mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-03 04:12:10 +08:00
731 lines
19 KiB
C
731 lines
19 KiB
C
/* Target-dependent code for GNU/Linux on MIPS processors.
|
|
|
|
Copyright 2001, 2002 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
#include "defs.h"
|
|
#include "gdbcore.h"
|
|
#include "target.h"
|
|
#include "solib-svr4.h"
|
|
#include "osabi.h"
|
|
#include "mips-tdep.h"
|
|
#include "gdb_string.h"
|
|
#include "gdb_assert.h"
|
|
|
|
/* Copied from <asm/elf.h>. */
|
|
#define ELF_NGREG 45
|
|
#define ELF_NFPREG 33
|
|
|
|
typedef unsigned char elf_greg_t[4];
|
|
typedef elf_greg_t elf_gregset_t[ELF_NGREG];
|
|
|
|
typedef unsigned char elf_fpreg_t[8];
|
|
typedef elf_fpreg_t elf_fpregset_t[ELF_NFPREG];
|
|
|
|
/* 0 - 31 are integer registers, 32 - 63 are fp registers. */
|
|
#define FPR_BASE 32
|
|
#define PC 64
|
|
#define CAUSE 65
|
|
#define BADVADDR 66
|
|
#define MMHI 67
|
|
#define MMLO 68
|
|
#define FPC_CSR 69
|
|
#define FPC_EIR 70
|
|
|
|
#define EF_REG0 6
|
|
#define EF_REG31 37
|
|
#define EF_LO 38
|
|
#define EF_HI 39
|
|
#define EF_CP0_EPC 40
|
|
#define EF_CP0_BADVADDR 41
|
|
#define EF_CP0_STATUS 42
|
|
#define EF_CP0_CAUSE 43
|
|
|
|
#define EF_SIZE 180
|
|
|
|
/* Figure out where the longjmp will land.
|
|
We expect the first arg to be a pointer to the jmp_buf structure from
|
|
which we extract the pc (MIPS_LINUX_JB_PC) that we will land at. The pc
|
|
is copied into PC. This routine returns 1 on success. */
|
|
|
|
#define MIPS_LINUX_JB_ELEMENT_SIZE 4
|
|
#define MIPS_LINUX_JB_PC 0
|
|
|
|
static int
|
|
mips_linux_get_longjmp_target (CORE_ADDR *pc)
|
|
{
|
|
CORE_ADDR jb_addr;
|
|
char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
|
|
|
|
jb_addr = read_register (A0_REGNUM);
|
|
|
|
if (target_read_memory (jb_addr
|
|
+ MIPS_LINUX_JB_PC * MIPS_LINUX_JB_ELEMENT_SIZE,
|
|
buf, TARGET_PTR_BIT / TARGET_CHAR_BIT))
|
|
return 0;
|
|
|
|
*pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Transform the bits comprising a 32-bit register to the right
|
|
size for supply_register(). This is needed when MIPS_REGSIZE is 8. */
|
|
|
|
static void
|
|
supply_32bit_reg (int regnum, const void *addr)
|
|
{
|
|
char *buf = alloca (MAX_REGISTER_RAW_SIZE);
|
|
store_signed_integer (buf, REGISTER_RAW_SIZE (regnum),
|
|
extract_signed_integer (addr, 4));
|
|
supply_register (regnum, buf);
|
|
}
|
|
|
|
/* Unpack an elf_gregset_t into GDB's register cache. */
|
|
|
|
void
|
|
supply_gregset (elf_gregset_t *gregsetp)
|
|
{
|
|
int regi;
|
|
elf_greg_t *regp = *gregsetp;
|
|
char *zerobuf = alloca (MAX_REGISTER_RAW_SIZE);
|
|
|
|
memset (zerobuf, 0, MAX_REGISTER_RAW_SIZE);
|
|
|
|
for (regi = EF_REG0; regi <= EF_REG31; regi++)
|
|
supply_32bit_reg ((regi - EF_REG0), (char *)(regp + regi));
|
|
|
|
supply_32bit_reg (LO_REGNUM, (char *)(regp + EF_LO));
|
|
supply_32bit_reg (HI_REGNUM, (char *)(regp + EF_HI));
|
|
|
|
supply_32bit_reg (PC_REGNUM, (char *)(regp + EF_CP0_EPC));
|
|
supply_32bit_reg (BADVADDR_REGNUM, (char *)(regp + EF_CP0_BADVADDR));
|
|
