mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-27 04:52:05 +08:00
96d2f608dc
indicating these functions are deprecated. (extract_typed_floating, store_typed_floating): Declare. * doublest.c: Include "gdbtypes.h". (extract_typed_floating, store_typed_floating): Define. * stabsread.c (define_symbol): Use store_typed_floating. * valarith.c (value_binop): Ditto. * values.c (unpack_long): Use extract_typed_floating. (unpack_double): Ditto.
691 lines
20 KiB
C
691 lines
20 KiB
C
/* Floating point routines for GDB, the GNU debugger.
|
||
Copyright 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
|
||
1997, 1998, 1999, 2000, 2001
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
/* Support for converting target fp numbers into host DOUBLEST format. */
|
||
|
||
/* XXX - This code should really be in libiberty/floatformat.c,
|
||
however configuration issues with libiberty made this very
|
||
difficult to do in the available time. */
|
||
|
||
#include "defs.h"
|
||
#include "doublest.h"
|
||
#include "floatformat.h"
|
||
#include "gdb_assert.h"
|
||
#include "gdb_string.h"
|
||
#include "gdbtypes.h"
|
||
#include <math.h> /* ldexp */
|
||
|
||
/* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
|
||
going to bother with trying to muck around with whether it is defined in
|
||
a system header, what we do if not, etc. */
|
||
#define FLOATFORMAT_CHAR_BIT 8
|
||
|
||
static unsigned long get_field (unsigned char *,
|
||
enum floatformat_byteorders,
|
||
unsigned int, unsigned int, unsigned int);
|
||
|
||
/* Extract a field which starts at START and is LEN bytes long. DATA and
|
||
TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
|
||
static unsigned long
|
||
get_field (unsigned char *data, enum floatformat_byteorders order,
|
||
unsigned int total_len, unsigned int start, unsigned int len)
|
||
{
|
||
unsigned long result;
|
||
unsigned int cur_byte;
|
||
int cur_bitshift;
|
||
|
||
/* Start at the least significant part of the field. */
|
||
if (order == floatformat_little || order == floatformat_littlebyte_bigword)
|
||
{
|
||
/* We start counting from the other end (i.e, from the high bytes
|
||
rather than the low bytes). As such, we need to be concerned
|
||
with what happens if bit 0 doesn't start on a byte boundary.
|
||
I.e, we need to properly handle the case where total_len is
|
||
not evenly divisible by 8. So we compute ``excess'' which
|
||
represents the number of bits from the end of our starting
|
||
byte needed to get to bit 0. */
|
||
int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
|
||
cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
|
||
- ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
|
||
cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
|
||
- FLOATFORMAT_CHAR_BIT;
|
||
}
|
||
else
|
||
{
|
||
cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
|
||
cur_bitshift =
|
||
((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
|
||
}
|
||
if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
|
||
result = *(data + cur_byte) >> (-cur_bitshift);
|
||
else
|
||
result = 0;
|
||
cur_bitshift += FLOATFORMAT_CHAR_BIT;
|
||
if (order == floatformat_little || order == floatformat_littlebyte_bigword)
|
||
++cur_byte;
|
||
else
|
||
--cur_byte;
|
||
|
||
/* Move towards the most significant part of the field. */
|
||
while (cur_bitshift < len)
|
||
{
|
||
result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
|
||
cur_bitshift += FLOATFORMAT_CHAR_BIT;
|
||
if (order == floatformat_little || order == floatformat_littlebyte_bigword)
|
||
++cur_byte;
|
||
else
|
||
--cur_byte;
|
||
}
|
||
if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
|
||
/* Mask out bits which are not part of the field */
|
||
result &= ((1UL << len) - 1);
|
||
return result;
|
||
}
|
||
|
||
/* Convert from FMT to a DOUBLEST.
|
||
FROM is the address of the extended float.
|
||
Store the DOUBLEST in *TO. */
|
||
|
||
static void
|
||
convert_floatformat_to_doublest (const struct floatformat *fmt,
|
||
const void *from,
|
||
DOUBLEST *to)
|
||
{
|
||
unsigned char *ufrom = (unsigned char *) from;
|
||
DOUBLEST dto;
|
||
long exponent;
|
||
unsigned long mant;
|
||
unsigned int mant_bits, mant_off;
|
||
int mant_bits_left;
|
||
int special_exponent; /* It's a NaN, denorm or zero */
|
||
|
||
/* If the mantissa bits are not contiguous from one end of the
|
||
mantissa to the other, we need to make a private copy of the
|
||
source bytes that is in the right order since the unpacking
|
||
algorithm assumes that the bits are contiguous.
