binutils-gdb/gdb/python/py-symtab.c
Andrew Burgess 3965bff5b9 gdb/python: add mechanism to manage Python initialization functions
Currently, when we add a new python sub-system to GDB,
e.g. py-inferior.c, we end up having to create a new function like
gdbpy_initialize_inferior, which then has to be called from the
function do_start_initialization in python.c.

In some cases (py-micmd.c and py-tui.c), we have two functions
gdbpy_initialize_*, and gdbpy_finalize_*, with the second being called
from finalize_python which is also in python.c.

This commit proposes a mechanism to manage these initialization and
finalization calls, this means that adding a new Python subsystem will
no longer require changes to python.c or python-internal.h, instead,
the initialization and finalization functions will be registered
directly from the sub-system file, e.g. py-inferior.c, or py-micmd.c.

The initialization and finalization functions are managed through a
new class gdbpy_initialize_file in python-internal.h.  This class
contains a single global vector of all the initialization and
finalization functions.

In each Python sub-system we create a new gdbpy_initialize_file
object, the object constructor takes care of registering the two
callback functions.

Now from python.c we can call static functions on the
gdbpy_initialize_file class which take care of walking the callback
list and invoking each callback in turn.

To slightly simplify the Python sub-system files I added a new macro
GDBPY_INITIALIZE_FILE, which hides the need to create an object.  We
can now just do this:

  GDBPY_INITIALIZE_FILE (gdbpy_initialize_registers);

One possible problem with this change is that there is now no
guaranteed ordering of how the various sub-systems are initialized (or
finalized).  To try and avoid dependencies creeping in I have added a
use of the environment variable GDB_REVERSE_INIT_FUNCTIONS, this is
the same environment variable used in the generated init.c file.

Just like with init.c, when this environment variable is set we
reverse the list of Python initialization (and finalization)
functions.  As there is already a test that starts GDB with the
environment variable set then this should offer some level of
protection against dependencies creeping in - though for full
protection I guess we'd need to run all gdb.python/*.exp tests with
the variable set.

I have tested this patch with the environment variable set, and saw no
regressions, so I think we are fine right now.

One other change of note was for gdbpy_initialize_gdb_readline, this
function previously returned void.  In order to make this function
have the correct signature I've updated its return type to int, and we
now return 0 to indicate success.

All of the other initialize (and finalize) functions have been made
static within their respective sub-system files.

There should be no user visible changes after this commit.
2023-05-05 18:24:42 +01:00