supply_32bit_reg (PS_REGNUM, (char *)(regp + EF_CP0_STATUS));
|
|
supply_32bit_reg (CAUSE_REGNUM, (char *)(regp + EF_CP0_CAUSE));
|
|
|
|
/* Fill inaccessible registers with zero. */
|
|
supply_register (UNUSED_REGNUM, zerobuf);
|
|
for (regi = FIRST_EMBED_REGNUM; regi < LAST_EMBED_REGNUM; regi++)
|
|
supply_register (regi, zerobuf);
|
|
}
|
|
|
|
/* Pack our registers (or one register) into an elf_gregset_t. */
|
|
|
|
void
|
|
fill_gregset (elf_gregset_t *gregsetp, int regno)
|
|
{
|
|
int regaddr, regi;
|
|
elf_greg_t *regp = *gregsetp;
|
|
void *dst;
|
|
|
|
if (regno == -1)
|
|
{
|
|
memset (regp, 0, sizeof (elf_gregset_t));
|
|
for (regi = 0; regi < 32; regi++)
|
|
fill_gregset (gregsetp, regi);
|
|
fill_gregset (gregsetp, LO_REGNUM);
|
|
fill_gregset (gregsetp, HI_REGNUM);
|
|
fill_gregset (gregsetp, PC_REGNUM);
|
|
fill_gregset (gregsetp, BADVADDR_REGNUM);
|
|
fill_gregset (gregsetp, PS_REGNUM);
|
|
fill_gregset (gregsetp, CAUSE_REGNUM);
|
|
|
|
return;
|
|
}
|
|
|
|
if (regno < 32)
|
|
{
|
|
dst = regp + regno + EF_REG0;
|
|
regcache_collect (regno, dst);
|
|
return;
|
|
}
|
|
|
|
regaddr = -1;
|
|
switch (regno)
|
|
{
|
|
case LO_REGNUM:
|
|
regaddr = EF_LO;
|
|
break;
|
|
case HI_REGNUM:
|
|
regaddr = EF_HI;
|
|
break;
|
|
case PC_REGNUM:
|
|
regaddr = EF_CP0_EPC;
|
|
break;
|
|
case BADVADDR_REGNUM:
|
|
regaddr = EF_CP0_BADVADDR;
|
|
break;
|
|
case PS_REGNUM:
|
|
regaddr = EF_CP0_STATUS;
|
|
break;
|
|
case CAUSE_REGNUM:
|
|
regaddr = EF_CP0_CAUSE;
|
|
break;
|
|
}
|
|
|
|
if (regaddr != -1)
|
|
{
|
|
dst = regp + regaddr;
|
|
regcache_collect (regno, dst);
|
|
}
|
|
}
|
|
|
|
/* Likewise, unpack an elf_fpregset_t. */
|
|
|
|
void
|
|
supply_fpregset (elf_fpregset_t *fpregsetp)
|
|
{
|
|
register int regi;
|
|
char *zerobuf = alloca (MAX_REGISTER_RAW_SIZE);
|
|
|
|
memset (zerobuf, 0, MAX_REGISTER_RAW_SIZE);
|
|
|
|
for (regi = 0; regi < 32; regi++)
|
|
supply_register (FP0_REGNUM + regi,
|
|
(char *)(*fpregsetp + regi));
|
|
|
|
supply_register (FCRCS_REGNUM, (char *)(*fpregsetp + 32));
|
|
|
|
/* FIXME: how can we supply FCRIR_REGNUM? The ABI doesn't tell us. */
|
|
supply_register (FCRIR_REGNUM, zerobuf);
|
|
}
|
|
|
|
/* Likewise, pack one or all floating point registers into an
|
|
elf_fpregset_t. */
|
|
|
|
void
|
|
fill_fpregset (elf_fpregset_t *fpregsetp, int regno)
|
|
{
|
|
char *from, *to;
|
|
|
|
if ((regno >= FP0_REGNUM) && (regno < FP0_REGNUM + 32))
|
|
{
|
|
from = (char *) &deprecated_registers[REGISTER_BYTE (regno)];
|
|
to = (char *) (*fpregsetp + regno - FP0_REGNUM);
|
|
memcpy (to, from, REGISTER_RAW_SIZE (regno - FP0_REGNUM));
|
|
}
|
|
else if (regno == FCRCS_REGNUM)
|
|
{
|
|
from = (char *) &deprecated_registers[REGISTER_BYTE (regno)];
|
|
to = (char *) (*fpregsetp + 32);
|
|
memcpy (to, from, REGISTER_RAW_SIZE (regno));
|
|
}
|
|
else if (regno == -1)
|
|
{
|
|
int regi;
|
|
|
|
for (regi = 0; regi < 32; regi++)
|
|
fill_fpregset (fpregsetp, FP0_REGNUM + regi);
|
|
fill_fpregset(fpregsetp, FCRCS_REGNUM);
|
|
}
|
|
}
|
|
|
|
/* Map gdb internal register number to ptrace ``address''.