|
||
|
||
Swap the bytes individually rather than accessing them through
|
||
"long *" since we have no guarantee that they start on a long
|
||
alignment, and also sizeof(long) for the host could be different
|
||
than sizeof(long) for the target. FIXME: Assumes sizeof(long)
|
||
for the target is 4. */
|
||
|
||
if (fmt->byteorder == floatformat_littlebyte_bigword)
|
||
{
|
||
static unsigned char *newfrom;
|
||
unsigned char *swapin, *swapout;
|
||
int longswaps;
|
||
|
||
longswaps = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
|
||
longswaps >>= 3;
|
||
|
||
if (newfrom == NULL)
|
||
{
|
||
newfrom = (unsigned char *) xmalloc (fmt->totalsize);
|
||
}
|
||
swapout = newfrom;
|
||
swapin = ufrom;
|
||
ufrom = newfrom;
|
||
while (longswaps-- > 0)
|
||
{
|
||
/* This is ugly, but efficient */
|
||
*swapout++ = swapin[4];
|
||
*swapout++ = swapin[5];
|
||
*swapout++ = swapin[6];
|
||
*swapout++ = swapin[7];
|
||
*swapout++ = swapin[0];
|
||
*swapout++ = swapin[1];
|
||
*swapout++ = swapin[2];
|
||
*swapout++ = swapin[3];
|
||
swapin += 8;
|
||
}
|
||
}
|
||
|
||
exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
|
||
fmt->exp_start, fmt->exp_len);
|
||
/* Note that if exponent indicates a NaN, we can't really do anything useful
|
||
(not knowing if the host has NaN's, or how to build one). So it will
|
||
end up as an infinity or something close; that is OK. */
|
||
|
||
mant_bits_left = fmt->man_len;
|
||
mant_off = fmt->man_start;
|
||
dto = 0.0;
|
||
|
||
special_exponent = exponent == 0 || exponent == fmt->exp_nan;
|
||
|
||
/* Don't bias NaNs. Use minimum exponent for denorms. For simplicity,
|
||
we don't check for zero as the exponent doesn't matter. */
|
||
if (!special_exponent)
|
||
exponent -= fmt->exp_bias;
|
||
else if (exponent == 0)
|
||
exponent = 1 - fmt->exp_bias;
|
||
|
||
/* Build the result algebraically. Might go infinite, underflow, etc;
|
||
who cares. */
|
||
|
||
/* If this format uses a hidden bit, explicitly add it in now. Otherwise,
|
||
increment the exponent by one to account for the integer bit. */
|
||
|
||
if (!special_exponent)
|
||
{
|
||
if (fmt->intbit == floatformat_intbit_no)
|
||
dto = ldexp (1.0, exponent);
|
||
else
|
||
exponent++;
|
||
}
|
||
|
||
while (mant_bits_left > 0)
|
||
{
|
||
mant_bits = min (mant_bits_left, 32);
|
||
|
||
mant = get_field (ufrom, fmt->byteorder, fmt->totalsize,
|
||
mant_off, mant_bits);
|
||
|
||
dto += ldexp ((double) mant, exponent - mant_bits);
|
||
exponent -= mant_bits;
|
||
mant_off += mant_bits;
|
||
mant_bits_left -= mant_bits;
|
||
}
|
||
|
||
/* Negate it if negative. */
|
||
if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
|
||
dto = -dto;
|
||
*to = dto;
|
||
}
|
||
|
||
static void put_field (unsigned char *, enum floatformat_byteorders,
|
||
unsigned int,
|
||
unsigned int, unsigned int, unsigned long);
|
||
|
||
/* Set a field which starts at START and is LEN bytes long. DATA and
|
||
TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
|
||
static void
|
||
put_field (unsigned char *data, enum floatformat_byteorders order,
|
||
unsigned int total_len, unsigned int start, unsigned int len,
|
||
unsigned long stuff_to_put)
|
||
{
|
||
unsigned int cur_byte;
|
||
int cur_bitshift;
|
||
|
||
/* Start at the least significant part of the field. */
|
||
if (order == floatformat_little || order == floatformat_littlebyte_bigword)
