mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-21 04:42:53 +08:00
b474382262
* mcore-tdep.c (mcore_gdbarch_init): Use generic_unwind_get_saved_register instead of generic_get_saved_register. * v850-tdep.c (v850_gdbarch_init): Ditto. * frv-tdep.c (frv_gdbarch_init): Ditto. * mn10300-tdep.c (mn10300_gdbarch_init): Ditto. * s390-tdep.c (s390_gdbarch_init): Ditto. * d10v-tdep.c (d10v_gdbarch_init): Ditto. * config/mn10200/tm-mn10200.h (GET_SAVED_REGISTER): Ditto. * config/h8300/tm-h8300.h (GET_SAVED_REGISTER): Ditto.
1887 lines
56 KiB
C
1887 lines
56 KiB
C
/* Target-dependent code for GDB, the GNU debugger.
|
|
|
|
Copyright 2001, 2002 Free Software Foundation, Inc.
|
|
|
|
Contributed by D.J. Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
|
|
for IBM Deutschland Entwicklung GmbH, IBM Corporation.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
|
|
02111-1307, USA. */
|
|
|
|
#define S390_TDEP /* for special macros in tm-s390.h */
|
|
#include <defs.h>
|
|
#include "arch-utils.h"
|
|
#include "frame.h"
|
|
#include "inferior.h"
|
|
#include "symtab.h"
|
|
#include "target.h"
|
|
#include "gdbcore.h"
|
|
#include "gdbcmd.h"
|
|
#include "symfile.h"
|
|
#include "objfiles.h"
|
|
#include "tm.h"
|
|
#include "../bfd/bfd.h"
|
|
#include "floatformat.h"
|
|
#include "regcache.h"
|
|
#include "value.h"
|
|
#include "gdb_assert.h"
|
|
|
|
|
|
|
|
|
|
/* Number of bytes of storage in the actual machine representation
|
|
for register N. */
|
|
int
|
|
s390_register_raw_size (int reg_nr)
|
|
{
|
|
if (S390_FP0_REGNUM <= reg_nr
|
|
&& reg_nr < S390_FP0_REGNUM + S390_NUM_FPRS)
|
|
return S390_FPR_SIZE;
|
|
else
|
|
return 4;
|
|
}
|
|
|
|
int
|
|
s390x_register_raw_size (int reg_nr)
|
|
{
|
|
return (reg_nr == S390_FPC_REGNUM)
|
|
|| (reg_nr >= S390_FIRST_ACR && reg_nr <= S390_LAST_ACR) ? 4 : 8;
|
|
}
|
|
|
|
int
|
|
s390_cannot_fetch_register (int regno)
|
|
{
|
|
return (regno >= S390_FIRST_CR && regno < (S390_FIRST_CR + 9)) ||
|
|
(regno >= (S390_FIRST_CR + 12) && regno <= S390_LAST_CR);
|
|
}
|
|
|
|
int
|
|
s390_register_byte (int reg_nr)
|
|
{
|
|
if (reg_nr <= S390_GP_LAST_REGNUM)
|
|
return reg_nr * S390_GPR_SIZE;
|
|
if (reg_nr <= S390_LAST_ACR)
|
|
return S390_ACR0_OFFSET + (((reg_nr) - S390_FIRST_ACR) * S390_ACR_SIZE);
|
|
if (reg_nr <= S390_LAST_CR)
|
|
return S390_CR0_OFFSET + (((reg_nr) - S390_FIRST_CR) * S390_CR_SIZE);
|
|
if (reg_nr == S390_FPC_REGNUM)
|
|
return S390_FPC_OFFSET;
|
|
else
|
|
return S390_FP0_OFFSET + (((reg_nr) - S390_FP0_REGNUM) * S390_FPR_SIZE);
|
|
}
|
|
|
|
#ifndef GDBSERVER
|
|
#define S390_MAX_INSTR_SIZE (6)
|
|
#define S390_SYSCALL_OPCODE (0x0a)
|
|
#define S390_SYSCALL_SIZE (2)
|
|
#define S390_SIGCONTEXT_SREGS_OFFSET (8)
|
|
#define S390X_SIGCONTEXT_SREGS_OFFSET (8)
|
|
#define S390_SIGREGS_FP0_OFFSET (144)
|
|
#define S390X_SIGREGS_FP0_OFFSET (216)
|
|
#define S390_UC_MCONTEXT_OFFSET (256)
|
|
#define S390X_UC_MCONTEXT_OFFSET (344)
|
|
#define S390_STACK_FRAME_OVERHEAD (GDB_TARGET_IS_ESAME ? 160:96)
|
|
#define S390_SIGNAL_FRAMESIZE (GDB_TARGET_IS_ESAME ? 160:96)
|
|
#define s390_NR_sigreturn 119
|
|
#define s390_NR_rt_sigreturn 173
|
|
|
|
|
|
|
|
struct frame_extra_info
|
|
{
|
|
int initialised;
|
|
int good_prologue;
|
|
CORE_ADDR function_start;
|
|
CORE_ADDR skip_prologue_function_start;
|
|
CORE_ADDR saved_pc_valid;
|
|
CORE_ADDR saved_pc;
|
|
CORE_ADDR sig_fixed_saved_pc_valid;
|
|
CORE_ADDR sig_fixed_saved_pc;
|
|
CORE_ADDR frame_pointer_saved_pc; /* frame pointer needed for alloca */
|
|
CORE_ADDR stack_bought; /* amount we decrement the stack pointer by */
|
|
CORE_ADDR sigcontext;
|
|
};
|
|
|
|
|
|
static CORE_ADDR s390_frame_saved_pc_nofix (struct frame_info *fi);
|
|
|
|
int
|
|
s390_readinstruction (bfd_byte instr[], CORE_ADDR at,
|
|
struct disassemble_info *info)
|
|
{
|
|
int instrlen;
|
|
|
|
static int s390_instrlen[] = {
|
|
2,
|
|
4,
|
|
4,
|
|
6
|
|
};
|
|
if ((*info->read_memory_func) (at, &instr[0], 2, info))
|
|
return -1;
|
|
instrlen = s390_instrlen[instr[0] >> 6];
|
|
if (instrlen > 2)
|
|
{
|
|
if ((*info->read_memory_func) (at + 2, &instr[2], instrlen - 2, info))
|
|
return -1;
|
|
}
|
|
return instrlen;
|
|
}
|
|
|
|
static void
|
|
s390_memset_extra_info (struct frame_extra_info *fextra_info)
|
|
{
|
|
memset (fextra_info, 0, sizeof (struct frame_extra_info));
|
|
}
|
|
|
|
|
|
|
|
const char *
|
|
s390_register_name (int reg_nr)
|
|
{
|
|
static char *register_names[] = {
|
|
"pswm", "pswa",
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
|
"acr0", "acr1", "acr2", "acr3", "acr4", "acr5", "acr6", "acr7",
|
|
"acr8", "acr9", "acr10", "acr11", "acr12", "acr13", "acr14", "acr15",
|
|
"cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
|
|
"cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14", "cr15",
|
|
"fpc",
|
|
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
|
|
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15"
|
|
};
|
|
|
|
if (reg_nr <= S390_LAST_REGNUM)
|
|
return register_names[reg_nr];
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
|
|
|
|
|
|
int
|
|
s390_stab_reg_to_regnum (int regno)
|
|
{
|
|
return regno >= 64 ? S390_PSWM_REGNUM - 64 :
|
|
regno >= 48 ? S390_FIRST_ACR - 48 :
|
|
regno >= 32 ? S390_FIRST_CR - 32 :
|
|
regno <= 15 ? (regno + 2) :
|
|
S390_FP0_REGNUM + ((regno - 16) & 8) + (((regno - 16) & 3) << 1) +
|
|
(((regno - 16) & 4) >> 2);
|
|
}
|
|
|
|
|
|
/* Return true if REGIDX is the number of a register used to pass
|
|
arguments, false otherwise. */
|
|
static int
|
|
is_arg_reg (int regidx)
|
|
{
|
|
return 2 <= regidx && regidx <= 6;
|
|
}
|
|
|
|
|
|
/* s390_get_frame_info based on Hartmuts
|
|
prologue definition in
|
|
gcc-2.8.1/config/l390/linux.c
|
|
|
|
It reads one instruction at a time & based on whether
|
|
it looks like prologue code or not it makes a decision on
|
|
whether the prologue is over, there are various state machines
|
|
in the code to determine if the prologue code is possilby valid.
|
|
|
|
This is done to hopefully allow the code survive minor revs of
|
|
calling conventions.
|
|
|
|
*/
|
|
|
|
int
|
|
s390_get_frame_info (CORE_ADDR pc, struct frame_extra_info *fextra_info,
|
|
struct frame_info *fi, int init_extra_info)
|
|
{
|
|
#define CONST_POOL_REGIDX 13
|
|
#define GOT_REGIDX 12
|
|
bfd_byte instr[S390_MAX_INSTR_SIZE];
|
|
CORE_ADDR test_pc = pc, test_pc2;
|
|
CORE_ADDR orig_sp = 0, save_reg_addr = 0, *saved_regs = NULL;
|
|
int valid_prologue, good_prologue = 0;
|
|
int gprs_saved[S390_NUM_GPRS];
|
|
int fprs_saved[S390_NUM_FPRS];
|
|
int regidx, instrlen;
|
|
int const_pool_state;
|
|
int varargs_state;
|
|
int loop_cnt, gdb_gpr_store, gdb_fpr_store;
|
|
int offset, expected_offset;
|
|
int err = 0;
|
|
disassemble_info info;
|
|
|
|
/* Have we seen an instruction initializing the frame pointer yet?