646 lines
17 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Python interface to symbol tables.
Copyright (C) 2008-2023 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "charset.h"
#include "symtab.h"
#include "source.h"
#include "python-internal.h"
#include "objfiles.h"
#include "block.h"
struct symtab_object {
PyObject_HEAD
/* The GDB Symbol table structure. */
struct symtab *symtab;
/* A symtab object is associated with an objfile, so keep track with
a doubly-linked list, rooted in the objfile. This allows
invalidation of the underlying struct symtab when the objfile is
deleted. */
symtab_object *prev;
symtab_object *next;
};
/* This function is called when an objfile is about to be freed.
Invalidate the symbol table as further actions on the symbol table
would result in bad data. All access to obj->symtab should be
gated by STPY_REQUIRE_VALID which will raise an exception on
invalid symbol tables. */
struct stpy_deleter
{
void operator() (symtab_object *obj)
{
while (obj)
{
symtab_object *next = obj->next;
obj->symtab = NULL;
obj->next = NULL;
obj->prev = NULL;
obj = next;
}
}
};
extern PyTypeObject symtab_object_type
CPYCHECKER_TYPE_OBJECT_FOR_TYPEDEF ("symtab_object");
static const registry<objfile>::key<symtab_object, stpy_deleter>
stpy_objfile_data_key;
/* Require a valid symbol table. All access to symtab_object->symtab
should be gated by this call. */
#define STPY_REQUIRE_VALID(symtab_obj, symtab) \
do { \
symtab = symtab_object_to_symtab (symtab_obj); \
if (symtab == NULL) \
{ \
PyErr_SetString (PyExc_RuntimeError, \
_("Symbol Table is invalid.")); \
return NULL; \
} \
} while (0)
struct sal_object {
PyObject_HEAD
/* The GDB Symbol table structure. */
PyObject *symtab;
/* The GDB Symbol table and line structure. */
struct symtab_and_line *sal;
/* A Symtab and line object is associated with an objfile, so keep
track with a doubly-linked list, rooted in the objfile. This
allows invalidation of the underlying struct symtab_and_line
when the objfile is deleted. */
sal_object *prev;
sal_object *next;
};
/* This is called when an objfile is about to be freed. Invalidate
the sal object as further actions on the sal would result in bad
data. All access to obj->sal should be gated by
SALPY_REQUIRE_VALID which will raise an exception on invalid symbol
table and line objects. */
struct salpy_deleter
{
void operator() (sal_object *obj)
{
gdbpy_enter enter_py;
while (obj)
{
sal_object *next = obj->next;
gdbpy_ref<> tmp (obj->symtab);
obj->symtab = Py_None;
Py_INCREF (Py_None);
obj->next = NULL;
obj->prev = NULL;
xfree (obj->sal);
obj->sal = NULL;
obj = next;
}
}
};
extern PyTypeObject sal_object_type
CPYCHECKER_TYPE_OBJECT_FOR_TYPEDEF ("sal_object");
static const registry<objfile>::key<sal_object, salpy_deleter>
salpy_objfile_data_key;
/* Require a valid symbol table and line object. All access to
sal_object->sal should be gated by this call. */
#define SALPY_REQUIRE_VALID(sal_obj, sal) \
do { \
sal = sal_object_to_symtab_and_line (sal_obj); \
if (sal == NULL) \
{ \
PyErr_SetString (PyExc_RuntimeError, \
_("Symbol Table and Line is invalid.")); \
return NULL; \
} \
} while (0)
static PyObject *
stpy_str (PyObject *self)
{
PyObject *result;
struct symtab *symtab = NULL;
STPY_REQUIRE_VALID (self, symtab);
result = PyUnicode_FromString (symtab_to_filename_for_display (symtab));
return result;
}
static PyObject *
stpy_get_filename (PyObject *self, void *closure)
{
PyObject *str_obj;
struct symtab *symtab = NULL;
const char *filename;
STPY_REQUIRE_VALID (self, symtab);
filename = symtab_to_filename_for_display (symtab);
str_obj = host_string_to_python_string (filename).release ();
return str_obj;
}
static PyObject *
stpy_get_objfile (PyObject *self, void *closure)
{
struct symtab *symtab = NULL;
STPY_REQUIRE_VALID (self, symtab);
