
|
|
if (stub_entry != NULL)
|
|
{
|
|
value = (stub_entry->stub_offset
|
|
+ stub_entry->stub_sec->output_offset
|
|
+ stub_entry->stub_sec->output_section->vma);
|
|
addend = 0;
|
|
}
|
|
else if (sym_sec == NULL && h != NULL
|
|
&& h->elf.root.type == bfd_link_hash_undefweak)
|
|
{
|
|
/* It's OK if undefined weak. Calls to undefined weak
|
|
symbols behave as if the "called" function
|
|
immediately returns. We can thus call to a weak
|
|
function without first checking whether the function
|
|
is defined. */
|
|
value = location;
|
|
addend = 8;
|
|
}
|
|
else
|
|
return bfd_reloc_undefined;
|
|
}
|
|
/* Fall thru. */
|
|
|
|
case R_PARISC_PCREL21L:
|
|
case R_PARISC_PCREL17C:
|
|
case R_PARISC_PCREL17R:
|
|
case R_PARISC_PCREL14R:
|
|
case R_PARISC_PCREL14F:
|
|
/* Make it a pc relative offset. */
|
|
value -= location;
|
|
addend -= 8;
|
|
break;
|
|
|
|
case R_PARISC_DPREL21L:
|
|
case R_PARISC_DPREL14R:
|
|
case R_PARISC_DPREL14F:
|
|
/* For all the DP relative relocations, we need to examine the symbol's
|
|
section. If it's a code section, then "data pointer relative" makes
|
|
no sense. In that case we don't adjust the "value", and for 21 bit
|
|
addil instructions, we change the source addend register from %dp to
|
|
%r0. This situation commonly arises when a variable's "constness"
|
|
is declared differently from the way the variable is defined. For
|
|
instance: "extern int foo" with foo defined as "const int foo". */
|
|
if (sym_sec == NULL)
|
|
break;
|
|
if ((sym_sec->flags & SEC_CODE) != 0)
|
|
{
|
|
if ((insn & ((0x3f << 26) | (0x1f << 21)))
|
|
== (((int) OP_ADDIL << 26) | (27 << 21)))
|
|
{
|
|
insn &= ~ (0x1f << 21);
|
|
#if 0 /* debug them. */
|
|
(*_bfd_error_handler)
|
|
(_("%s(%s+0x%lx): fixing %s"),
|
|
bfd_archive_filename (input_bfd),
|
|
input_section->name,
|
|
(long) rel->r_offset,
|
|
howto->name);
|
|
#endif
|
|
}
|
|
/* Now try to make things easy for the dynamic linker. */
|
|
|
|
break;
|
|
}
|
|
/* Fall thru. */
|
|
|
|
case R_PARISC_DLTIND21L:
|
|
case R_PARISC_DLTIND14R:
|
|
case R_PARISC_DLTIND14F:
|
|
value -= elf_gp (input_section->output_section->owner);
|
|
break;
|
|
|
|
case R_PARISC_SEGREL32:
|
|
if ((sym_sec->flags & SEC_CODE) != 0)
|
|
value -= htab->text_segment_base;
|
|
else
|
|
value -= htab->data_segment_base;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
switch (r_type)
|
|
{
|
|
case R_PARISC_DIR32:
|
|
case R_PARISC_DIR14F:
|
|
case R_PARISC_DIR17F:
|
|
case R_PARISC_PCREL17C:
|
|
case R_PARISC_PCREL14F:
|
|
case R_PARISC_DPREL14F:
|
|
case R_PARISC_PLABEL32:
|
|
case R_PARISC_DLTIND14F:
|
|
case R_PARISC_SEGBASE:
|
|
case R_PARISC_SEGREL32:
|
|
r_field = e_fsel;
|
|
break;
|
|
|
|
case R_PARISC_DLTIND21L:
|
|
case R_PARISC_PCREL21L:
|
|
case R_PARISC_PLABEL21L:
|
|
r_field = e_lsel;
|
|
break;
|
|
|
|
case R_PARISC_DIR21L:
|
|
case R_PARISC_DPREL21L:
|
|
r_field = e_lrsel;
|
|
break;
|
|
|
|
case R_PARISC_PCREL17R:
|
|
case R_PARISC_PCREL14R:
|
|
case R_PARISC_PLABEL14R:
|
|
case R_PARISC_DLTIND14R:
|
|
r_field = e_rsel;
|
|
break;
|
|
|
|
case R_PARISC_DIR17R:
|
|
case R_PARISC_DIR14R:
|
|
case R_PARISC_DPREL14R:
|
|
r_field = e_rrsel;
|
|
break;
|
|
|
|
case R_PARISC_PCREL12F:
|
|
case R_PARISC_PCREL17F:
|
|
case R_PARISC_PCREL22F:
|
|
r_field = e_fsel;
|
|
|
|
if (r_type == (unsigned int) R_PARISC_PCREL17F)
|
|
{
|
|
max_branch_offset = (1 << (17-1)) << 2;
|
|
}
|
|
else if (r_type == (unsigned int) R_PARISC_PCREL12F)
|
|
{
|
|
max_branch_offset = (1 << (12-1)) << 2;
|
|
}
|
|
else
|
|
{
|
|
max_branch_offset = (1 << (22-1)) << 2;