|
|
If we've seen an `lr %r11, %r15', then frame_pointer_found is
|
|
non-zero, and frame_pointer_regidx == 11. Otherwise,
|
|
frame_pointer_found is zero and frame_pointer_regidx is 15,
|
|
indicating that we're using the stack pointer as our frame
|
|
pointer. */
|
|
int frame_pointer_found = 0;
|
|
int frame_pointer_regidx = 0xf;
|
|
|
|
/* What we've seen so far regarding saving the back chain link:
|
|
0 -- nothing yet; sp still has the same value it had at the entry
|
|
point. Since not all functions allocate frames, this is a
|
|
valid state for the prologue to finish in.
|
|
1 -- We've saved the original sp in some register other than the
|
|
frame pointer (hard-coded to be %r11, yuck).
|
|
save_link_regidx is the register we saved it in.
|
|
2 -- We've seen the initial `bras' instruction of the sequence for
|
|
reserving more than 32k of stack:
|
|
bras %rX, .+8
|
|
.long N
|
|
s %r15, 0(%rX)
|
|
where %rX is not the constant pool register.
|
|
subtract_sp_regidx is %rX, and fextra_info->stack_bought is N.
|
|
3 -- We've reserved space for a new stack frame. This means we
|
|
either saw a simple `ahi %r15,-N' in state 1, or the final
|
|
`s %r15, ...' in state 2.
|
|
4 -- The frame and link are now fully initialized. We've
|
|
reserved space for the new stack frame, and stored the old
|
|
stack pointer captured in the back chain pointer field. */
|
|
int save_link_state = 0;
|
|
int save_link_regidx, subtract_sp_regidx;
|
|
|
|
/* What we've seen so far regarding r12 --- the GOT (Global Offset
|
|
Table) pointer. We expect to see `l %r12, N(%r13)', which loads
|
|
r12 with the offset from the constant pool to the GOT, and then
|
|
an `ar %r12, %r13', which adds the constant pool address,
|
|
yielding the GOT's address. Here's what got_state means:
|
|
0 -- seen nothing
|
|
1 -- seen `l %r12, N(%r13)', but no `ar'
|
|
2 -- seen load and add, so GOT pointer is totally initialized
|
|
When got_state is 1, then got_load_addr is the address of the
|
|
load instruction, and got_load_len is the length of that
|
|
instruction. */
|
|
int got_state= 0;
|
|
CORE_ADDR got_load_addr = 0, got_load_len = 0;
|
|
|
|
const_pool_state = varargs_state = 0;
|
|
|
|
memset (gprs_saved, 0, sizeof (gprs_saved));
|
|
memset (fprs_saved, 0, sizeof (fprs_saved));
|
|
info.read_memory_func = dis_asm_read_memory;
|
|
|
|
save_link_regidx = subtract_sp_regidx = 0;
|
|
if (fextra_info)
|
|
{
|
|
if (fi && fi->frame)
|
|
{
|
|
orig_sp = fi->frame;
|
|
if (! init_extra_info && fextra_info->initialised)
|
|
orig_sp += fextra_info->stack_bought;
|
|
saved_regs = fi->saved_regs;
|
|
}
|
|
if (init_extra_info || !fextra_info->initialised)
|
|
{
|
|
s390_memset_extra_info (fextra_info);
|
|
fextra_info->function_start = pc;
|
|
fextra_info->initialised = 1;
|
|
}
|
|
}
|
|
instrlen = 0;
|
|
do
|
|
{
|
|
valid_prologue = 0;
|
|
test_pc += instrlen;
|
|
/* add the previous instruction len */
|
|
instrlen = s390_readinstruction (instr, test_pc, &info);
|
|
if (instrlen < 0)
|
|
{
|
|
good_prologue = 0;
|
|
err = -1;
|
|
break;
|
|
}
|
|
/* We probably are in a glibc syscall */
|
|
if (instr[0] == S390_SYSCALL_OPCODE && test_pc == pc)
|
|
{
|
|
good_prologue = 1;
|
|
if (saved_regs && fextra_info && fi->next && fi->next->extra_info
|
|
&& fi->next->extra_info->sigcontext)
|
|
{
|
|
/* We are backtracing from a signal handler */
|
|
save_reg_addr = fi->next->extra_info->sigcontext +
|
|
REGISTER_BYTE (S390_GP0_REGNUM);
|
|
for (regidx = 0; regidx < S390_NUM_GPRS; regidx++)
|
|
{
|
|
saved_regs[S390_GP0_REGNUM + regidx] = save_reg_addr;
|
|
save_reg_addr += S390_GPR_SIZE;
|
|
}
|
|
save_reg_addr = fi->next->extra_info->sigcontext +
|
|
(GDB_TARGET_IS_ESAME ? S390X_SIGREGS_FP0_OFFSET :
|
|
S390_SIGREGS_FP0_OFFSET);
|
|
for (regidx = 0; regidx < S390_NUM_FPRS; regidx++)
|
|
{
|
|
saved_regs[S390_FP0_REGNUM + regidx] = save_reg_addr;
|
|
save_reg_addr += S390_FPR_SIZE;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
if (save_link_state == 0)
|
|
{
|
|
/* check for a stack relative STMG or STM */
|
|
if (((GDB_TARGET_IS_ESAME &&
|
|
((instr[0] == 0xeb) && (instr[5] == 0x24))) ||
|
|
(instr[0] == 0x90)) && ((instr[2] >> 4) == 0xf))
|
|
{
|
|
regidx = (instr[1] >> 4);
|
|
if (regidx < 6)
|
|
varargs_state = 1;
|
|
offset = ((instr[2] & 0xf) << 8) + instr[3];
|
|
expected_offset =
|
|
S390_GPR6_STACK_OFFSET + (S390_GPR_SIZE * (regidx - 6));
|
|
if (offset != expected_offset)
|
|
{
|
|
good_prologue = 0;
|
|
break;
|
|
}
|
|
if (saved_regs)
|
|
save_reg_addr = orig_sp + offset;
|
|
for (; regidx <= (instr[1] & 0xf); regidx++)
|
|
{
|
|
if (gprs_saved[regidx])
|
|
{
|
|
good_prologue = 0;
|
|
break;
|
|
}
|
|
good_prologue = 1;
|
|
gprs_saved[regidx] = 1;
|
|
if (saved_regs)
|
|
{
|
|
saved_regs[S390_GP0_REGNUM + regidx] = save_reg_addr;
|
|
save_reg_addr += S390_GPR_SIZE;
|
|
}
|
|
}
|
|
valid_prologue = 1;
|
|
continue;
|
|
}
|
|
}
|
|
/* check for a stack relative STG or ST */
|
|
if ((save_link_state == 0 || save_link_state == 3) &&
|
|
((GDB_TARGET_IS_ESAME &&
|
|
((instr[0] == 0xe3) && (instr[5] == 0x24))) ||
|
|
(instr[0] == 0x50)) && ((instr[2] >> 4) == 0xf))
|
|
{
|
|
regidx = instr[1] >> 4;
|
|
offset = ((instr[2] & 0xf) << 8) + instr[3];
|
|
if (offset == 0)
|
|
{
|
|
if (save_link_state == 3 && regidx == save_link_regidx)
|
|
{
|
|
save_link_state = 4;
|
|
valid_prologue = 1;
|
|
continue;
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
if (regidx < 6)
|
|
varargs_state = 1;
|
|
expected_offset =
|
|
S390_GPR6_STACK_OFFSET + (S390_GPR_SIZE * (regidx - 6));
|
|
if (offset != expected_offset)
|
|
{
|
|
good_prologue = 0;
|
|
break;
|
|
}
|
|
if (gprs_saved[regidx])
|
|
{
|
|
good_prologue = 0;
|
|
break;
|
|
}
|
|
good_prologue = 1;
|
|
gprs_saved[regidx] = 1;
|
|
if (saved_regs)
|
|
{
|
|
save_reg_addr = orig_sp + offset;
|
|
saved_regs[S390_GP0_REGNUM + regidx] = save_reg_addr;
|
|
}
|
|
valid_prologue = 1;
|
|
continue;
|
|
}
|
|
|
|
/* Check for an fp-relative STG, ST, or STM. This is probably
|
|
spilling an argument from a register out into a stack slot.