|
|
These ``addresses'' are normally defined in <asm/ptrace.h>. */
|
|
|
|
static CORE_ADDR
|
|
mips_linux_register_addr (int regno, CORE_ADDR blockend)
|
|
{
|
|
int regaddr;
|
|
|
|
if (regno < 0 || regno >= NUM_REGS)
|
|
error ("Bogon register number %d.", regno);
|
|
|
|
if (regno < 32)
|
|
regaddr = regno;
|
|
else if ((regno >= FP0_REGNUM) && (regno < FP0_REGNUM + 32))
|
|
regaddr = FPR_BASE + (regno - FP0_REGNUM);
|
|
else if (regno == PC_REGNUM)
|
|
regaddr = PC;
|
|
else if (regno == CAUSE_REGNUM)
|
|
regaddr = CAUSE;
|
|
else if (regno == BADVADDR_REGNUM)
|
|
regaddr = BADVADDR;
|
|
else if (regno == LO_REGNUM)
|
|
regaddr = MMLO;
|
|
else if (regno == HI_REGNUM)
|
|
regaddr = MMHI;
|
|
else if (regno == FCRCS_REGNUM)
|
|
regaddr = FPC_CSR;
|
|
else if (regno == FCRIR_REGNUM)
|
|
regaddr = FPC_EIR;
|
|
else
|
|
error ("Unknowable register number %d.", regno);
|
|
|
|
return regaddr;
|
|
}
|
|
|
|
|
|
/* Fetch (and possibly build) an appropriate link_map_offsets
|
|
structure for native GNU/Linux MIPS targets using the struct offsets
|
|
defined in link.h (but without actual reference to that file).
|
|
|
|
This makes it possible to access GNU/Linux MIPS shared libraries from a
|
|
GDB that was built on a different host platform (for cross debugging). */
|
|
|
|
static struct link_map_offsets *
|
|
mips_linux_svr4_fetch_link_map_offsets (void)
|
|
{
|
|
static struct link_map_offsets lmo;
|
|
static struct link_map_offsets *lmp = NULL;
|
|
|
|
if (lmp == NULL)
|
|
{
|
|
lmp = &lmo;
|
|
|
|
lmo.r_debug_size = 8; /* The actual size is 20 bytes, but
|
|
this is all we need. */
|
|
lmo.r_map_offset = 4;
|
|
lmo.r_map_size = 4;
|
|
|
|
lmo.link_map_size = 20;
|
|
|
|
lmo.l_addr_offset = 0;
|
|
lmo.l_addr_size = 4;
|
|
|
|
lmo.l_name_offset = 4;
|
|
lmo.l_name_size = 4;
|
|
|
|
lmo.l_next_offset = 12;
|
|
lmo.l_next_size = 4;
|
|
|
|
lmo.l_prev_offset = 16;
|
|
lmo.l_prev_size = 4;
|
|
}
|
|
|
|
return lmp;
|
|
}
|
|
|
|
/* Support for 64-bit ABIs. */
|
|
|
|
/* Copied from <asm/elf.h>. */
|
|
#define MIPS64_ELF_NGREG 45
|
|
#define MIPS64_ELF_NFPREG 33
|
|
|
|
typedef unsigned char mips64_elf_greg_t[8];
|
|
typedef mips64_elf_greg_t mips64_elf_gregset_t[MIPS64_ELF_NGREG];
|
|
|
|
typedef unsigned char mips64_elf_fpreg_t[8];
|
|
typedef mips64_elf_fpreg_t mips64_elf_fpregset_t[MIPS64_ELF_NFPREG];
|
|
|
|
/* 0 - 31 are integer registers, 32 - 63 are fp registers. */
|
|
#define MIPS64_FPR_BASE 32
|
|
#define MIPS64_PC 64
|
|
#define MIPS64_CAUSE 65
|
|
#define MIPS64_BADVADDR 66
|
|
#define MIPS64_MMHI 67
|
|
#define MIPS64_MMLO 68
|
|
#define MIPS64_FPC_CSR 69
|
|
#define MIPS64_FPC_EIR 70
|
|
|
|
#define MIPS64_EF_REG0 0
|
|
#define MIPS64_EF_REG31 31
|
|
#define MIPS64_EF_LO 32
|
|
#define MIPS64_EF_HI 33
|
|
#define MIPS64_EF_CP0_EPC 34
|
|
#define MIPS64_EF_CP0_BADVADDR 35
|
|
#define MIPS64_EF_CP0_STATUS 36
|
|
#define MIPS64_EF_CP0_CAUSE 37
|
|
|
|
#define MIPS64_EF_SIZE 304
|
|
|
|
/* Figure out where the longjmp will land.