|
|
}
|
|
|
|
/* sym_sec is NULL on undefined weak syms or when shared on
|
|
undefined syms. We've already checked for a stub for the
|
|
shared undefined case. */
|
|
if (sym_sec == NULL)
|
|
break;
|
|
|
|
/* If the branch is out of reach, then redirect the
|
|
call to the local stub for this function. */
|
|
if (value + addend + max_branch_offset >= 2*max_branch_offset)
|
|
{
|
|
stub_entry = hppa_get_stub_entry (input_section, sym_sec,
|
|
h, rel, htab);
|
|
if (stub_entry == NULL)
|
|
return bfd_reloc_undefined;
|
|
|
|
/* Munge up the value and addend so that we call the stub
|
|
rather than the procedure directly. */
|
|
value = (stub_entry->stub_offset
|
|
+ stub_entry->stub_sec->output_offset
|
|
+ stub_entry->stub_sec->output_section->vma
|
|
- location);
|
|
addend = -8;
|
|
}
|
|
break;
|
|
|
|
/* Something we don't know how to handle. */
|
|
default:
|
|
return bfd_reloc_notsupported;
|
|
}
|
|
|
|
/* Make sure we can reach the stub. */
|
|
if (max_branch_offset != 0
|
|
&& value + addend + max_branch_offset >= 2*max_branch_offset)
|
|
{
|
|
(*_bfd_error_handler)
|
|
(_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
|
|
bfd_archive_filename (input_bfd),
|
|
input_section->name,
|
|
(long) rel->r_offset,
|
|
stub_entry->root.string);
|
|
bfd_set_error (bfd_error_bad_value);
|
|
return bfd_reloc_notsupported;
|
|
}
|
|
|
|
val = hppa_field_adjust (value, addend, r_field);
|
|
|
|
switch (r_type)
|
|
{
|
|
case R_PARISC_PCREL12F:
|
|
case R_PARISC_PCREL17C:
|
|
case R_PARISC_PCREL17F:
|
|
case R_PARISC_PCREL17R:
|
|
case R_PARISC_PCREL22F:
|
|
case R_PARISC_DIR17F:
|
|
case R_PARISC_DIR17R:
|
|
/* This is a branch. Divide the offset by four.
|
|
Note that we need to decide whether it's a branch or
|
|
otherwise by inspecting the reloc. Inspecting insn won't
|
|
work as insn might be from a .word directive. */
|
|
val >>= 2;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
insn = hppa_rebuild_insn (insn, val, r_format);
|
|
|
|
/* Update the instruction word. */
|
|
bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
|
|
return bfd_reloc_ok;
|
|
}
|
|
|
|
/* Relocate an HPPA ELF section. */
|
|
|
|
static boolean
|
|
elf32_hppa_relocate_section (output_bfd, info, input_bfd, input_section,
|
|
contents, relocs, local_syms, local_sections)
|
|
bfd *output_bfd;
|
|
struct bfd_link_info *info;
|
|
bfd *input_bfd;
|
|
asection *input_section;
|
|
bfd_byte *contents;
|
|
Elf_Internal_Rela *relocs;
|
|
Elf_Internal_Sym *local_syms;
|
|
asection **local_sections;
|
|
{
|
|
bfd_vma *local_got_offsets;
|
|
struct elf32_hppa_link_hash_table *htab;
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
Elf_Internal_Rela *rel;
|
|
Elf_Internal_Rela *relend;
|
|
|
|
if (info->relocateable)
|
|
return true;
|
|
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
|
|
|
htab = hppa_link_hash_table (info);
|
|
local_got_offsets = elf_local_got_offsets (input_bfd);
|
|
|
|
rel = relocs;
|
|
relend = relocs + input_section->reloc_count;
|
|
for (; rel < relend; rel++)
|
|
{
|
|
unsigned int r_type;
|
|
reloc_howto_type *howto;
|
|
unsigned int r_symndx;
|
|
struct elf32_hppa_link_hash_entry *h;
|
|
Elf_Internal_Sym *sym;
|
|
asection *sym_sec;
|
|
bfd_vma relocation;
|
|
bfd_reloc_status_type r;
|
|
const char *sym_name;
|
|
boolean plabel;
|
|
boolean warned_undef;
|
|
|
|
r_type = ELF32_R_TYPE (rel->r_info);
|
|
if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
|
|
{
|
|
bfd_set_error (bfd_error_bad_value);
|
|
return false;
|
|
}
|
|
if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