|
|
This could be a user instruction, but if we haven't included
|
|
any other suspicious instructions in the prologue, this
|
|
could only be an initializing store, which isn't too bad to
|
|
skip. The consequences of not including arg-to-stack spills
|
|
are more serious, though --- you don't see the proper values
|
|
of the arguments. */
|
|
if ((save_link_state == 3 || save_link_state == 4)
|
|
&& ((instr[0] == 0x50 /* st %rA, D(%rX,%rB) */
|
|
&& (instr[1] & 0xf) == 0 /* %rX is zero, no index reg */
|
|
&& is_arg_reg ((instr[1] >> 4) & 0xf)
|
|
&& ((instr[2] >> 4) & 0xf) == frame_pointer_regidx)
|
|
|| (instr[0] == 0x90 /* stm %rA, %rB, D(%rC) */
|
|
&& is_arg_reg ((instr[1] >> 4) & 0xf)
|
|
&& is_arg_reg (instr[1] & 0xf)
|
|
&& ((instr[2] >> 4) & 0xf) == frame_pointer_regidx)))
|
|
{
|
|
valid_prologue = 1;
|
|
continue;
|
|
}
|
|
|
|
/* check for STD */
|
|
if (instr[0] == 0x60 && (instr[2] >> 4) == 0xf)
|
|
{
|
|
regidx = instr[1] >> 4;
|
|
if (regidx == 0 || regidx == 2)
|
|
varargs_state = 1;
|
|
if (fprs_saved[regidx])
|
|
{
|
|
good_prologue = 0;
|
|
break;
|
|
}
|
|
fprs_saved[regidx] = 1;
|
|
if (saved_regs)
|
|
{
|
|
save_reg_addr = orig_sp + (((instr[2] & 0xf) << 8) + instr[3]);
|
|
saved_regs[S390_FP0_REGNUM + regidx] = save_reg_addr;
|
|
}
|
|
valid_prologue = 1;
|
|
continue;
|
|
}
|
|
|
|
|
|
if (const_pool_state == 0)
|
|
{
|
|
|
|
if (GDB_TARGET_IS_ESAME)
|
|
{
|
|
/* Check for larl CONST_POOL_REGIDX,offset on ESAME */
|
|
if ((instr[0] == 0xc0)
|
|
&& (instr[1] == (CONST_POOL_REGIDX << 4)))
|
|
{
|
|
const_pool_state = 2;
|
|
valid_prologue = 1;
|
|
continue;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Check for BASR gpr13,gpr0 used to load constant pool pointer to r13 in old compiler */
|
|
if (instr[0] == 0xd && (instr[1] & 0xf) == 0
|
|
&& ((instr[1] >> 4) == CONST_POOL_REGIDX))
|
|
{
|
|
const_pool_state = 1;
|
|
valid_prologue = 1;
|
|
continue;
|
|
}
|
|
}
|
|
/* Check for new fangled bras %r13,newpc to load new constant pool */
|
|
/* embedded in code, older pre abi compilers also emitted this stuff. */
|
|
if ((instr[0] == 0xa7) && ((instr[1] & 0xf) == 0x5) &&
|
|
((instr[1] >> 4) == CONST_POOL_REGIDX)
|
|
&& ((instr[2] & 0x80) == 0))
|
|
{
|
|
const_pool_state = 2;
|
|
test_pc +=
|
|
(((((instr[2] & 0xf) << 8) + instr[3]) << 1) - instrlen);
|
|
valid_prologue = 1;
|
|
continue;
|
|
}
|
|
}
|
|
/* Check for AGHI or AHI CONST_POOL_REGIDX,val */
|
|
if (const_pool_state == 1 && (instr[0] == 0xa7) &&
|
|
((GDB_TARGET_IS_ESAME &&
|
|
(instr[1] == ((CONST_POOL_REGIDX << 4) | 0xb))) ||
|
|
(instr[1] == ((CONST_POOL_REGIDX << 4) | 0xa))))
|
|
{
|
|
const_pool_state = 2;
|
|
valid_prologue = 1;
|
|
continue;
|
|
}
|
|
/* Check for LGR or LR gprx,15 */
|
|
if ((GDB_TARGET_IS_ESAME &&
|
|
instr[0] == 0xb9 && instr[1] == 0x04 && (instr[3] & 0xf) == 0xf) ||
|
|
(instr[0] == 0x18 && (instr[1] & 0xf) == 0xf))
|
|
{
|
|
if (GDB_TARGET_IS_ESAME)
|
|
regidx = instr[3] >> 4;
|
|
else
|
|
regidx = instr[1] >> 4;
|
|
if (save_link_state == 0 && regidx != 0xb)
|
|
{
|
|
/* Almost defintely code for
|
|
decrementing the stack pointer
|
|
( i.e. a non leaf function
|
|
or else leaf with locals ) */
|
|
save_link_regidx = regidx;
|
|
save_link_state = 1;
|
|
valid_prologue = 1;
|
|
continue;
|
|
}
|
|
/* We use this frame pointer for alloca
|
|
unfortunately we need to assume its gpr11
|
|
otherwise we would need a smarter prologue
|
|
walker. */
|
|
if (!frame_pointer_found && regidx == 0xb)
|
|
{
|
|
frame_pointer_regidx = 0xb;
|
|
frame_pointer_found = 1;
|
|
if (fextra_info)
|
|
fextra_info->frame_pointer_saved_pc = test_pc;
|
|
valid_prologue = 1;
|
|
continue;
|
|
}
|
|
}
|
|
/* Check for AHI or AGHI gpr15,val */
|
|
if (save_link_state == 1 && (instr[0] == 0xa7) &&
|
|
((GDB_TARGET_IS_ESAME && (instr[1] == 0xfb)) || (instr[1] == 0xfa)))
|
|
{
|
|
if (fextra_info)
|
|
fextra_info->stack_bought =
|
|
-extract_signed_integer (&instr[2], 2);
|
|
save_link_state = 3;
|
|
valid_prologue = 1;
|
|
continue;
|
|
}
|
|
/* Alternatively check for the complex construction for
|
|
buying more than 32k of stack
|
|
BRAS gprx,.+8
|
|
long val
|
|
s %r15,0(%gprx) gprx currently r1 */
|
|
if ((save_link_state == 1) && (instr[0] == 0xa7)
|
|
&& ((instr[1] & 0xf) == 0x5) && (instr[2] == 0)
|
|
&& (instr[3] == 0x4) && ((instr[1] >> 4) != CONST_POOL_REGIDX))
|
|
{
|
|
subtract_sp_regidx = instr[1] >> 4;
|
|
save_link_state = 2;
|
|
if (fextra_info)
|
|
target_read_memory (test_pc + instrlen,
|
|
(char *) &fextra_info->stack_bought,
|
|
sizeof (fextra_info->stack_bought));
|
|
test_pc += 4;
|
|
valid_prologue = 1;
|
|
continue;
|
|
}
|
|
if (save_link_state == 2 && instr[0] == 0x5b
|
|
&& instr[1] == 0xf0 &&
|
|
instr[2] == (subtract_sp_regidx << 4) && instr[3] == 0)
|
|
{
|
|
save_link_state = 3;
|
|
valid_prologue = 1;
|
|
continue;
|
|
}
|
|
/* check for LA gprx,offset(15) used for varargs */
|
|
if ((instr[0] == 0x41) && ((instr[2] >> 4) == 0xf) &&
|
|
((instr[1] & 0xf) == 0))
|
|
{
|
|
/* some code uses gpr7 to point to outgoing args */
|
|
if (((instr[1] >> 4) == 7) && (save_link_state == 0) &&
|
|
((instr[2] & 0xf) == 0)
|
|
&& (instr[3] == S390_STACK_FRAME_OVERHEAD))
|
|
{
|
|
valid_prologue = 1;
|
|
continue;
|
|
}
|
|
if (varargs_state == 1)
|
|
{
|
|
varargs_state = 2;
|
|
valid_prologue = 1;
|
|
continue;
|
|
}
|
|
}
|
|
/* Check for a GOT load */
|
|
|
|
if (GDB_TARGET_IS_ESAME)
|
|
{
|
|
/* Check for larl GOT_REGIDX, on ESAME */
|
|
if ((got_state == 0) && (instr[0] == 0xc0)
|
|
&& (instr[1] == (GOT_REGIDX << 4)))
|
|
{
|
|
got_state = 2;
|
|
valid_prologue = 1;
|
|
continue;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* check for l GOT_REGIDX,x(CONST_POOL_REGIDX) */
|
|
if (got_state == 0 && const_pool_state == 2 && instr[0] == 0x58
|
|
&& (instr[2] == (CONST_POOL_REGIDX << 4))
|
|
&& ((instr[1] >> 4) == GOT_REGIDX))
|
|
{
|
|
got_state = 1;
|
|
got_load_addr = test_pc;
|
|
got_load_len = instrlen;
|
|
valid_prologue = 1;
|
|
continue;
|
|
}
|
|
/* Check for subsequent ar got_regidx,basr_regidx */
|
|
if (got_state == 1 && instr[0] == 0x1a &&
|
|
instr[1] == ((GOT_REGIDX << 4) | CONST_POOL_REGIDX))
|
|
{
|
|
got_state = 2;
|
|
valid_prologue = 1;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
while (valid_prologue && good_prologue);
|
|
if (good_prologue)
|
|
{
|
|
/* If this function doesn't reference the global offset table,
|
|
then the compiler may use r12 for other things. If the last
|
|
instruction we saw was a load of r12 from the constant pool,
|
|
with no subsequent add to make the address PC-relative, then
|
|
the load was probably a genuine body instruction; don't treat
|
|
it as part of the prologue. */
|
|
if (got_state == 1
|
|
&& got_load_addr + got_load_len == test_pc)
|
|
{
|
|
test_pc = got_load_addr;
|
|
instrlen = got_load_len;