return objfile_to_objfile_object (symtab->compunit ()->objfile ()).release ();
}
/* Getter function for symtab.producer. */
static PyObject *
stpy_get_producer (PyObject *self, void *closure)
{
struct symtab *symtab = NULL;
struct compunit_symtab *cust;
STPY_REQUIRE_VALID (self, symtab);
cust = symtab->compunit ();
if (cust->producer () != nullptr)
{
const char *producer = cust->producer ();
return host_string_to_python_string (producer).release ();
}
Py_RETURN_NONE;
}
static PyObject *
stpy_fullname (PyObject *self, PyObject *args)
{
const char *fullname;
struct symtab *symtab = NULL;
STPY_REQUIRE_VALID (self, symtab);
fullname = symtab_to_fullname (symtab);
return host_string_to_python_string (fullname).release ();
}
/* Implementation of gdb.Symtab.is_valid (self) -> Boolean.
Returns True if this Symbol table still exists in GDB. */
static PyObject *
stpy_is_valid (PyObject *self, PyObject *args)
{
struct symtab *symtab = NULL;
symtab = symtab_object_to_symtab (self);
if (symtab == NULL)
Py_RETURN_FALSE;
Py_RETURN_TRUE;
}
/* Return the GLOBAL_BLOCK of the underlying symtab. */
static PyObject *
stpy_global_block (PyObject *self, PyObject *args)
{
struct symtab *symtab = NULL;
const struct blockvector *blockvector;
STPY_REQUIRE_VALID (self, symtab);
blockvector = symtab->compunit ()->blockvector ();
const struct block *block = blockvector->global_block ();
return block_to_block_object (block, symtab->compunit ()->objfile ());
}
/* Return the STATIC_BLOCK of the underlying symtab. */
static PyObject *
stpy_static_block (PyObject *self, PyObject *args)
{
struct symtab *symtab = NULL;
const struct blockvector *blockvector;
STPY_REQUIRE_VALID (self, symtab);
blockvector = symtab->compunit ()->blockvector ();
const struct block *block = blockvector->static_block ();
return block_to_block_object (block, symtab->compunit ()->objfile ());
}
/* Implementation of gdb.Symtab.linetable (self) -> gdb.LineTable.
Returns a gdb.LineTable object corresponding to this symbol
table. */
static PyObject *
stpy_get_linetable (PyObject *self, PyObject *args)
{
struct symtab *symtab = NULL;
STPY_REQUIRE_VALID (self, symtab);
return symtab_to_linetable_object (self);
}
static PyObject *
salpy_str (PyObject *self)
{
const char *filename;
sal_object *sal_obj;
struct symtab_and_line *sal = NULL;
SALPY_REQUIRE_VALID (self, sal);
sal_obj = (sal_object *) self;
if (sal_obj->symtab == Py_None)
filename = "<unknown>";
else
{
symtab *symtab = symtab_object_to_symtab (sal_obj->symtab);
filename = symtab_to_filename_for_display (symtab);
}
return PyUnicode_FromFormat ("symbol and line for %s, line %d", filename,
sal->line);
}
static void
stpy_dealloc (PyObject *obj)
{
symtab_object *symtab = (symtab_object *) obj;
if (symtab->prev)
symtab->prev->next = symtab->next;
else if (symtab->symtab)
stpy_objfile_data_key.set (symtab->symtab->compunit ()->objfile (),
symtab->next);
if (symtab->next)
symtab->next->prev = symtab->prev;
symtab->symtab = NULL;
Py_TYPE (obj)->tp_free (obj);
}
static PyObject *
salpy_get_pc (PyObject *self, void *closure)
{
struct symtab_and_line *sal = NULL;
SALPY_REQUIRE_VALID (self, sal);
return gdb_py_object_from_ulongest (sal->pc).release ();
}
/* Implementation of the get method for the 'last' attribute of
gdb.Symtab_and_line. */
static PyObject *
salpy_get_last (PyObject *self, void *closure)
{
struct symtab_and_line *sal = NULL;
SALPY_REQUIRE_VALID (self, sal);
if (sal->end > 0)
return gdb_py_object_from_ulongest (sal->end - 1).release ();
else
Py_RETURN_NONE;
}
static PyObject *
salpy_get_line (PyObject *self, void *closure)
{
struct symtab_and_line *sal = NULL;
SALPY_REQUIRE_VALID (self, sal);
return gdb_py_object_from_longest (sal->line).release ();
}
static PyObject *
salpy_get_symtab (PyObject *self, void *closure)
{
struct symtab_and_line *sal;
sal_object *self_sal = (sal_object *) self;