|
|
|| r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
|
|
continue;
|
|
|
|
/* This is a final link. */
|
|
r_symndx = ELF32_R_SYM (rel->r_info);
|
|
h = NULL;
|
|
sym = NULL;
|
|
sym_sec = NULL;
|
|
warned_undef = false;
|
|
if (r_symndx < symtab_hdr->sh_info)
|
|
{
|
|
/* This is a local symbol, h defaults to NULL. */
|
|
sym = local_syms + r_symndx;
|
|
sym_sec = local_sections[r_symndx];
|
|
relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sym_sec, rel);
|
|
}
|
|
else
|
|
{
|
|
int indx;
|
|
|
|
/* It's a global; Find its entry in the link hash. */
|
|
indx = r_symndx - symtab_hdr->sh_info;
|
|
h = ((struct elf32_hppa_link_hash_entry *)
|
|
elf_sym_hashes (input_bfd)[indx]);
|
|
while (h->elf.root.type == bfd_link_hash_indirect
|
|
|| h->elf.root.type == bfd_link_hash_warning)
|
|
h = (struct elf32_hppa_link_hash_entry *) h->elf.root.u.i.link;
|
|
|
|
relocation = 0;
|
|
if (h->elf.root.type == bfd_link_hash_defined
|
|
|| h->elf.root.type == bfd_link_hash_defweak)
|
|
{
|
|
sym_sec = h->elf.root.u.def.section;
|
|
/* If sym_sec->output_section is NULL, then it's a
|
|
symbol defined in a shared library. */
|
|
if (sym_sec->output_section != NULL)
|
|
relocation = (h->elf.root.u.def.value
|
|
+ sym_sec->output_offset
|
|
+ sym_sec->output_section->vma);
|
|
}
|
|
else if (h->elf.root.type == bfd_link_hash_undefweak)
|
|
;
|
|
else if (info->shared && !info->no_undefined
|
|
&& ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
|
|
&& h->elf.type != STT_PARISC_MILLI)
|
|
{
|
|
if (info->symbolic && !info->allow_shlib_undefined)
|
|
{
|
|
if (!((*info->callbacks->undefined_symbol)
|
|
(info, h->elf.root.root.string, input_bfd,
|
|
input_section, rel->r_offset, false)))
|
|
return false;
|
|
warned_undef = true;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (!((*info->callbacks->undefined_symbol)
|
|
(info, h->elf.root.root.string, input_bfd,
|
|
input_section, rel->r_offset, true)))
|
|
return false;
|
|
warned_undef = true;
|
|
}
|
|
}
|
|
|
|
/* Do any required modifications to the relocation value, and
|
|
determine what types of dynamic info we need to output, if
|
|
any. */
|
|
plabel = 0;
|
|
switch (r_type)
|
|
{
|
|
case R_PARISC_DLTIND14F:
|
|
case R_PARISC_DLTIND14R:
|
|
case R_PARISC_DLTIND21L:
|
|
{
|
|
bfd_vma off;
|
|
boolean do_got = 0;
|
|
|
|
/* Relocation is to the entry for this symbol in the
|
|
global offset table. */
|
|
if (h != NULL)
|
|
{
|
|
boolean dyn;
|
|
|
|
off = h->elf.got.offset;
|
|
dyn = htab->elf.dynamic_sections_created;
|
|
if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, &h->elf))
|
|
{
|
|
/* If we aren't going to call finish_dynamic_symbol,
|
|
then we need to handle initialisation of the .got
|
|
entry and create needed relocs here. Since the
|
|
offset must always be a multiple of 4, we use the
|
|
least significant bit to record whether we have
|
|
initialised it already. */
|
|
if ((off & 1) != 0)
|
|
off &= ~1;
|
|
else
|
|
{
|
|
h->elf.got.offset |= 1;
|
|
do_got = 1;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Local symbol case. */
|
|
if (local_got_offsets == NULL)
|
|
abort ();
|
|
|
|
off = local_got_offsets[r_symndx];
|
|
|
|
/* The offset must always be a multiple of 4. We use
|
|
the least significant bit to record whether we have
|
|
already generated the necessary reloc. */
|
|
if ((off & 1) != 0)
|
|
off &= ~1;
|
|
else
|
|
{
|
|
local_got_offsets[r_symndx] |= 1;
|
|
do_got = 1;
|
|
}
|
|
}
|
|
|
|
if (do_got)
|
|
{
|
|
if (info->shared)
|
|
{
|
|
/* Output a dynamic relocation for this GOT entry.