|
|
}
|
|
|
|
good_prologue = (((const_pool_state == 0) || (const_pool_state == 2)) &&
|
|
((save_link_state == 0) || (save_link_state == 4)) &&
|
|
((varargs_state == 0) || (varargs_state == 2)));
|
|
}
|
|
if (fextra_info)
|
|
{
|
|
fextra_info->good_prologue = good_prologue;
|
|
fextra_info->skip_prologue_function_start =
|
|
(good_prologue ? test_pc : pc);
|
|
}
|
|
if (saved_regs)
|
|
/* The SP's element of the saved_regs array holds the old SP,
|
|
not the address at which it is saved. */
|
|
saved_regs[S390_SP_REGNUM] = orig_sp;
|
|
return err;
|
|
}
|
|
|
|
|
|
int
|
|
s390_check_function_end (CORE_ADDR pc)
|
|
{
|
|
bfd_byte instr[S390_MAX_INSTR_SIZE];
|
|
disassemble_info info;
|
|
int regidx, instrlen;
|
|
|
|
info.read_memory_func = dis_asm_read_memory;
|
|
instrlen = s390_readinstruction (instr, pc, &info);
|
|
if (instrlen < 0)
|
|
return -1;
|
|
/* check for BR */
|
|
if (instrlen != 2 || instr[0] != 07 || (instr[1] >> 4) != 0xf)
|
|
return 0;
|
|
regidx = instr[1] & 0xf;
|
|
/* Check for LMG or LG */
|
|
instrlen =
|
|
s390_readinstruction (instr, pc - (GDB_TARGET_IS_ESAME ? 6 : 4), &info);
|
|
if (instrlen < 0)
|
|
return -1;
|
|
if (GDB_TARGET_IS_ESAME)
|
|
{
|
|
|
|
if (instrlen != 6 || instr[0] != 0xeb || instr[5] != 0x4)
|
|
return 0;
|
|
}
|
|
else if (instrlen != 4 || instr[0] != 0x98)
|
|
{
|
|
return 0;
|
|
}
|
|
if ((instr[2] >> 4) != 0xf)
|
|
return 0;
|
|
if (regidx == 14)
|
|
return 1;
|
|
instrlen = s390_readinstruction (instr, pc - (GDB_TARGET_IS_ESAME ? 12 : 8),
|
|
&info);
|
|
if (instrlen < 0)
|
|
return -1;
|
|
if (GDB_TARGET_IS_ESAME)
|
|
{
|
|
/* Check for LG */
|
|
if (instrlen != 6 || instr[0] != 0xe3 || instr[5] != 0x4)
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
/* Check for L */
|
|
if (instrlen != 4 || instr[0] != 0x58)
|
|
return 0;
|
|
}
|
|
if (instr[2] >> 4 != 0xf)
|
|
return 0;
|
|
if (instr[1] >> 4 != regidx)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
s390_sniff_pc_function_start (CORE_ADDR pc, struct frame_info *fi)
|
|
{
|
|
CORE_ADDR function_start, test_function_start;
|
|
int loop_cnt, err, function_end;
|
|
struct frame_extra_info fextra_info;
|
|
function_start = get_pc_function_start (pc);
|
|
|
|
if (function_start == 0)
|
|
{
|
|
test_function_start = pc;
|
|
if (test_function_start & 1)
|
|
return 0; /* This has to be bogus */
|
|
loop_cnt = 0;
|
|
do
|
|
{
|
|
|
|
err =
|
|
s390_get_frame_info (test_function_start, &fextra_info, fi, 1);
|
|
loop_cnt++;
|
|
test_function_start -= 2;
|
|
function_end = s390_check_function_end (test_function_start);
|
|
}
|
|
while (!(function_end == 1 || err || loop_cnt >= 4096 ||
|
|
(fextra_info.good_prologue)));
|
|
if (fextra_info.good_prologue)
|
|
function_start = fextra_info.function_start;
|
|
else if (function_end == 1)
|
|
function_start = test_function_start;
|
|
}
|
|
return function_start;
|
|
}
|
|
|
|
|
|
|
|
CORE_ADDR
|
|
s390_function_start (struct frame_info *fi)
|
|
{
|
|
CORE_ADDR function_start = 0;
|
|
|
|
if (fi->extra_info && fi->extra_info->initialised)
|
|
function_start = fi->extra_info->function_start;
|
|
else if (fi->pc)
|
|
function_start = get_pc_function_start (fi->pc);
|
|
return function_start;
|
|
}
|
|
|
|
|
|
|
|
|
|
int
|
|
s390_frameless_function_invocation (struct frame_info *fi)
|
|
{
|
|
struct frame_extra_info fextra_info, *fextra_info_ptr;
|
|
int frameless = 0;
|
|
|
|
if (fi->next == NULL) /* no may be frameless */
|
|
{
|
|
if (fi->extra_info)
|
|
fextra_info_ptr = fi->extra_info;
|
|
else
|
|
{
|
|
fextra_info_ptr = &fextra_info;
|
|
s390_get_frame_info (s390_sniff_pc_function_start (fi->pc, fi),
|
|
fextra_info_ptr, fi, 1);
|
|
}
|
|
frameless = ((fextra_info_ptr->stack_bought == 0));
|
|
}
|
|
return frameless;
|
|
|
|
}
|
|
|
|
|
|
static int
|
|
s390_is_sigreturn (CORE_ADDR pc, struct frame_info *sighandler_fi,
|
|
CORE_ADDR *sregs, CORE_ADDR *sigcaller_pc)
|
|
{
|
|
bfd_byte instr[S390_MAX_INSTR_SIZE];
|
|
disassemble_info info;
|
|
int instrlen;
|
|
CORE_ADDR scontext;
|
|
int retval = 0;
|
|
CORE_ADDR orig_sp;
|
|
CORE_ADDR temp_sregs;
|
|
|
|
scontext = temp_sregs = 0;
|
|
|
|
info.read_memory_func = dis_asm_read_memory;
|
|
instrlen = s390_readinstruction (instr, pc, &info);
|
|
if (sigcaller_pc)
|
|
*sigcaller_pc = 0;
|
|
if (((instrlen == S390_SYSCALL_SIZE) &&
|
|
(instr[0] == S390_SYSCALL_OPCODE)) &&
|
|
((instr[1] == s390_NR_sigreturn) || (instr[1] == s390_NR_rt_sigreturn)))
|
|
{
|
|
if (sighandler_fi)
|
|
{
|
|
if (s390_frameless_function_invocation (sighandler_fi))
|
|
orig_sp = sighandler_fi->frame;
|
|
else
|
|
orig_sp = ADDR_BITS_REMOVE ((CORE_ADDR)
|
|
read_memory_integer (sighandler_fi->
|
|
frame,
|
|
S390_GPR_SIZE));
|
|
if (orig_sp && sigcaller_pc)
|
|
{
|
|
scontext = orig_sp + S390_SIGNAL_FRAMESIZE;
|
|
if (pc == scontext && instr[1] == s390_NR_rt_sigreturn)
|
|
{
|
|
/* We got a new style rt_signal */
|
|
/* get address of read ucontext->uc_mcontext */
|
|
temp_sregs = orig_sp + (GDB_TARGET_IS_ESAME ?
|
|
S390X_UC_MCONTEXT_OFFSET :
|
|
S390_UC_MCONTEXT_OFFSET);
|
|
}
|
|
else
|
|
{
|
|
/* read sigcontext->sregs */
|
|
temp_sregs = ADDR_BITS_REMOVE ((CORE_ADDR)
|
|
read_memory_integer (scontext
|
|
+
|
|
(GDB_TARGET_IS_ESAME
|
|
?
|
|
S390X_SIGCONTEXT_SREGS_OFFSET
|
|
:
|
|
S390_SIGCONTEXT_SREGS_OFFSET),
|
|
S390_GPR_SIZE));
|
|
|
|
}
|
|
/* read sigregs->psw.addr */
|
|
*sigcaller_pc =
|
|
ADDR_BITS_REMOVE ((CORE_ADDR)
|
|
read_memory_integer (temp_sregs +
|
|
REGISTER_BYTE
|
|
(S390_PC_REGNUM),
|
|
S390_PSW_ADDR_SIZE));
|
|
}
|
|
}
|
|
retval = 1;
|
|
}
|
|
if (sregs)
|
|
*sregs = temp_sregs;
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
We need to do something better here but this will keep us out of trouble
|
|
for the moment.
|
|
For some reason the blockframe.c calls us with fi->next->fromleaf
|
|
so this seems of little use to us. */
|
|
void
|
|
s390_init_frame_pc_first (int next_fromleaf, struct frame_info *fi)
|
|
{
|
|
CORE_ADDR sigcaller_pc;
|
|
|
|
fi->pc = 0;
|
|
if (next_fromleaf)
|
|
{
|
|
fi->pc = ADDR_BITS_REMOVE (read_register (S390_RETADDR_REGNUM));
|
|
/* fix signal handlers */
|
|
}
|
|
else if (fi->next && fi->next->pc)
|
|
fi->pc = s390_frame_saved_pc_nofix (fi->next);
|
|
if (fi->pc && fi->next && fi->next->frame &&
|
|
s390_is_sigreturn (fi->pc, fi->next, NULL, &sigcaller_pc))
|
|
{
|
|
fi->pc = sigcaller_pc;
|
|
}
|
|
|
|
}
|
|
|
|
void
|
|
s390_init_extra_frame_info (int fromleaf, struct frame_info *fi)
|
|
{
|
|
fi->extra_info = frame_obstack_alloc (sizeof (struct frame_extra_info));
|
|
if (fi->pc)
|
|
s390_get_frame_info (s390_sniff_pc_function_start (fi->pc, fi),
|
|
fi->extra_info, fi, 1);
|
|
else
|
|
s390_memset_extra_info (fi->extra_info);
|
|
}
|
|
|
|
/* If saved registers of frame FI are not known yet, read and cache them.