SALPY_REQUIRE_VALID (self, sal);
Py_INCREF (self_sal->symtab);
return (PyObject *) self_sal->symtab;
}
/* Implementation of gdb.Symtab_and_line.is_valid (self) -> Boolean.
Returns True if this Symbol table and line object still exists GDB. */
static PyObject *
salpy_is_valid (PyObject *self, PyObject *args)
{
struct symtab_and_line *sal;
sal = sal_object_to_symtab_and_line (self);
if (sal == NULL)
Py_RETURN_FALSE;
Py_RETURN_TRUE;
}
static void
salpy_dealloc (PyObject *self)
{
sal_object *self_sal = (sal_object *) self;
if (self_sal->prev)
self_sal->prev->next = self_sal->next;
else if (self_sal->symtab != Py_None)
salpy_objfile_data_key.set
(symtab_object_to_symtab (self_sal->symtab)->compunit ()->objfile (),
self_sal->next);
if (self_sal->next)
self_sal->next->prev = self_sal->prev;
Py_DECREF (self_sal->symtab);
xfree (self_sal->sal);
Py_TYPE (self)->tp_free (self);
}
/* Given a sal, and a sal_object that has previously been allocated
and initialized, populate the sal_object with the struct sal data.
Also, register the sal_object life-cycle with the life-cycle of the
object file associated with this sal, if needed. If a failure
occurs during the sal population, this function will return -1. */
static int CPYCHECKER_NEGATIVE_RESULT_SETS_EXCEPTION
set_sal (sal_object *sal_obj, struct symtab_and_line sal)
{
PyObject *symtab_obj;
if (sal.symtab)
{
symtab_obj = symtab_to_symtab_object (sal.symtab);
/* If a symtab existed in the sal, but it cannot be duplicated,
we exit. */
if (symtab_obj == NULL)
return -1;
}
else
{
symtab_obj = Py_None;
Py_INCREF (Py_None);
}
sal_obj->sal = ((struct symtab_and_line *)
xmemdup (&sal, sizeof (struct symtab_and_line),
sizeof (struct symtab_and_line)));
sal_obj->symtab = symtab_obj;
sal_obj->prev = NULL;
/* If the SAL does not have a symtab, we do not add it to the
objfile cleanup observer linked list. */
if (sal_obj->symtab != Py_None)
{
symtab *symtab = symtab_object_to_symtab (sal_obj->symtab);
sal_obj->next
= salpy_objfile_data_key.get (symtab->compunit ()->objfile ());
if (sal_obj->next)
sal_obj->next->prev = sal_obj;
salpy_objfile_data_key.set (symtab->compunit ()->objfile (), sal_obj);
}
else
sal_obj->next = NULL;
return 0;
}
/* Given a symtab, and a symtab_object that has previously been
allocated and initialized, populate the symtab_object with the
struct symtab data. Also, register the symtab_object life-cycle
with the life-cycle of the object file associated with this
symtab, if needed. */
static void
set_symtab (symtab_object *obj, struct symtab *symtab)
{
obj->symtab = symtab;
obj->prev = NULL;
if (symtab)
{
obj->next = stpy_objfile_data_key.get (symtab->compunit ()->objfile ());
if (obj->next)
obj->next->prev = obj;
stpy_objfile_data_key.set (symtab->compunit ()->objfile (), obj);
}
else
obj->next = NULL;
}
/* Create a new symbol table (gdb.Symtab) object that encapsulates the
symtab structure from GDB. */
PyObject *
symtab_to_symtab_object (struct symtab *symtab)
{
symtab_object *symtab_obj;
symtab_obj = PyObject_New (symtab_object, &symtab_object_type);
if (symtab_obj)
set_symtab (symtab_obj, symtab);
return (PyObject *) symtab_obj;
}
/* Create a new symtab and line (gdb.Symtab_and_line) object
that encapsulates the symtab_and_line structure from GDB. */
PyObject *
symtab_and_line_to_sal_object (struct symtab_and_line sal)
{
gdbpy_ref<sal_object> sal_obj (PyObject_New (sal_object, &sal_object_type));
if (sal_obj != NULL)
{
if (set_sal (sal_obj.get (), sal) < 0)
return NULL;
}
return (PyObject *) sal_obj.release ();
}
/* Return struct symtab_and_line reference that is wrapped by this
object. */
struct symtab_and_line *
sal_object_to_symtab_and_line (PyObject *obj)
{
if (! PyObject_TypeCheck (obj, &sal_object_type))
return NULL;
return ((sal_object *) obj)->sal;
}
/* Return struct symtab reference that is wrapped by this object. */