|
|
In this case it is relative to the base of the
|
|
object because the symbol index is zero. */
|
|
Elf_Internal_Rela outrel;
|
|
asection *srelgot = htab->srelgot;
|
|
Elf32_External_Rela *loc;
|
|
|
|
outrel.r_offset = (off
|
|
+ htab->sgot->output_offset
|
|
+ htab->sgot->output_section->vma);
|
|
outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
|
|
outrel.r_addend = relocation;
|
|
loc = (Elf32_External_Rela *) srelgot->contents;
|
|
loc += srelgot->reloc_count++;
|
|
bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
|
|
}
|
|
else
|
|
bfd_put_32 (output_bfd, relocation,
|
|
htab->sgot->contents + off);
|
|
}
|
|
|
|
if (off >= (bfd_vma) -2)
|
|
abort ();
|
|
|
|
/* Add the base of the GOT to the relocation value. */
|
|
relocation = (off
|
|
+ htab->sgot->output_offset
|
|
+ htab->sgot->output_section->vma);
|
|
}
|
|
break;
|
|
|
|
case R_PARISC_SEGREL32:
|
|
/* If this is the first SEGREL relocation, then initialize
|
|
the segment base values. */
|
|
if (htab->text_segment_base == (bfd_vma) -1)
|
|
bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
|
|
break;
|
|
|
|
case R_PARISC_PLABEL14R:
|
|
case R_PARISC_PLABEL21L:
|
|
case R_PARISC_PLABEL32:
|
|
if (htab->elf.dynamic_sections_created)
|
|
{
|
|
bfd_vma off;
|
|
boolean do_plt = 0;
|
|
|
|
/* If we have a global symbol with a PLT slot, then
|
|
redirect this relocation to it. */
|
|
if (h != NULL)
|
|
{
|
|
off = h->elf.plt.offset;
|
|
if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, &h->elf))
|
|
{
|
|
/* In a non-shared link, adjust_dynamic_symbols
|
|
isn't called for symbols forced local. We
|
|
need to write out the plt entry here. */
|
|
if ((off & 1) != 0)
|
|
off &= ~1;
|
|
else
|
|
{
|
|
h->elf.plt.offset |= 1;
|
|
do_plt = 1;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
bfd_vma *local_plt_offsets;
|
|
|
|
if (local_got_offsets == NULL)
|
|
abort ();
|
|
|
|
local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
|
|
off = local_plt_offsets[r_symndx];
|
|
|
|
/* As for the local .got entry case, we use the last
|
|
bit to record whether we've already initialised
|
|
this local .plt entry. */
|
|
if ((off & 1) != 0)
|
|
off &= ~1;
|
|
else
|
|
{
|
|
local_plt_offsets[r_symndx] |= 1;
|
|
do_plt = 1;
|
|
}
|
|
}
|
|
|
|
if (do_plt)
|
|
{
|
|
if (info->shared)
|
|
{
|
|
/* Output a dynamic IPLT relocation for this
|
|
PLT entry. */
|
|
Elf_Internal_Rela outrel;
|
|
asection *srelplt = htab->srelplt;
|
|
Elf32_External_Rela *loc;
|
|
|
|
outrel.r_offset = (off
|
|
+ htab->splt->output_offset
|
|
+ htab->splt->output_section->vma);
|
|
outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
|
|
outrel.r_addend = relocation;
|
|
loc = (Elf32_External_Rela *) srelplt->contents;
|
|
loc += srelplt->reloc_count++;
|
|
bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
|
|
}
|
|
else
|
|
{
|
|
bfd_put_32 (output_bfd,
|
|
relocation,
|
|
htab->splt->contents + off);
|
|
bfd_put_32 (output_bfd,
|
|
elf_gp (htab->splt->output_section->owner),
|
|
htab->splt->contents + off + 4);
|
|
}
|
|
}
|
|
|
|
if (off >= (bfd_vma) -2)
|
|
abort ();
|
|
|
|
/* PLABELs contain function pointers. Relocation is to
|
|
the entry for the function in the .plt. The magic +2
|
|
offset signals to $$dyncall that the function pointer
|
|
is in the .plt and thus has a gp pointer too.
|
|
Exception: Undefined PLABELs should have a value of
|
|
zero. */
|
|
if (h == NULL
|
|
|| (h->elf.root.type != bfd_link_hash_undefweak
|
|
&& h->elf.root.type != bfd_link_hash_undefined))
|
|
{
|
|
relocation = (off
|
|
+ htab->splt->output_offset
|
|
+ htab->splt->output_section->vma
|
|
+ 2);
|
|
}
|
|
plabel = 1;
|
|
}
|
|
/* Fall through and possibly emit a dynamic relocation. */
|
|
|
|
case R_PARISC_DIR17F:
|
|
case R_PARISC_DIR17R:
|
|
case R_PARISC_DIR14F:
|
|
case R_PARISC_DIR14R:
|
|
case R_PARISC_DIR21L:
|
|
case R_PARISC_DPREL14F:
|
|
case R_PARISC_DPREL14R:
|
|
case R_PARISC_DPREL21L:
|
|
case R_PARISC_DIR32:
|
|
/* r_symndx will be zero only for relocs against symbols
|
|
from removed linkonce sections, or sections discarded by
|
|
a linker script. */
|
|
if (r_symndx == 0
|
|
|| (input_section->flags & SEC_ALLOC) == 0)
|
|
break;
|
|
|
|
/* The reloc types handled here and this conditional
|
|
expression must match the code in ..check_relocs and
|
|
allocate_dynrelocs. ie. We need exactly the same condition
|
|
as in ..check_relocs, with some extra conditions (dynindx
|
|
test in this case) to cater for relocs removed by
|
|
allocate_dynrelocs. If you squint, the non-shared test
|
|
here does indeed match the one in ..check_relocs, the
|
|
difference being that here we test DEF_DYNAMIC as well as
|
|
!DEF_REGULAR. All common syms end up with !DEF_REGULAR,
|
|
which is why we can't use just that test here.