|
|
&FEXTRA_INFOP contains struct frame_extra_info; TDATAP can be NULL,
|
|
in which case the framedata are read. */
|
|
|
|
void
|
|
s390_frame_init_saved_regs (struct frame_info *fi)
|
|
{
|
|
|
|
int quick;
|
|
|
|
if (fi->saved_regs == NULL)
|
|
{
|
|
/* zalloc memsets the saved regs */
|
|
frame_saved_regs_zalloc (fi);
|
|
if (fi->pc)
|
|
{
|
|
quick = (fi->extra_info && fi->extra_info->initialised
|
|
&& fi->extra_info->good_prologue);
|
|
s390_get_frame_info (quick ? fi->extra_info->function_start :
|
|
s390_sniff_pc_function_start (fi->pc, fi),
|
|
fi->extra_info, fi, !quick);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
CORE_ADDR
|
|
s390_frame_args_address (struct frame_info *fi)
|
|
{
|
|
|
|
/* Apparently gdb already knows gdb_args_offset itself */
|
|
return fi->frame;
|
|
}
|
|
|
|
|
|
static CORE_ADDR
|
|
s390_frame_saved_pc_nofix (struct frame_info *fi)
|
|
{
|
|
if (fi->extra_info && fi->extra_info->saved_pc_valid)
|
|
return fi->extra_info->saved_pc;
|
|
|
|
if (deprecated_generic_find_dummy_frame (fi->pc, fi->frame))
|
|
return generic_read_register_dummy (fi->pc, fi->frame, S390_PC_REGNUM);
|
|
|
|
s390_frame_init_saved_regs (fi);
|
|
if (fi->extra_info)
|
|
{
|
|
fi->extra_info->saved_pc_valid = 1;
|
|
if (fi->extra_info->good_prologue
|
|
&& fi->saved_regs[S390_RETADDR_REGNUM])
|
|
fi->extra_info->saved_pc
|
|
= ADDR_BITS_REMOVE (read_memory_integer
|
|
(fi->saved_regs[S390_RETADDR_REGNUM],
|
|
S390_GPR_SIZE));
|
|
else
|
|
fi->extra_info->saved_pc
|
|
= ADDR_BITS_REMOVE (read_register (S390_RETADDR_REGNUM));
|
|
return fi->extra_info->saved_pc;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
CORE_ADDR
|
|
s390_frame_saved_pc (struct frame_info *fi)
|
|
{
|
|
CORE_ADDR saved_pc = 0, sig_pc;
|
|
|
|
if (fi->extra_info && fi->extra_info->sig_fixed_saved_pc_valid)
|
|
return fi->extra_info->sig_fixed_saved_pc;
|
|
saved_pc = s390_frame_saved_pc_nofix (fi);
|
|
|
|
if (fi->extra_info)
|
|
{
|
|
fi->extra_info->sig_fixed_saved_pc_valid = 1;
|
|
if (saved_pc)
|
|
{
|
|
if (s390_is_sigreturn (saved_pc, fi, NULL, &sig_pc))
|
|
saved_pc = sig_pc;
|
|
}
|
|
fi->extra_info->sig_fixed_saved_pc = saved_pc;
|
|
}
|
|
return saved_pc;
|
|
}
|
|
|
|
|
|
|
|
|
|
/* We want backtraces out of signal handlers so we don't
|
|
set thisframe->signal_handler_caller to 1 */
|
|
|
|
CORE_ADDR
|
|
s390_frame_chain (struct frame_info *thisframe)
|
|
{
|
|
CORE_ADDR prev_fp = 0;
|
|
|
|
if (deprecated_generic_find_dummy_frame (thisframe->pc, thisframe->frame))
|
|
return generic_read_register_dummy (thisframe->pc, thisframe->frame,
|
|
S390_SP_REGNUM);
|
|
else
|
|
{
|
|
int sigreturn = 0;
|
|
CORE_ADDR sregs = 0;
|
|
struct frame_extra_info prev_fextra_info;
|
|
|
|
memset (&prev_fextra_info, 0, sizeof (prev_fextra_info));
|
|
if (thisframe->pc)
|
|
{
|
|
CORE_ADDR saved_pc, sig_pc;
|
|
|
|
saved_pc = s390_frame_saved_pc_nofix (thisframe);
|
|
if (saved_pc)
|
|
{
|
|
if ((sigreturn =
|
|
s390_is_sigreturn (saved_pc, thisframe, &sregs, &sig_pc)))
|
|
saved_pc = sig_pc;
|
|
s390_get_frame_info (s390_sniff_pc_function_start
|
|
(saved_pc, NULL), &prev_fextra_info, NULL,
|
|
1);
|
|
}
|
|
}
|
|
if (sigreturn)
|
|
{
|
|
/* read sigregs,regs.gprs[11 or 15] */
|
|
prev_fp = read_memory_integer (sregs +
|
|
REGISTER_BYTE (S390_GP0_REGNUM +
|
|
(prev_fextra_info.
|
|
frame_pointer_saved_pc
|
|
? 11 : 15)),
|
|
S390_GPR_SIZE);
|
|
thisframe->extra_info->sigcontext = sregs;
|
|
}
|
|
else
|
|
{
|
|
if (thisframe->saved_regs)
|
|
{
|
|
int regno;
|
|
|
|
if (prev_fextra_info.frame_pointer_saved_pc
|
|
&& thisframe->saved_regs[S390_FRAME_REGNUM])
|
|
regno = S390_FRAME_REGNUM;
|
|
else
|
|
regno = S390_SP_REGNUM;
|
|
|
|
if (thisframe->saved_regs[regno])
|
|
{
|
|
/* The SP's entry of `saved_regs' is special. */
|
|
if (regno == S390_SP_REGNUM)
|
|
prev_fp = thisframe->saved_regs[regno];
|
|
else
|
|
prev_fp =
|
|
read_memory_integer (thisframe->saved_regs[regno],
|
|
S390_GPR_SIZE);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return ADDR_BITS_REMOVE (prev_fp);
|
|
}
|
|
|
|
/*
|
|
Whether struct frame_extra_info is actually needed I'll have to figure
|
|
out as our frames are similar to rs6000 there is a possibility
|
|
i386 dosen't need it. */
|
|
|
|
|
|
|
|
/* a given return value in `regbuf' with a type `valtype', extract and copy its
|
|
value into `valbuf' */
|
|
void
|
|
s390_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
|
|
{
|
|
/* floats and doubles are returned in fpr0. fpr's have a size of 8 bytes.
|
|
We need to truncate the return value into float size (4 byte) if
|
|
necessary. */
|
|
int len = TYPE_LENGTH (valtype);
|
|
|
|
if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
|
|
memcpy (valbuf, ®buf[REGISTER_BYTE (S390_FP0_REGNUM)], len);
|
|
else
|
|
{
|
|
int offset = 0;
|
|
/* return value is copied starting from r2. */
|
|
if (TYPE_LENGTH (valtype) < S390_GPR_SIZE)
|
|
offset = S390_GPR_SIZE - TYPE_LENGTH (valtype);
|
|
memcpy (valbuf,
|
|
regbuf + REGISTER_BYTE (S390_GP0_REGNUM + 2) + offset,
|
|
TYPE_LENGTH (valtype));
|
|
}
|
|
}
|
|
|
|
|
|
static char *
|
|
s390_promote_integer_argument (struct type *valtype, char *valbuf,
|
|
char *reg_buff, int *arglen)
|
|
{
|
|
char *value = valbuf;
|
|
int len = TYPE_LENGTH (valtype);
|
|
|
|
if (len < S390_GPR_SIZE)
|
|
{
|
|
/* We need to upgrade this value to a register to pass it correctly */
|
|
int idx, diff = S390_GPR_SIZE - len, negative =
|
|
(!TYPE_UNSIGNED (valtype) && value[0] & 0x80);
|
|
for (idx = 0; idx < S390_GPR_SIZE; idx++)
|
|
{
|
|
reg_buff[idx] = (idx < diff ? (negative ? 0xff : 0x0) :
|
|
value[idx - diff]);
|
|
}
|
|
value = reg_buff;
|
|
*arglen = S390_GPR_SIZE;
|
|
}
|
|
else
|
|
{
|
|
if (len & (S390_GPR_SIZE - 1))
|
|
{
|
|
fprintf_unfiltered (gdb_stderr,
|
|
"s390_promote_integer_argument detected an argument not "
|
|
"a multiple of S390_GPR_SIZE & greater than S390_GPR_SIZE "
|
|
"we might not deal with this correctly.\n");
|
|
}
|
|
*arglen = len;
|
|
}
|
|
|
|
return (value);
|
|
}
|
|
|
|
void
|
|
s390_store_return_value (struct type *valtype, char *valbuf)
|
|
{
|
|
int arglen;
|
|
char *reg_buff = alloca (max (S390_FPR_SIZE, REGISTER_SIZE)), *value;
|
|
|
|
if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
|
|
{
|
|
if (TYPE_LENGTH (valtype) == 4
|
|
|| TYPE_LENGTH (valtype) == 8)
|
|
write_register_bytes (REGISTER_BYTE (S390_FP0_REGNUM), valbuf,
|
|
TYPE_LENGTH (valtype));
|
|
else
|
|
error ("GDB is unable to return `long double' values "
|
|
"on this architecture.");
|
|
}
|
|
else
|
|
{
|
|
value =
|
|
s390_promote_integer_argument (valtype, valbuf, reg_buff, &arglen);
|
|
/* Everything else is returned in GPR2 and up. */
|
|
write_register_bytes (REGISTER_BYTE (S390_GP0_REGNUM + 2), value,
|
|
arglen);
|
|
}
|
|
}
|
|
static int
|
|
gdb_print_insn_s390 (bfd_vma memaddr, disassemble_info * info)
|
|
{
|
|
bfd_byte instrbuff[S390_MAX_INSTR_SIZE];
|
|
int instrlen, cnt;
|
|
|
|
instrlen = s390_readinstruction (instrbuff, (CORE_ADDR) memaddr, info);
|
|
if (instrlen < 0)
|
|
{
|
|
(*info->memory_error_func) (instrlen, memaddr, info);
|
|
return -1;
|
|
}
|
|
for (cnt = 0; cnt < instrlen; cnt++)
|
|
info->fprintf_func (info->stream, "%02X ", instrbuff[cnt]);
|
|
for (cnt = instrlen; cnt < S390_MAX_INSTR_SIZE; cnt++)
|
|
info->fprintf_func (info->stream, " ");
|
|
instrlen = print_insn_s390 (memaddr, info);
|
|
return instrlen;
|
|
}
|
|
|
|
|
|
|
|
/* Not the most efficent code in the world */
|
|
int
|
|
s390_fp_regnum (void)
|
|
{
|
|
int regno = S390_SP_REGNUM;
|
|
struct frame_extra_info fextra_info;
|
|
|
|
CORE_ADDR pc = ADDR_BITS_REMOVE (read_register (S390_PC_REGNUM));
|
|
|
|
s390_get_frame_info (s390_sniff_pc_function_start (pc, NULL), &fextra_info,
|
|
NULL, 1);
|
|
if (fextra_info.frame_pointer_saved_pc)
|
|
regno = S390_FRAME_REGNUM;
|
|
return regno;
|
|
}
|
|
|
|
CORE_ADDR
|
|
s390_read_fp (void)
|
|
{
|
|
return read_register (s390_fp_regnum ());
|
|
}
|
|
|
|
|
|
static void
|
|
s390_pop_frame_regular (struct frame_info *frame)
|
|
{
|
|
int regnum;
|
|
|
|
write_register (S390_PC_REGNUM, FRAME_SAVED_PC (frame));
|
|
|
|
/* Restore any saved registers. */
|
|
if (frame->saved_regs)
|
|
{
|
|
for (regnum = 0; regnum < NUM_REGS; regnum++)
|
|
if (frame->saved_regs[regnum] != 0)
|
|
{
|
|
ULONGEST value;
|
|
|
|
value = read_memory_unsigned_integer (frame->saved_regs[regnum],
|
|
REGISTER_RAW_SIZE (regnum));
|
|
write_register (regnum, value);
|
|
}
|
|
|
|
/* Actually cut back the stack. Remember that the SP's element of
|
|
saved_regs is the old SP itself, not the address at which it is
|
|
saved. */
|
|
write_register (S390_SP_REGNUM, frame->saved_regs[S390_SP_REGNUM]);
|
|
}
|
|
|
|
/* Throw away any cached frame information. */
|
|
flush_cached_frames ();
|
|
}
|
|
|
|
|
|
/* Destroy the innermost (Top-Of-Stack) stack frame, restoring the
|
|
machine state that was in effect before the frame was created.