struct symtab *
symtab_object_to_symtab (PyObject *obj)
{
if (! PyObject_TypeCheck (obj, &symtab_object_type))
return NULL;
return ((symtab_object *) obj)->symtab;
}
static int CPYCHECKER_NEGATIVE_RESULT_SETS_EXCEPTION
gdbpy_initialize_symtabs (void)
{
symtab_object_type.tp_new = PyType_GenericNew;
if (PyType_Ready (&symtab_object_type) < 0)
return -1;
sal_object_type.tp_new = PyType_GenericNew;
if (PyType_Ready (&sal_object_type) < 0)
return -1;
if (gdb_pymodule_addobject (gdb_module, "Symtab",
(PyObject *) &symtab_object_type) < 0)
return -1;
return gdb_pymodule_addobject (gdb_module, "Symtab_and_line",
(PyObject *) &sal_object_type);
}
GDBPY_INITIALIZE_FILE (gdbpy_initialize_symtabs);
static gdb_PyGetSetDef symtab_object_getset[] = {
{ "filename", stpy_get_filename, NULL,
"The symbol table's source filename.", NULL },
{ "objfile", stpy_get_objfile, NULL, "The symtab's objfile.",
NULL },
{ "producer", stpy_get_producer, NULL,
"The name/version of the program that compiled this symtab.", NULL },
{NULL} /* Sentinel */
};
static PyMethodDef symtab_object_methods[] = {
{ "is_valid", stpy_is_valid, METH_NOARGS,
"is_valid () -> Boolean.\n\
Return true if this symbol table is valid, false if not." },
{ "fullname", stpy_fullname, METH_NOARGS,
"fullname () -> String.\n\
Return the symtab's full source filename." },
{ "global_block", stpy_global_block, METH_NOARGS,
"global_block () -> gdb.Block.\n\
Return the global block of the symbol table." },
{ "static_block", stpy_static_block, METH_NOARGS,
"static_block () -> gdb.Block.\n\
Return the static block of the symbol table." },
{ "linetable", stpy_get_linetable, METH_NOARGS,
"linetable () -> gdb.LineTable.\n\
Return the LineTable associated with this symbol table" },
{NULL} /* Sentinel */
};
PyTypeObject symtab_object_type = {
PyVarObject_HEAD_INIT (NULL, 0)
"gdb.Symtab", /*tp_name*/
sizeof (symtab_object), /*tp_basicsize*/
0, /*tp_itemsize*/
stpy_dealloc, /*tp_dealloc*/
0, /*tp_print*/
0, /*tp_getattr*/
0, /*tp_setattr*/
0, /*tp_compare*/
0, /*tp_repr*/
0, /*tp_as_number*/
0, /*tp_as_sequence*/
0, /*tp_as_mapping*/
0, /*tp_hash */
0, /*tp_call*/
stpy_str, /*tp_str*/
0, /*tp_getattro*/
0, /*tp_setattro*/
0, /*tp_as_buffer*/
Py_TPFLAGS_DEFAULT, /*tp_flags*/
"GDB symtab object", /*tp_doc */
0, /*tp_traverse */
0, /*tp_clear */
0, /*tp_richcompare */
0, /*tp_weaklistoffset */
0, /*tp_iter */
0, /*tp_iternext */
symtab_object_methods, /*tp_methods */
0, /*tp_members */
symtab_object_getset /*tp_getset */
};
static gdb_PyGetSetDef sal_object_getset[] = {
{ "symtab", salpy_get_symtab, NULL, "Symtab object.", NULL },
{ "pc", salpy_get_pc, NULL, "Return the symtab_and_line's pc.", NULL },
{ "last", salpy_get_last, NULL,
"Return the symtab_and_line's last address.", NULL },
{ "line", salpy_get_line, NULL,
"Return the symtab_and_line's line.", NULL },
{NULL} /* Sentinel */
};
static PyMethodDef sal_object_methods[] = {
{ "is_valid", salpy_is_valid, METH_NOARGS,
"is_valid () -> Boolean.\n\
Return true if this symbol table and line is valid, false if not." },
{NULL} /* Sentinel */
};
PyTypeObject sal_object_type = {
PyVarObject_HEAD_INIT (NULL, 0)
"gdb.Symtab_and_line", /*tp_name*/
sizeof (sal_object), /*tp_basicsize*/
0, /*tp_itemsize*/
salpy_dealloc, /*tp_dealloc*/
0, /*tp_print*/
0, /*tp_getattr*/
0, /*tp_setattr*/
0, /*tp_compare*/
0, /*tp_repr*/
0, /*tp_as_number*/
0, /*tp_as_sequence*/
0, /*tp_as_mapping*/
0, /*tp_hash */
0, /*tp_call*/
salpy_str, /*tp_str*/
0, /*tp_getattro*/
0, /*tp_setattro*/
0, /*tp_as_buffer*/
Py_TPFLAGS_DEFAULT, /*tp_flags*/
"GDB symtab_and_line object", /*tp_doc */
0, /*tp_traverse */
0, /*tp_clear */
0, /*tp_richcompare */
0, /*tp_weaklistoffset */
0, /*tp_iter */
0, /*tp_iternext */
sal_object_methods, /*tp_methods */
0, /*tp_members */
sal_object_getset /*tp_getset */
};