|
|
Conversely, DEF_DYNAMIC can't be used in check_relocs as
|
|
there all files have not been loaded. */
|
|
if ((info->shared
|
|
&& (IS_ABSOLUTE_RELOC (r_type)
|
|
|| (h != NULL
|
|
&& h->elf.dynindx != -1
|
|
&& (!info->symbolic
|
|
|| (h->elf.elf_link_hash_flags
|
|
& ELF_LINK_HASH_DEF_REGULAR) == 0))))
|
|
|| (!info->shared
|
|
&& h != NULL
|
|
&& h->elf.dynindx != -1
|
|
&& (h->elf.elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
|
|
&& (((h->elf.elf_link_hash_flags
|
|
& ELF_LINK_HASH_DEF_DYNAMIC) != 0
|
|
&& (h->elf.elf_link_hash_flags
|
|
& ELF_LINK_HASH_DEF_REGULAR) == 0)
|
|
|| h->elf.root.type == bfd_link_hash_undefweak
|
|
|| h->elf.root.type == bfd_link_hash_undefined)))
|
|
{
|
|
Elf_Internal_Rela outrel;
|
|
boolean skip;
|
|
asection *sreloc;
|
|
Elf32_External_Rela *loc;
|
|
|
|
/* When generating a shared object, these relocations
|
|
are copied into the output file to be resolved at run
|
|
time. */
|
|
|
|
outrel.r_addend = rel->r_addend;
|
|
outrel.r_offset =
|
|
_bfd_elf_section_offset (output_bfd, info, input_section,
|
|
rel->r_offset);
|
|
skip = (outrel.r_offset == (bfd_vma) -1
|
|
|| outrel.r_offset == (bfd_vma) -2);
|
|
outrel.r_offset += (input_section->output_offset
|
|
+ input_section->output_section->vma);
|
|
|
|
if (skip)
|
|
{
|
|
memset (&outrel, 0, sizeof (outrel));
|
|
}
|
|
else if (h != NULL
|
|
&& h->elf.dynindx != -1
|
|
&& (plabel
|
|
|| !IS_ABSOLUTE_RELOC (r_type)
|
|
|| !info->shared
|
|
|| !info->symbolic
|
|
|| (h->elf.elf_link_hash_flags
|
|
& ELF_LINK_HASH_DEF_REGULAR) == 0))
|
|
{
|
|
outrel.r_info = ELF32_R_INFO (h->elf.dynindx, r_type);
|
|
}
|
|
else /* It's a local symbol, or one marked to become local. */
|
|
{
|
|
int indx = 0;
|
|
|
|
/* Add the absolute offset of the symbol. */
|
|
outrel.r_addend += relocation;
|
|
|
|
/* Global plabels need to be processed by the
|
|
dynamic linker so that functions have at most one
|
|
fptr. For this reason, we need to differentiate
|
|
between global and local plabels, which we do by
|
|
providing the function symbol for a global plabel
|
|
reloc, and no symbol for local plabels. */
|
|
if (! plabel
|
|
&& sym_sec != NULL
|
|
&& sym_sec->output_section != NULL
|
|
&& ! bfd_is_abs_section (sym_sec))
|
|
{
|
|
indx = elf_section_data (sym_sec->output_section)->dynindx;
|
|
/* We are turning this relocation into one
|
|
against a section symbol, so subtract out the
|
|
output section's address but not the offset
|
|
of the input section in the output section. */
|
|
outrel.r_addend -= sym_sec->output_section->vma;
|
|
}
|
|
|
|
outrel.r_info = ELF32_R_INFO (indx, r_type);
|
|
}
|
|
#if 0
|
|
/* EH info can cause unaligned DIR32 relocs.