|
||
{
|
||
int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
|
||
cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
|
||
- ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
|
||
cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
|
||
- FLOATFORMAT_CHAR_BIT;
|
||
}
|
||
else
|
||
{
|
||
cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
|
||
cur_bitshift =
|
||
((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
|
||
}
|
||
if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
|
||
{
|
||
*(data + cur_byte) &=
|
||
~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
|
||
<< (-cur_bitshift));
|
||
*(data + cur_byte) |=
|
||
(stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
|
||
}
|
||
cur_bitshift += FLOATFORMAT_CHAR_BIT;
|
||
if (order == floatformat_little || order == floatformat_littlebyte_bigword)
|
||
++cur_byte;
|
||
else
|
||
--cur_byte;
|
||
|
||
/* Move towards the most significant part of the field. */
|
||
while (cur_bitshift < len)
|
||
{
|
||
if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
|
||
{
|
||
/* This is the last byte. */
|
||
*(data + cur_byte) &=
|
||
~((1 << (len - cur_bitshift)) - 1);
|
||
*(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
|
||
}
|
||
else
|
||
*(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
|
||
& ((1 << FLOATFORMAT_CHAR_BIT) - 1));
|
||
cur_bitshift += FLOATFORMAT_CHAR_BIT;
|
||
if (order == floatformat_little || order == floatformat_littlebyte_bigword)
|
||
++cur_byte;
|
||
else
|
||
--cur_byte;
|
||
}
|
||
}
|
||
|
||
#ifdef HAVE_LONG_DOUBLE
|
||
/* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR.
|
||
The range of the returned value is >= 0.5 and < 1.0. This is equivalent to
|
||
frexp, but operates on the long double data type. */
|
||
|
||
static long double ldfrexp (long double value, int *eptr);
|
||
|
||
static long double
|
||
ldfrexp (long double value, int *eptr)
|
||
{
|
||
long double tmp;
|
||
int exp;
|
||
|
||
/* Unfortunately, there are no portable functions for extracting the exponent
|
||
of a long double, so we have to do it iteratively by multiplying or dividing
|
||
by two until the fraction is between 0.5 and 1.0. */
|
||
|
||
if (value < 0.0l)
|
||
value = -value;
|
||
|
||
tmp = 1.0l;
|
||
exp = 0;
|
||
|
||
if (value >= tmp) /* Value >= 1.0 */
|
||
while (value >= tmp)
|
||
{
|
||
tmp *= 2.0l;
|
||
exp++;
|
||
}
|
||
else if (value != 0.0l) /* Value < 1.0 and > 0.0 */
|
||
{
|
||
while (value < tmp)
|
||
{
|
||
tmp /= 2.0l;
|
||
exp--;
|
||
}
|
||
tmp *= 2.0l;
|
||
exp++;
|
||
}
|
||
|
||
*eptr = exp;
|
||
return value / tmp;
|
||
}
|
||
#endif /* HAVE_LONG_DOUBLE */
|
||
|
||
|
||
/* The converse: convert the DOUBLEST *FROM to an extended float
|
||
and store where TO points. Neither FROM nor TO have any alignment
|
||
restrictions. */
|
||
|
||
static void
|
||
convert_doublest_to_floatformat (CONST struct floatformat *fmt,
|
||
const DOUBLEST *from,
|
||
void *to)
|
||
{
|
||
DOUBLEST dfrom;
|
||
int exponent;
|
||
DOUBLEST mant;
|
||
unsigned int mant_bits, mant_off;
|
||
int mant_bits_left;
|
||
unsigned char *uto = (unsigned char *) to;
|
||
|
||
memcpy (&dfrom, from, sizeof (dfrom));
|
||
memset (uto, 0, (fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1)
|
||
/ FLOATFORMAT_CHAR_BIT);
|
||
if (dfrom == 0)
|
||
return; /* Result is zero */
|
||
if (dfrom != dfrom) /* Result is NaN */