|
|
Used in the contexts of the "return" command, and of
|
|
target function calls from the debugger. */
|
|
void
|
|
s390_pop_frame (void)
|
|
{
|
|
/* This function checks for and handles generic dummy frames, and
|
|
calls back to our function for ordinary frames. */
|
|
generic_pop_current_frame (s390_pop_frame_regular);
|
|
}
|
|
|
|
|
|
/* Return non-zero if TYPE is an integer-like type, zero otherwise.
|
|
"Integer-like" types are those that should be passed the way
|
|
integers are: integers, enums, ranges, characters, and booleans. */
|
|
static int
|
|
is_integer_like (struct type *type)
|
|
{
|
|
enum type_code code = TYPE_CODE (type);
|
|
|
|
return (code == TYPE_CODE_INT
|
|
|| code == TYPE_CODE_ENUM
|
|
|| code == TYPE_CODE_RANGE
|
|
|| code == TYPE_CODE_CHAR
|
|
|| code == TYPE_CODE_BOOL);
|
|
}
|
|
|
|
|
|
/* Return non-zero if TYPE is a pointer-like type, zero otherwise.
|
|
"Pointer-like" types are those that should be passed the way
|
|
pointers are: pointers and references. */
|
|
static int
|
|
is_pointer_like (struct type *type)
|
|
{
|
|
enum type_code code = TYPE_CODE (type);
|
|
|
|
return (code == TYPE_CODE_PTR
|
|
|| code == TYPE_CODE_REF);
|
|
}
|
|
|
|
|
|
/* Return non-zero if TYPE is a `float singleton' or `double
|
|
singleton', zero otherwise.
|
|
|
|
A `T singleton' is a struct type with one member, whose type is
|
|
either T or a `T singleton'. So, the following are all float
|
|
singletons:
|
|
|
|
struct { float x };
|
|
struct { struct { float x; } x; };
|
|
struct { struct { struct { float x; } x; } x; };
|
|
|
|
... and so on.
|
|
|
|
WHY THE HECK DO WE CARE ABOUT THIS??? Well, it turns out that GCC
|
|
passes all float singletons and double singletons as if they were
|
|
simply floats or doubles. This is *not* what the ABI says it
|
|
should do. */
|
|
static int
|
|
is_float_singleton (struct type *type)
|
|
{
|
|
return (TYPE_CODE (type) == TYPE_CODE_STRUCT
|
|
&& TYPE_NFIELDS (type) == 1
|
|
&& (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_FLT
|
|
|| is_float_singleton (TYPE_FIELD_TYPE (type, 0))));
|
|
}
|
|
|
|
|
|
/* Return non-zero if TYPE is a struct-like type, zero otherwise.
|
|
"Struct-like" types are those that should be passed as structs are:
|
|
structs and unions.
|
|
|
|
As an odd quirk, not mentioned in the ABI, GCC passes float and
|
|
double singletons as if they were a plain float, double, etc. (The
|
|
corresponding union types are handled normally.) So we exclude
|
|
those types here. *shrug* */
|
|
static int
|
|
is_struct_like (struct type *type)
|
|
{
|
|
enum type_code code = TYPE_CODE (type);
|
|
|
|
return (code == TYPE_CODE_UNION
|
|
|| (code == TYPE_CODE_STRUCT && ! is_float_singleton (type)));
|
|
}
|
|
|
|
|
|
/* Return non-zero if TYPE is a float-like type, zero otherwise.
|
|
"Float-like" types are those that should be passed as
|
|
floating-point values are.
|
|
|
|
You'd think this would just be floats, doubles, long doubles, etc.
|
|
But as an odd quirk, not mentioned in the ABI, GCC passes float and
|
|
double singletons as if they were a plain float, double, etc. (The
|
|
corresponding union types are handled normally.) So we exclude
|
|
those types here. *shrug* */
|
|
static int
|
|
is_float_like (struct type *type)
|
|
{
|
|
return (TYPE_CODE (type) == TYPE_CODE_FLT
|
|
|| is_float_singleton (type));
|
|
}
|
|
|
|
|
|
/* Return non-zero if TYPE is considered a `DOUBLE_OR_FLOAT', as
|
|
defined by the parameter passing conventions described in the
|
|
"GNU/Linux for S/390 ELF Application Binary Interface Supplement".
|
|
Otherwise, return zero. */
|
|
static int
|
|
is_double_or_float (struct type *type)
|
|
{
|
|
return (is_float_like (type)
|
|
&& (TYPE_LENGTH (type) == 4
|
|
|| TYPE_LENGTH (type) == 8));
|
|
}
|
|
|
|
|
|
/* Return non-zero if TYPE is considered a `SIMPLE_ARG', as defined by
|
|
the parameter passing conventions described in the "GNU/Linux for
|
|
S/390 ELF Application Binary Interface Supplement". Return zero
|
|
otherwise. */
|
|
static int
|
|
is_simple_arg (struct type *type)
|
|
{
|
|
unsigned length = TYPE_LENGTH (type);
|
|
|
|
/* This is almost a direct translation of the ABI's language, except
|
|
that we have to exclude 8-byte structs; those are DOUBLE_ARGs. */
|
|
return ((is_integer_like (type) && length <= 4)
|
|
|| is_pointer_like (type)
|
|
|| (is_struct_like (type) && length != 8)
|
|
|| (is_float_like (type) && length == 16));
|
|
}
|
|
|
|
|
|
/* Return non-zero if TYPE should be passed as a pointer to a copy,
|
|
zero otherwise. TYPE must be a SIMPLE_ARG, as recognized by
|
|
`is_simple_arg'. */
|
|
static int
|
|
pass_by_copy_ref (struct type *type)
|
|
{
|
|
unsigned length = TYPE_LENGTH (type);
|
|
|
|
return ((is_struct_like (type) && length != 1 && length != 2 && length != 4)
|
|
|| (is_float_like (type) && length == 16));
|
|
}
|
|
|
|
|
|
/* Return ARG, a `SIMPLE_ARG', sign-extended or zero-extended to a full
|
|
word as required for the ABI. */
|
|
static LONGEST
|
|
extend_simple_arg (struct value *arg)
|
|
{
|
|
struct type *type = VALUE_TYPE (arg);
|
|
|
|
/* Even structs get passed in the least significant bits of the
|
|
register / memory word. It's not really right to extract them as
|
|
an integer, but it does take care of the extension. */
|
|
if (TYPE_UNSIGNED (type))
|
|
return extract_unsigned_integer (VALUE_CONTENTS (arg),
|
|
TYPE_LENGTH (type));
|
|
else
|
|
return extract_signed_integer (VALUE_CONTENTS (arg),
|
|
TYPE_LENGTH (type));
|
|
}
|
|
|
|
|
|
/* Return non-zero if TYPE is a `DOUBLE_ARG', as defined by the
|
|
parameter passing conventions described in the "GNU/Linux for S/390
|
|
ELF Application Binary Interface Supplement". Return zero
|
|
otherwise. */
|
|
static int
|
|
is_double_arg (struct type *type)
|
|
{
|
|
unsigned length = TYPE_LENGTH (type);
|
|
|
|
return ((is_integer_like (type)
|
|
|| is_struct_like (type))
|
|
&& length == 8);
|
|
}
|
|
|
|
|
|
/* Round ADDR up to the next N-byte boundary. N must be a power of
|
|
two. */
|
|
static CORE_ADDR
|
|
round_up (CORE_ADDR addr, int n)
|
|
{
|
|
/* Check that N is really a power of two. */
|
|
gdb_assert (n && (n & (n-1)) == 0);
|
|
return ((addr + n - 1) & -n);
|
|
}
|
|
|
|
|
|
/* Round ADDR down to the next N-byte boundary. N must be a power of
|
|
two. */
|
|
static CORE_ADDR
|
|
round_down (CORE_ADDR addr, int n)
|
|
{
|
|
/* Check that N is really a power of two. */
|
|
gdb_assert (n && (n & (n-1)) == 0);
|
|
return (addr & -n);
|
|
}
|
|
|
|
|
|
/* Return the alignment required by TYPE. */
|
|
static int
|
|
alignment_of (struct type *type)
|
|
{
|
|
int alignment;
|
|
|
|
if (is_integer_like (type)
|
|
|| is_pointer_like (type)
|
|
|| TYPE_CODE (type) == TYPE_CODE_FLT)
|
|
alignment = TYPE_LENGTH (type);
|
|
else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
|
|
|| TYPE_CODE (type) == TYPE_CODE_UNION)
|
|
{
|
|
int i;
|
|
|
|
alignment = 1;
|
|
for (i = 0; i < TYPE_NFIELDS (type); i++)
|
|
{
|
|
int field_alignment = alignment_of (TYPE_FIELD_TYPE (type, i));
|
|
|
|
if (field_alignment > alignment)
|
|
alignment = field_alignment;
|
|
}
|
|
}
|
|
else
|
|
alignment = 1;
|
|
|
|
/* Check that everything we ever return is a power of two. Lots of
|
|
code doesn't want to deal with aligning things to arbitrary
|
|
boundaries. */
|
|
gdb_assert ((alignment & (alignment - 1)) == 0);
|
|
|
|
return alignment;
|
|
}
|
|
|
|
|
|
/* Put the actual parameter values pointed to by ARGS[0..NARGS-1] in
|
|
place to be passed to a function, as specified by the "GNU/Linux
|
|
for S/390 ELF Application Binary Interface Supplement".