|
|
Tweak the reloc type for the dynamic linker. */
|
|
if (r_type == R_PARISC_DIR32 && (outrel.r_offset & 3) != 0)
|
|
outrel.r_info = ELF32_R_INFO (ELF32_R_SYM (outrel.r_info),
|
|
R_PARISC_DIR32U);
|
|
#endif
|
|
sreloc = elf_section_data (input_section)->sreloc;
|
|
if (sreloc == NULL)
|
|
abort ();
|
|
|
|
loc = (Elf32_External_Rela *) sreloc->contents;
|
|
loc += sreloc->reloc_count++;
|
|
bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
r = final_link_relocate (input_section, contents, rel, relocation,
|
|
htab, sym_sec, h);
|
|
|
|
if (r == bfd_reloc_ok)
|
|
continue;
|
|
|
|
if (h != NULL)
|
|
sym_name = h->elf.root.root.string;
|
|
else
|
|
{
|
|
sym_name = bfd_elf_string_from_elf_section (input_bfd,
|
|
symtab_hdr->sh_link,
|
|
sym->st_name);
|
|
if (sym_name == NULL)
|
|
return false;
|
|
if (*sym_name == '\0')
|
|
sym_name = bfd_section_name (input_bfd, sym_sec);
|
|
}
|
|
|
|
howto = elf_hppa_howto_table + r_type;
|
|
|
|
if (r == bfd_reloc_undefined || r == bfd_reloc_notsupported)
|
|
{
|
|
if (r == bfd_reloc_notsupported || !warned_undef)
|
|
{
|
|
(*_bfd_error_handler)
|
|
(_("%s(%s+0x%lx): cannot handle %s for %s"),
|
|
bfd_archive_filename (input_bfd),
|
|
input_section->name,
|
|
(long) rel->r_offset,
|
|
howto->name,
|
|
sym_name);
|
|
bfd_set_error (bfd_error_bad_value);
|
|
return false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (!((*info->callbacks->reloc_overflow)
|
|
(info, sym_name, howto->name, (bfd_vma) 0,
|
|
input_bfd, input_section, rel->r_offset)))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Finish up dynamic symbol handling. We set the contents of various
|
|
dynamic sections here. */
|
|
|
|
static boolean
|
|
elf32_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
|
|
bfd *output_bfd;
|
|
struct bfd_link_info *info;
|
|
struct elf_link_hash_entry *h;
|
|
Elf_Internal_Sym *sym;
|
|
{
|
|
struct elf32_hppa_link_hash_table *htab;
|
|
|
|
htab = hppa_link_hash_table (info);
|
|
|
|
if (h->plt.offset != (bfd_vma) -1)
|
|
{
|
|
bfd_vma value;
|
|
|
|
if (h->plt.offset & 1)
|
|
abort ();
|
|
|
|
/* This symbol has an entry in the procedure linkage table. Set
|
|
it up.
|
|
|
|
The format of a plt entry is
|
|
<funcaddr>
|
|
<__gp>
|
|
*/
|
|
value = 0;
|
|
if (h->root.type == bfd_link_hash_defined
|
|
|| h->root.type == bfd_link_hash_defweak)
|
|
{
|
|
value = h->root.u.def.value;
|
|
if (h->root.u.def.section->output_section != NULL)
|
|
value += (h->root.u.def.section->output_offset
|
|
+ h->root.u.def.section->output_section->vma);
|
|
}
|
|
|
|
if (! ((struct elf32_hppa_link_hash_entry *) h)->pic_call)
|
|
{
|
|
Elf_Internal_Rela rel;
|
|
Elf32_External_Rela *loc;
|
|
|
|
/* Create a dynamic IPLT relocation for this entry. */
|
|
rel.r_offset = (h->plt.offset
|
|
+ htab->splt->output_offset
|
|
+ htab->splt->output_section->vma);
|
|
if (h->dynindx != -1)
|
|
{
|
|
rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_IPLT);
|
|
rel.r_addend = 0;
|
|
}
|
|
else
|
|
{
|
|
/* This symbol has been marked to become local, and is
|
|
used by a plabel so must be kept in the .plt. */
|
|
rel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
|
|
rel.r_addend = value;
|
|
}
|
|
|
|
loc = (Elf32_External_Rela *) htab->srelplt->contents;
|
|
loc += htab->srelplt->reloc_count++;
|
|
bfd_elf32_swap_reloca_out (htab->splt->output_section->owner,
|
|
&rel, loc);
|
|
}
|
|
else
|
|
{
|
|
bfd_put_32 (htab->splt->owner,
|
|
value,
|
|
htab->splt->contents + h->plt.offset);
|
|
bfd_put_32 (htab->splt->owner,
|
|
elf_gp (htab->splt->output_section->owner),
|
|
htab->splt->contents + h->plt.offset + 4);
|
|
}
|
|
|
|
if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
|
|
{
|
|
/* Mark the symbol as undefined, rather than as defined in
|
|
the .plt section. Leave the value alone. */
|
|
sym->st_shndx = SHN_UNDEF;
|
|
}
|
|
}
|
|
|
|
if (h->got.offset != (bfd_vma) -1)
|
|
{
|
|
Elf_Internal_Rela rel;
|
|
Elf32_External_Rela *loc;
|
|
|
|
/* This symbol has an entry in the global offset table. Set it
|
|
up. */
|
|
|
|
rel.r_offset = ((h->got.offset &~ (bfd_vma) 1)
|
|
+ htab->sgot->output_offset
|
|
+ htab->sgot->output_section->vma);
|
|
|
|
/* If this is a -Bsymbolic link and the symbol is defined
|
|
locally or was forced to be local because of a version file,