|
||
{
|
||
/* From is NaN */
|
||
put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
|
||
fmt->exp_len, fmt->exp_nan);
|
||
/* Be sure it's not infinity, but NaN value is irrel */
|
||
put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
|
||
32, 1);
|
||
return;
|
||
}
|
||
|
||
/* If negative, set the sign bit. */
|
||
if (dfrom < 0)
|
||
{
|
||
put_field (uto, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1, 1);
|
||
dfrom = -dfrom;
|
||
}
|
||
|
||
if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity */
|
||
{
|
||
/* Infinity exponent is same as NaN's. */
|
||
put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
|
||
fmt->exp_len, fmt->exp_nan);
|
||
/* Infinity mantissa is all zeroes. */
|
||
put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
|
||
fmt->man_len, 0);
|
||
return;
|
||
}
|
||
|
||
#ifdef HAVE_LONG_DOUBLE
|
||
mant = ldfrexp (dfrom, &exponent);
|
||
#else
|
||
mant = frexp (dfrom, &exponent);
|
||
#endif
|
||
|
||
put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, fmt->exp_len,
|
||
exponent + fmt->exp_bias - 1);
|
||
|
||
mant_bits_left = fmt->man_len;
|
||
mant_off = fmt->man_start;
|
||
while (mant_bits_left > 0)
|
||
{
|
||
unsigned long mant_long;
|
||
mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
|
||
|
||
mant *= 4294967296.0;
|
||
mant_long = ((unsigned long) mant) & 0xffffffffL;
|
||
mant -= mant_long;
|
||
|
||
/* If the integer bit is implicit, then we need to discard it.
|
||
If we are discarding a zero, we should be (but are not) creating
|
||
a denormalized number which means adjusting the exponent
|
||
(I think). */
|
||
if (mant_bits_left == fmt->man_len
|
||
&& fmt->intbit == floatformat_intbit_no)
|
||
{
|
||
mant_long <<= 1;
|
||
mant_long &= 0xffffffffL;
|
||
mant_bits -= 1;
|
||
}
|
||
|
||
if (mant_bits < 32)
|
||
{
|
||
/* The bits we want are in the most significant MANT_BITS bits of
|
||
mant_long. Move them to the least significant. */
|
||
mant_long >>= 32 - mant_bits;
|
||
}
|
||
|
||
put_field (uto, fmt->byteorder, fmt->totalsize,
|
||
mant_off, mant_bits, mant_long);
|
||
mant_off += mant_bits;
|
||
mant_bits_left -= mant_bits;
|
||
}
|
||
if (fmt->byteorder == floatformat_littlebyte_bigword)
|
||
{
|
||
int count;
|
||
unsigned char *swaplow = uto;
|
||
unsigned char *swaphigh = uto + 4;
|
||
unsigned char tmp;
|
||
|
||
for (count = 0; count < 4; count++)
|
||
{
|
||
tmp = *swaplow;
|
||
*swaplow++ = *swaphigh;
|
||
*swaphigh++ = tmp;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Check if VAL (which is assumed to be a floating point number whose
|
||
format is described by FMT) is negative. */
|
||
|
||
int
|
||
floatformat_is_negative (const struct floatformat *fmt, char *val)
|
||
{
|
||
unsigned char *uval = (unsigned char *) val;
|
||
|
||
return get_field (uval, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1);
|
||
}
|
||
|
||
/* Check if VAL is "not a number" (NaN) for FMT. */
|
||
|
||
int
|
||
floatformat_is_nan (const struct floatformat *fmt, char *val)
|
||
{
|
||
unsigned char *uval = (unsigned char *) val;
|
||
long exponent;
|
||
unsigned long mant;
|
||
unsigned int mant_bits, mant_off;
|
||
int mant_bits_left;
|
||
|
||
if (! fmt->exp_nan)
|
||
return 0;
|
||
|
||
exponent = get_field (uval, fmt->byteorder, fmt->totalsize,
|
||
fmt->exp_start, fmt->exp_len);
|
||
|
||