|
|
|
|
SP is the current stack pointer. We must put arguments, links,
|
|
padding, etc. whereever they belong, and return the new stack
|
|
pointer value.
|
|
|
|
If STRUCT_RETURN is non-zero, then the function we're calling is
|
|
going to return a structure by value; STRUCT_ADDR is the address of
|
|
a block we've allocated for it on the stack.
|
|
|
|
Our caller has taken care of any type promotions needed to satisfy
|
|
prototypes or the old K&R argument-passing rules. */
|
|
CORE_ADDR
|
|
s390_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
|
|
int struct_return, CORE_ADDR struct_addr)
|
|
{
|
|
int i;
|
|
int pointer_size = (TARGET_PTR_BIT / TARGET_CHAR_BIT);
|
|
|
|
/* The number of arguments passed by reference-to-copy. */
|
|
int num_copies;
|
|
|
|
/* If the i'th argument is passed as a reference to a copy, then
|
|
copy_addr[i] is the address of the copy we made. */
|
|
CORE_ADDR *copy_addr = alloca (nargs * sizeof (CORE_ADDR));
|
|
|
|
/* Build the reference-to-copy area. */
|
|
num_copies = 0;
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
struct value *arg = args[i];
|
|
struct type *type = VALUE_TYPE (arg);
|
|
unsigned length = TYPE_LENGTH (type);
|
|
|
|
if (is_simple_arg (type)
|
|
&& pass_by_copy_ref (type))
|
|
{
|
|
sp -= length;
|
|
sp = round_down (sp, alignment_of (type));
|
|
write_memory (sp, VALUE_CONTENTS (arg), length);
|
|
copy_addr[i] = sp;
|
|
num_copies++;
|
|
}
|
|
}
|
|
|
|
/* Reserve space for the parameter area. As a conservative
|
|
simplification, we assume that everything will be passed on the
|
|
stack. */
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
struct value *arg = args[i];
|
|
struct type *type = VALUE_TYPE (arg);
|
|
int length = TYPE_LENGTH (type);
|
|
|
|
sp = round_down (sp, alignment_of (type));
|
|
|
|
/* SIMPLE_ARG values get extended to 32 bits. Assume every
|
|
argument is. */
|
|
if (length < 4) length = 4;
|
|
sp -= length;
|
|
}
|
|
}
|
|
|
|
/* Include space for any reference-to-copy pointers. */
|
|
sp = round_down (sp, pointer_size);
|
|
sp -= num_copies * pointer_size;
|
|
|
|
/* After all that, make sure it's still aligned on an eight-byte
|
|
boundary. */
|
|
sp = round_down (sp, 8);
|
|
|
|
/* Finally, place the actual parameters, working from SP towards
|
|
higher addresses. The code above is supposed to reserve enough
|
|
space for this. */
|
|
{
|
|
int fr = 0;
|
|
int gr = 2;
|
|
CORE_ADDR starg = sp;
|
|
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
struct value *arg = args[i];
|
|
struct type *type = VALUE_TYPE (arg);
|
|
|
|
if (is_double_or_float (type)
|
|
&& fr <= 2)
|
|
{
|
|
/* When we store a single-precision value in an FP register,
|
|
it occupies the leftmost bits. */
|
|
write_register_bytes (REGISTER_BYTE (S390_FP0_REGNUM + fr),
|
|
VALUE_CONTENTS (arg),
|
|
TYPE_LENGTH (type));
|
|
fr += 2;
|
|
}
|
|
else if (is_simple_arg (type)
|
|
&& gr <= 6)
|
|
{
|
|
/* Do we need to pass a pointer to our copy of this
|
|
argument? */
|
|
if (pass_by_copy_ref (type))
|
|
write_register (S390_GP0_REGNUM + gr, copy_addr[i]);
|
|
else
|
|
write_register (S390_GP0_REGNUM + gr, extend_simple_arg (arg));
|
|
|
|
gr++;
|
|
}
|
|
else if (is_double_arg (type)
|
|
&& gr <= 5)
|
|
{
|
|
write_register_gen (S390_GP0_REGNUM + gr,
|
|
VALUE_CONTENTS (arg));
|
|
write_register_gen (S390_GP0_REGNUM + gr + 1,
|
|
VALUE_CONTENTS (arg) + 4);
|
|
gr += 2;
|
|
}
|
|
else
|
|
{
|
|
/* The `OTHER' case. */
|
|
enum type_code code = TYPE_CODE (type);
|
|
unsigned length = TYPE_LENGTH (type);
|
|
|
|
/* If we skipped r6 because we couldn't fit a DOUBLE_ARG
|
|
in it, then don't go back and use it again later. */
|
|
if (is_double_arg (type) && gr == 6)
|
|
gr = 7;
|
|
|
|
if (is_simple_arg (type))
|
|
{
|
|
/* Simple args are always either extended to 32 bits,
|
|
or pointers. */
|
|
starg = round_up (starg, 4);
|
|
|
|
/* Do we need to pass a pointer to our copy of this
|
|
argument? */
|
|
if (pass_by_copy_ref (type))
|
|
write_memory_signed_integer (starg, pointer_size,
|
|
copy_addr[i]);
|
|
else
|
|
/* Simple args are always extended to 32 bits. */
|
|
write_memory_signed_integer (starg, 4,
|
|
extend_simple_arg (arg));
|
|
starg += 4;
|
|
}
|
|
else
|
|
{
|
|
/* You'd think we should say:
|
|
starg = round_up (starg, alignment_of (type));
|
|
Unfortunately, GCC seems to simply align the stack on
|
|
a four-byte boundary, even when passing doubles. */
|
|
starg = round_up (starg, 4);
|
|
write_memory (starg, VALUE_CONTENTS (arg), length);
|
|
starg += length;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Allocate the standard frame areas: the register save area, the
|
|
word reserved for the compiler (which seems kind of meaningless),
|
|
and the back chain pointer. */
|
|
sp -= 96;
|
|
|
|
/* Write the back chain pointer into the first word of the stack
|
|
frame. This will help us get backtraces from within functions
|
|
called from GDB. */
|
|
write_memory_unsigned_integer (sp, (TARGET_PTR_BIT / TARGET_CHAR_BIT),
|
|
read_fp ());
|
|
|
|
return sp;
|
|
}
|
|
|
|
|
|
static int
|
|
s390_use_struct_convention (int gcc_p, struct type *value_type)
|
|
{
|
|
enum type_code code = TYPE_CODE (value_type);
|
|
|
|
return (code == TYPE_CODE_STRUCT
|
|
|| code == TYPE_CODE_UNION);
|
|
}
|
|
|
|
|
|
/* Return the GDB type object for the "standard" data type
|
|
of data in register N. */
|
|
struct type *
|
|
s390_register_virtual_type (int regno)
|
|
{
|
|
if (S390_FP0_REGNUM <= regno && regno < S390_FP0_REGNUM + S390_NUM_FPRS)
|
|
return builtin_type_double;
|
|
else
|
|
return builtin_type_int;
|
|
}
|
|
|
|
|
|
struct type *
|
|
s390x_register_virtual_type (int regno)
|
|
{
|
|
return (regno == S390_FPC_REGNUM) ||
|
|
(regno >= S390_FIRST_ACR && regno <= S390_LAST_ACR) ? builtin_type_int :
|
|
(regno >= S390_FP0_REGNUM) ? builtin_type_double : builtin_type_long;
|
|
}
|
|
|
|
|
|
|
|
void
|
|
s390_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
|
|
{
|
|
write_register (S390_GP0_REGNUM + 2, addr);
|
|
}
|
|
|
|
|
|
|
|
const static unsigned char *
|
|
s390_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
|
|
{
|
|
static unsigned char breakpoint[] = { 0x0, 0x1 };
|
|
|
|
*lenptr = sizeof (breakpoint);
|
|
return breakpoint;
|
|
}
|
|
|
|
/* Advance PC across any function entry prologue instructions to reach some
|
|
"real" code. */
|
|
CORE_ADDR
|
|
s390_skip_prologue (CORE_ADDR pc)
|
|
{
|
|
struct frame_extra_info fextra_info;
|
|
|
|
s390_get_frame_info (pc, &fextra_info, NULL, 1);
|
|
return fextra_info.skip_prologue_function_start;
|
|
}
|
|
|
|
/* Immediately after a function call, return the saved pc.