|
|
we just want to emit a RELATIVE reloc. The entry in the
|
|
global offset table will already have been initialized in the
|
|
relocate_section function. */
|
|
if (info->shared
|
|
&& (info->symbolic || h->dynindx == -1)
|
|
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
|
|
{
|
|
rel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
|
|
rel.r_addend = (h->root.u.def.value
|
|
+ h->root.u.def.section->output_offset
|
|
+ h->root.u.def.section->output_section->vma);
|
|
}
|
|
else
|
|
{
|
|
if ((h->got.offset & 1) != 0)
|
|
abort ();
|
|
bfd_put_32 (output_bfd, (bfd_vma) 0,
|
|
htab->sgot->contents + h->got.offset);
|
|
rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_DIR32);
|
|
rel.r_addend = 0;
|
|
}
|
|
|
|
loc = (Elf32_External_Rela *) htab->srelgot->contents;
|
|
loc += htab->srelgot->reloc_count++;
|
|
bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
|
|
}
|
|
|
|
if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
|
|
{
|
|
asection *s;
|
|
Elf_Internal_Rela rel;
|
|
Elf32_External_Rela *loc;
|
|
|
|
/* This symbol needs a copy reloc. Set it up. */
|
|
|
|
if (! (h->dynindx != -1
|
|
&& (h->root.type == bfd_link_hash_defined
|
|
|| h->root.type == bfd_link_hash_defweak)))
|
|
abort ();
|
|
|
|
s = htab->srelbss;
|
|
|
|
rel.r_offset = (h->root.u.def.value
|
|
+ h->root.u.def.section->output_offset
|
|
+ h->root.u.def.section->output_section->vma);
|
|
rel.r_addend = 0;
|
|
rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_COPY);
|
|
loc = (Elf32_External_Rela *) s->contents + s->reloc_count++;
|
|
bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
|
|
}
|
|
|
|
/* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
|
|
if (h->root.root.string[0] == '_'
|
|
&& (strcmp (h->root.root.string, "_DYNAMIC") == 0
|
|
|| strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
|
|
{
|
|
sym->st_shndx = SHN_ABS;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Used to decide how to sort relocs in an optimal manner for the
|
|
dynamic linker, before writing them out. */
|
|
|
|
static enum elf_reloc_type_class
|
|
elf32_hppa_reloc_type_class (rela)
|
|
const Elf_Internal_Rela *rela;
|
|
{
|
|
if (ELF32_R_SYM (rela->r_info) == 0)
|
|
return reloc_class_relative;
|
|
|
|
switch ((int) ELF32_R_TYPE (rela->r_info))
|
|
{
|
|
case R_PARISC_IPLT:
|
|
return reloc_class_plt;
|
|
case R_PARISC_COPY:
|
|
return reloc_class_copy;
|
|
default:
|
|
return reloc_class_normal;
|
|
}
|
|
}
|
|
|
|
/* Finish up the dynamic sections. */
|
|
|
|
static boolean
|
|
elf32_hppa_finish_dynamic_sections (output_bfd, info)
|
|
bfd *output_bfd;
|
|
struct bfd_link_info *info;
|
|
{
|
|
bfd *dynobj;
|
|
struct elf32_hppa_link_hash_table *htab;
|
|
asection *sdyn;
|
|
|
|
htab = hppa_link_hash_table (info);
|
|
dynobj = htab->elf.dynobj;
|
|
|
|
sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
|
|
|
|
if (htab->elf.dynamic_sections_created)
|
|
{
|
|
Elf32_External_Dyn *dyncon, *dynconend;
|
|
|
|
if (sdyn == NULL)
|
|
abort ();
|
|
|
|
dyncon = (Elf32_External_Dyn *) sdyn->contents;
|
|
dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
|
|
for (; dyncon < dynconend; dyncon++)
|
|
{
|
|
Elf_Internal_Dyn dyn;
|
|
asection *s;
|
|
|
|
bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
|
|
|
|
switch (dyn.d_tag)
|
|
{
|
|
default:
|
|
continue;
|
|
|
|
case DT_PLTGOT:
|
|
/* Use PLTGOT to set the GOT register. */
|
|
dyn.d_un.d_ptr = elf_gp (output_bfd);
|
|
break;
|
|
|
|
case DT_JMPREL:
|
|
s = htab->srelplt;
|
|
dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
|
|
break;
|
|
|
|
case DT_PLTRELSZ:
|
|
s = htab->srelplt;
|
|
if (s->_cooked_size != 0)
|
|
dyn.d_un.d_val = s->_cooked_size;
|
|
else
|
|
dyn.d_un.d_val = s->_raw_size;
|
|
break;
|
|
|
|
case DT_RELASZ:
|
|
/* Don't count procedure linkage table relocs in the
|
|
overall reloc count. */
|
|
if (htab->srelplt != NULL)
|
|
{
|
|
s = htab->srelplt->output_section;
|
|
if (s->_cooked_size != 0)
|
|
dyn.d_un.d_val -= s->_cooked_size;
|
|
else
|
|
dyn.d_un.d_val -= s->_raw_size;
|
|
}
|
|
break;
|
|
}
|
|
|
|
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
|
|
}
|
|
}
|
|
|
|
if (htab->sgot != NULL && htab->sgot->_raw_size != 0)
|
|
{
|
|
/* Fill in the first entry in the global offset table.