if (exponent != fmt->exp_nan)
|
||
return 0;
|
||
|
||
mant_bits_left = fmt->man_len;
|
||
mant_off = fmt->man_start;
|
||
|
||
while (mant_bits_left > 0)
|
||
{
|
||
mant_bits = min (mant_bits_left, 32);
|
||
|
||
mant = get_field (uval, fmt->byteorder, fmt->totalsize,
|
||
mant_off, mant_bits);
|
||
|
||
/* If there is an explicit integer bit, mask it off. */
|
||
if (mant_off == fmt->man_start
|
||
&& fmt->intbit == floatformat_intbit_yes)
|
||
mant &= ~(1 << (mant_bits - 1));
|
||
|
||
if (mant)
|
||
return 1;
|
||
|
||
mant_off += mant_bits;
|
||
mant_bits_left -= mant_bits;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Convert the mantissa of VAL (which is assumed to be a floating
|
||
point number whose format is described by FMT) into a hexadecimal
|
||
and store it in a static string. Return a pointer to that string. */
|
||
|
||
char *
|
||
floatformat_mantissa (const struct floatformat *fmt, char *val)
|
||
{
|
||
unsigned char *uval = (unsigned char *) val;
|
||
unsigned long mant;
|
||
unsigned int mant_bits, mant_off;
|
||
int mant_bits_left;
|
||
static char res[50];
|
||
char buf[9];
|
||
|
||
/* Make sure we have enough room to store the mantissa. */
|
||
gdb_assert (sizeof res > ((fmt->man_len + 7) / 8) * 2);
|
||
|
||
mant_off = fmt->man_start;
|
||
mant_bits_left = fmt->man_len;
|
||
mant_bits = (mant_bits_left % 32) > 0 ? mant_bits_left % 32 : 32;
|
||
|
||
mant = get_field (uval, fmt->byteorder, fmt->totalsize,
|
||
mant_off, mant_bits);
|
||
|
||
sprintf (res, "%lx", mant);
|
||
|
||
mant_off += mant_bits;
|
||
mant_bits_left -= mant_bits;
|
||
|
||
while (mant_bits_left > 0)
|
||
{
|
||
mant = get_field (uval, fmt->byteorder, fmt->totalsize,
|
||
mant_off, 32);
|
||
|
||
sprintf (buf, "%08lx", mant);
|
||
strcat (res, buf);
|
||
|
||
mant_off += 32;
|
||
mant_bits_left -= 32;
|
||
}
|
||
|
||
return res;
|
||
}
|
||
|
||
|
||
|
||
/* Convert TO/FROM target to the hosts DOUBLEST floating-point format.
|
||
|
||
If the host and target formats agree, we just copy the raw data
|
||
into the appropriate type of variable and return, letting the host
|
||
increase precision as necessary. Otherwise, we call the conversion
|
||
routine and let it do the dirty work. */
|
||
|
||
#ifndef HOST_FLOAT_FORMAT
|
||
#define HOST_FLOAT_FORMAT 0
|
||
#endif
|
||
#ifndef HOST_DOUBLE_FORMAT
|
||
#define HOST_DOUBLE_FORMAT 0
|
||
#endif
|
||
#ifndef HOST_LONG_DOUBLE_FORMAT
|
||
#define HOST_LONG_DOUBLE_FORMAT 0
|
||
#endif
|
||
|
||
static const struct floatformat *host_float_format = HOST_FLOAT_FORMAT;
|
||
static const struct floatformat *host_double_format = HOST_DOUBLE_FORMAT;
|
||
static const struct floatformat *host_long_double_format = HOST_LONG_DOUBLE_FORMAT;
|
||
|
||
void
|
||
floatformat_to_doublest (const struct floatformat *fmt,
|
||
const void *in, DOUBLEST *out)
|
||
{
|
||
gdb_assert (fmt != NULL);
|
||
if (fmt == host_float_format)
|
||
{
|
||
float val;
|
||
memcpy (&val, in, sizeof (val));
|
||
*out = val;
|
||
}
|
||
else if (fmt == host_double_format)
|
||
{
|
||
double val;
|
||
memcpy (&val, in, sizeof (val));
|
||
*out = val;
|
||
}
|
||
else if (fmt == host_long_double_format)
|
||
{
|
||
long double val;
|
||
memcpy (&val, in, sizeof (val));
|
||
*out = val;
|
||
}
|
||
else
|
||
convert_floatformat_to_doublest (fmt, in, out);
|
||
}
|
||
|
||
void
|
||
floatformat_from_doublest (const struct floatformat *fmt,