|
|
Can't go through the frames for this because on some machines
|
|
the new frame is not set up until the new function executes
|
|
some instructions. */
|
|
CORE_ADDR
|
|
s390_saved_pc_after_call (struct frame_info *frame)
|
|
{
|
|
return ADDR_BITS_REMOVE (read_register (S390_RETADDR_REGNUM));
|
|
}
|
|
|
|
static CORE_ADDR
|
|
s390_addr_bits_remove (CORE_ADDR addr)
|
|
{
|
|
return (addr) & 0x7fffffff;
|
|
}
|
|
|
|
|
|
static CORE_ADDR
|
|
s390_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
|
|
{
|
|
write_register (S390_RETADDR_REGNUM, CALL_DUMMY_ADDRESS ());
|
|
return sp;
|
|
}
|
|
|
|
struct gdbarch *
|
|
s390_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
|
{
|
|
static LONGEST s390_call_dummy_words[] = { 0 };
|
|
struct gdbarch *gdbarch;
|
|
struct gdbarch_tdep *tdep;
|
|
int elf_flags;
|
|
|
|
/* First see if there is already a gdbarch that can satisfy the request. */
|
|
arches = gdbarch_list_lookup_by_info (arches, &info);
|
|
if (arches != NULL)
|
|
return arches->gdbarch;
|
|
|
|
/* None found: is the request for a s390 architecture? */
|
|
if (info.bfd_arch_info->arch != bfd_arch_s390)
|
|
return NULL; /* No; then it's not for us. */
|
|
|
|
/* Yes: create a new gdbarch for the specified machine type. */
|
|
gdbarch = gdbarch_alloc (&info, NULL);
|
|
|
|
set_gdbarch_believe_pcc_promotion (gdbarch, 0);
|
|
set_gdbarch_char_signed (gdbarch, 0);
|
|
|
|
set_gdbarch_frame_args_skip (gdbarch, 0);
|
|
set_gdbarch_frame_args_address (gdbarch, s390_frame_args_address);
|
|
set_gdbarch_frame_chain (gdbarch, s390_frame_chain);
|
|
set_gdbarch_frame_init_saved_regs (gdbarch, s390_frame_init_saved_regs);
|
|
set_gdbarch_frame_locals_address (gdbarch, s390_frame_args_address);
|
|
/* We can't do this */
|
|
set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
|
|
set_gdbarch_store_struct_return (gdbarch, s390_store_struct_return);
|
|
set_gdbarch_deprecated_extract_return_value (gdbarch, s390_extract_return_value);
|
|
set_gdbarch_store_return_value (gdbarch, s390_store_return_value);
|
|
/* Amount PC must be decremented by after a breakpoint.
|
|
This is often the number of bytes in BREAKPOINT
|
|
but not always. */
|
|
set_gdbarch_decr_pc_after_break (gdbarch, 2);
|
|
set_gdbarch_pop_frame (gdbarch, s390_pop_frame);
|
|
/* Stack grows downward. */
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
|
/* Offset from address of function to start of its code.
|
|
Zero on most machines. */
|
|
set_gdbarch_function_start_offset (gdbarch, 0);
|
|
set_gdbarch_max_register_raw_size (gdbarch, 8);
|
|
set_gdbarch_max_register_virtual_size (gdbarch, 8);
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, s390_breakpoint_from_pc);
|
|
set_gdbarch_skip_prologue (gdbarch, s390_skip_prologue);
|
|
set_gdbarch_init_extra_frame_info (gdbarch, s390_init_extra_frame_info);
|
|
set_gdbarch_init_frame_pc_first (gdbarch, s390_init_frame_pc_first);
|
|
set_gdbarch_read_fp (gdbarch, s390_read_fp);
|
|
/* This function that tells us whether the function invocation represented
|
|
by FI does not have a frame on the stack associated with it. If it
|
|
does not, FRAMELESS is set to 1, else 0. */
|
|
set_gdbarch_frameless_function_invocation (gdbarch,
|
|
s390_frameless_function_invocation);
|
|
/* Return saved PC from a frame */
|
|
set_gdbarch_frame_saved_pc (gdbarch, s390_frame_saved_pc);
|
|
/* FRAME_CHAIN takes a frame's nominal address
|
|
and produces the frame's chain-pointer. */
|
|
set_gdbarch_frame_chain (gdbarch, s390_frame_chain);
|
|
set_gdbarch_saved_pc_after_call (gdbarch, s390_saved_pc_after_call);
|
|
set_gdbarch_register_byte (gdbarch, s390_register_byte);
|
|
set_gdbarch_pc_regnum (gdbarch, S390_PC_REGNUM);
|
|
set_gdbarch_sp_regnum (gdbarch, S390_SP_REGNUM);
|
|
set_gdbarch_fp_regnum (gdbarch, S390_FP_REGNUM);
|
|
set_gdbarch_fp0_regnum (gdbarch, S390_FP0_REGNUM);
|
|
set_gdbarch_num_regs (gdbarch, S390_NUM_REGS);
|
|
set_gdbarch_cannot_fetch_register (gdbarch, s390_cannot_fetch_register);
|
|
set_gdbarch_cannot_store_register (gdbarch, s390_cannot_fetch_register);
|
|
set_gdbarch_get_saved_register (gdbarch, generic_unwind_get_saved_register);
|
|
set_gdbarch_use_struct_convention (gdbarch, s390_use_struct_convention);
|
|
set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
|
|
set_gdbarch_register_name (gdbarch, s390_register_name);
|
|
set_gdbarch_stab_reg_to_regnum (gdbarch, s390_stab_reg_to_regnum);
|
|
set_gdbarch_dwarf_reg_to_regnum (gdbarch, s390_stab_reg_to_regnum);
|
|
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, s390_stab_reg_to_regnum);
|
|
set_gdbarch_deprecated_extract_struct_value_address
|
|
(gdbarch, generic_cannot_extract_struct_value_address);
|
|
|
|
/* Parameters for inferior function calls. */
|
|
set_gdbarch_call_dummy_p (gdbarch, 1);
|
|
set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
|
|
set_gdbarch_call_dummy_length (gdbarch, 0);
|
|
set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
|
|
set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
|
|
set_gdbarch_call_dummy_start_offset (gdbarch, 0);
|
|
set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
|
|
set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
|
|
set_gdbarch_push_arguments (gdbarch, s390_push_arguments);
|
|
set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
|
|
set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
|
|
set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
|
|
set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
|
|
set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
|
|
set_gdbarch_push_return_address (gdbarch, s390_push_return_address);
|
|
set_gdbarch_sizeof_call_dummy_words (gdbarch,
|
|
sizeof (s390_call_dummy_words));
|
|
set_gdbarch_call_dummy_words (gdbarch, s390_call_dummy_words);
|
|
set_gdbarch_coerce_float_to_double (gdbarch,
|
|
standard_coerce_float_to_double);
|
|
|
|
switch (info.bfd_arch_info->mach)
|
|
{
|
|
case bfd_mach_s390_31:
|
|
set_gdbarch_register_size (gdbarch, 4);
|
|
set_gdbarch_register_raw_size (gdbarch, s390_register_raw_size);
|
|
set_gdbarch_register_virtual_size (gdbarch, s390_register_raw_size);
|
|
set_gdbarch_register_virtual_type (gdbarch, s390_register_virtual_type);
|
|
|
|
set_gdbarch_addr_bits_remove (gdbarch, s390_addr_bits_remove);
|
|
set_gdbarch_register_bytes (gdbarch, S390_REGISTER_BYTES);
|
|
break;
|
|
case bfd_mach_s390_64:
|
|
set_gdbarch_register_size (gdbarch, 8);
|
|
set_gdbarch_register_raw_size (gdbarch, s390x_register_raw_size);
|
|
set_gdbarch_register_virtual_size (gdbarch, s390x_register_raw_size);
|
|
set_gdbarch_register_virtual_type (gdbarch,
|
|
s390x_register_virtual_type);
|
|
|
|
set_gdbarch_long_bit (gdbarch, 64);
|
|
set_gdbarch_long_long_bit (gdbarch, 64);
|
|
set_gdbarch_ptr_bit (gdbarch, 64);
|
|
set_gdbarch_register_bytes (gdbarch, S390X_REGISTER_BYTES);
|
|
break;
|
|
}
|
|
|
|
return gdbarch;
|
|
}
|
|
|
|
|
|
|
|
void
|
|
_initialize_s390_tdep (void)
|
|
{
|
|
|
|
/* Hook us into the gdbarch mechanism. */
|
|
register_gdbarch_init (bfd_arch_s390, s390_gdbarch_init);
|
|
if (!tm_print_insn) /* Someone may have already set it */
|
|
tm_print_insn = gdb_print_insn_s390;
|
|
}
|
|
|
|
#endif /* GDBSERVER */
|