|
|
We use it to point to our dynamic section, if we have one. */
|
|
bfd_put_32 (output_bfd,
|
|
(sdyn != NULL
|
|
? sdyn->output_section->vma + sdyn->output_offset
|
|
: (bfd_vma) 0),
|
|
htab->sgot->contents);
|
|
|
|
/* The second entry is reserved for use by the dynamic linker. */
|
|
memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
|
|
|
|
/* Set .got entry size. */
|
|
elf_section_data (htab->sgot->output_section)
|
|
->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
|
|
}
|
|
|
|
if (htab->splt != NULL && htab->splt->_raw_size != 0)
|
|
{
|
|
/* Set plt entry size. */
|
|
elf_section_data (htab->splt->output_section)
|
|
->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
|
|
|
|
if (htab->need_plt_stub)
|
|
{
|
|
/* Set up the .plt stub. */
|
|
memcpy (htab->splt->contents
|
|
+ htab->splt->_raw_size - sizeof (plt_stub),
|
|
plt_stub, sizeof (plt_stub));
|
|
|
|
if ((htab->splt->output_offset
|
|
+ htab->splt->output_section->vma
|
|
+ htab->splt->_raw_size)
|
|
!= (htab->sgot->output_offset
|
|
+ htab->sgot->output_section->vma))
|
|
{
|
|
(*_bfd_error_handler)
|
|
(_(".got section not immediately after .plt section"));
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Tweak the OSABI field of the elf header. */
|
|
|
|
static void
|
|
elf32_hppa_post_process_headers (abfd, link_info)
|
|
bfd *abfd;
|
|
struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
|
|
{
|
|
Elf_Internal_Ehdr * i_ehdrp;
|
|
|
|
i_ehdrp = elf_elfheader (abfd);
|
|
|
|
if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
|
|
{
|
|
i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
|
|
}
|
|
else
|
|
{
|
|
i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
|
|
}
|
|
}
|
|
|
|
/* Called when writing out an object file to decide the type of a
|
|
symbol. */
|
|
static int
|
|
elf32_hppa_elf_get_symbol_type (elf_sym, type)
|
|
Elf_Internal_Sym *elf_sym;
|
|
int type;
|
|
{
|
|
if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
|
|
return STT_PARISC_MILLI;
|
|
else
|
|
return type;
|
|
}
|
|
|
|
/* Misc BFD support code. */
|
|
#define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
|
|
#define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
|
|
#define elf_info_to_howto elf_hppa_info_to_howto
|
|
#define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
|
|
|
|
/* Stuff for the BFD linker. */
|
|
#define bfd_elf32_bfd_final_link elf32_hppa_final_link
|
|
#define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
|
|
#define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
|
|
#define elf_backend_add_symbol_hook elf32_hppa_add_symbol_hook
|
|
#define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
|
|
#define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
|
|
#define elf_backend_check_relocs elf32_hppa_check_relocs
|
|
#define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
|
|
#define elf_backend_fake_sections elf_hppa_fake_sections
|
|
#define elf_backend_relocate_section elf32_hppa_relocate_section
|
|
#define elf_backend_hide_symbol elf32_hppa_hide_symbol
|
|
#define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
|
|
#define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
|
|
#define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
|
|
#define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
|
|
#define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
|
|
#define elf_backend_object_p elf32_hppa_object_p
|
|
#define elf_backend_final_write_processing elf_hppa_final_write_processing
|
|
#define elf_backend_post_process_headers elf32_hppa_post_process_headers
|
|
#define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
|
|
#define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
|
|
|
|
#define elf_backend_can_gc_sections 1
|
|
#define elf_backend_can_refcount 1
|
|
#define elf_backend_plt_alignment 2
|
|
#define elf_backend_want_got_plt 0
|
|
#define elf_backend_plt_readonly 0
|
|
#define elf_backend_want_plt_sym 0
|
|
#define elf_backend_got_header_size 8
|
|
#define elf_backend_rela_normal 1
|
|
|
|
#define TARGET_BIG_SYM bfd_elf32_hppa_vec
|
|
#define TARGET_BIG_NAME "elf32-hppa"
|
|
#define ELF_ARCH bfd_arch_hppa
|
|
#define ELF_MACHINE_CODE EM_PARISC
|
|
#define ELF_MAXPAGESIZE 0x1000
|
|
|
|
#include "elf32-target.h"
|
|
|
|
#undef TARGET_BIG_SYM
|
|
#define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
|
|
#undef TARGET_BIG_NAME
|
|
#define TARGET_BIG_NAME "elf32-hppa-linux"
|
|
|
|
#define INCLUDED_TARGET_FILE 1
|
|
#include "elf32-target.h"
|