|
||
const DOUBLEST *in, void *out)
|
||
{
|
||
gdb_assert (fmt != NULL);
|
||
if (fmt == host_float_format)
|
||
{
|
||
float val = *in;
|
||
memcpy (out, &val, sizeof (val));
|
||
}
|
||
else if (fmt == host_double_format)
|
||
{
|
||
double val = *in;
|
||
memcpy (out, &val, sizeof (val));
|
||
}
|
||
else if (fmt == host_long_double_format)
|
||
{
|
||
long double val = *in;
|
||
memcpy (out, &val, sizeof (val));
|
||
}
|
||
else
|
||
convert_doublest_to_floatformat (fmt, in, out);
|
||
}
|
||
|
||
|
||
/* Extract/store a target floating-point number from byte-stream at
|
||
ADDR to/from a DOUBLEST. The LEN is used to select between the
|
||
pre-defined target type FLOAT, DOUBLE or LONG_DOUBLE. These
|
||
functions are used when extract/store typed floating() find that
|
||
the ``struct type'' did not include a FLOATFORMAT (e.g. some symbol
|
||
table readers and XXX-language support modules). */
|
||
|
||
DOUBLEST
|
||
extract_floating (const void *addr, int len)
|
||
{
|
||
DOUBLEST dretval;
|
||
if (len * TARGET_CHAR_BIT == TARGET_FLOAT_BIT)
|
||
{
|
||
floatformat_to_doublest (TARGET_FLOAT_FORMAT, addr, &dretval);
|
||
}
|
||
else if (len * TARGET_CHAR_BIT == TARGET_DOUBLE_BIT)
|
||
{
|
||
floatformat_to_doublest (TARGET_DOUBLE_FORMAT, addr, &dretval);
|
||
}
|
||
else if (len * TARGET_CHAR_BIT == TARGET_LONG_DOUBLE_BIT)
|
||
{
|
||
floatformat_to_doublest (TARGET_LONG_DOUBLE_FORMAT, addr, &dretval);
|
||
}
|
||
else
|
||
{
|
||
error ("Can't deal with a floating point number of %d bytes.", len);
|
||
}
|
||
return dretval;
|
||
}
|
||
|
||
void
|
||
store_floating (void *addr, int len, DOUBLEST val)
|
||
{
|
||
if (len * TARGET_CHAR_BIT == TARGET_FLOAT_BIT)
|
||
{
|
||
floatformat_from_doublest (TARGET_FLOAT_FORMAT, &val, addr);
|
||
}
|
||
else if (len * TARGET_CHAR_BIT == TARGET_DOUBLE_BIT)
|
||
{
|
||
floatformat_from_doublest (TARGET_DOUBLE_FORMAT, &val, addr);
|
||
}
|
||
else if (len * TARGET_CHAR_BIT == TARGET_LONG_DOUBLE_BIT)
|
||
{
|
||
floatformat_from_doublest (TARGET_LONG_DOUBLE_FORMAT, &val, addr);
|
||
}
|
||
else
|
||
{
|
||
error ("Can't deal with a floating point number of %d bytes.", len);
|
||
}
|
||
}
|
||
|
||
/* Extract/store a floating-point number of format TYPE from a
|
||
target-ordered byte-stream at ADDR to/from an internal DOUBLEST
|
||
accroding to its TYPE_FORMAT(). When GDB reads in debug
|
||
information, it is sometimes only provided with the type name, its
|
||
length and the fact that it is a float (TYPE_FORMAT() is not set).
|
||
For such types, the old extract/store floating() functions are
|
||
used. */
|
||
|
||
DOUBLEST
|
||
extract_typed_floating (const void *addr, const struct type *type)
|
||
{
|
||
DOUBLEST retval;
|
||
gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
|
||
if (TYPE_FLOATFORMAT (type) == NULL)
|
||
retval = extract_floating (addr, TYPE_LENGTH (type));
|
||
else
|
||
floatformat_to_doublest (TYPE_FLOATFORMAT (type), addr, &retval);
|
||
return retval;
|
||
}
|
||
|
||
void
|
||
store_typed_floating (void *addr, const struct type *type, DOUBLEST val)
|
||
{
|
||
gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
|
||
memset (addr, 0, TYPE_LENGTH (type));
|
||
if (TYPE_FLOATFORMAT (type) == NULL)
|
||
store_floating (addr, TYPE_LENGTH (type), val);
|
||
else
|
||
floatformat_from_doublest (TYPE_FLOATFORMAT (type), &val, addr);
|
||
}
|