|
|
We expect the first arg to be a pointer to the jmp_buf structure from
|
|
which we extract the pc (MIPS_LINUX_JB_PC) that we will land at. The pc
|
|
is copied into PC. This routine returns 1 on success. */
|
|
|
|
/* Details about jmp_buf. */
|
|
|
|
#define MIPS64_LINUX_JB_PC 0
|
|
|
|
static int
|
|
mips64_linux_get_longjmp_target (CORE_ADDR *pc)
|
|
{
|
|
CORE_ADDR jb_addr;
|
|
void *buf = alloca (TARGET_PTR_BIT / TARGET_CHAR_BIT);
|
|
int element_size = TARGET_PTR_BIT == 32 ? 4 : 8;
|
|
|
|
jb_addr = read_register (A0_REGNUM);
|
|
|
|
if (target_read_memory (jb_addr + MIPS64_LINUX_JB_PC * element_size,
|
|
buf, TARGET_PTR_BIT / TARGET_CHAR_BIT))
|
|
return 0;
|
|
|
|
*pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Unpack an elf_gregset_t into GDB's register cache. */
|
|
|
|
static void
|
|
mips64_supply_gregset (mips64_elf_gregset_t *gregsetp)
|
|
{
|
|
int regi;
|
|
mips64_elf_greg_t *regp = *gregsetp;
|
|
char *zerobuf = alloca (MAX_REGISTER_RAW_SIZE);
|
|
|
|
memset (zerobuf, 0, MAX_REGISTER_RAW_SIZE);
|
|
|
|
for (regi = MIPS64_EF_REG0; regi <= MIPS64_EF_REG31; regi++)
|
|
supply_register ((regi - MIPS64_EF_REG0), (char *)(regp + regi));
|
|
|
|
supply_register (LO_REGNUM, (char *)(regp + MIPS64_EF_LO));
|
|
supply_register (HI_REGNUM, (char *)(regp + MIPS64_EF_HI));
|
|
|
|
supply_register (PC_REGNUM, (char *)(regp + MIPS64_EF_CP0_EPC));
|
|
supply_register (BADVADDR_REGNUM, (char *)(regp + MIPS64_EF_CP0_BADVADDR));
|
|
supply_register (PS_REGNUM, (char *)(regp + MIPS64_EF_CP0_STATUS));
|
|
supply_register (CAUSE_REGNUM, (char *)(regp + MIPS64_EF_CP0_CAUSE));
|
|
|
|
/* Fill inaccessible registers with zero. */
|
|
supply_register (UNUSED_REGNUM, zerobuf);
|
|
for (regi = FIRST_EMBED_REGNUM; regi < LAST_EMBED_REGNUM; regi++)
|
|
supply_register (regi, zerobuf);
|
|
}
|
|
|
|
/* Pack our registers (or one register) into an elf_gregset_t. */
|
|
|
|
static void
|
|
mips64_fill_gregset (mips64_elf_gregset_t *gregsetp, int regno)
|
|
{
|
|
int regaddr, regi;
|
|
mips64_elf_greg_t *regp = *gregsetp;
|
|
void *src, *dst;
|
|
|
|
if (regno == -1)
|
|
{
|
|
memset (regp, 0, sizeof (mips64_elf_gregset_t));
|
|
for (regi = 0; regi < 32; regi++)
|
|
mips64_fill_gregset (gregsetp, regi);
|
|
mips64_fill_gregset (gregsetp, LO_REGNUM);
|
|
mips64_fill_gregset (gregsetp, HI_REGNUM);
|
|
mips64_fill_gregset (gregsetp, PC_REGNUM);
|
|
mips64_fill_gregset (gregsetp, BADVADDR_REGNUM);
|
|
mips64_fill_gregset (gregsetp, PS_REGNUM);
|
|
mips64_fill_gregset (gregsetp, CAUSE_REGNUM);
|
|
|
|
return;
|
|
}
|
|
|
|
if (regno < 32)
|
|
{
|
|
dst = regp + regno + MIPS64_EF_REG0;
|
|
regcache_collect (regno, dst);
|
|
return;
|
|
}
|
|
|
|
regaddr = -1;
|
|
switch (regno)
|
|
{
|
|
case LO_REGNUM:
|
|
regaddr = MIPS64_EF_LO;
|
|
break;
|
|
case HI_REGNUM:
|
|
regaddr = MIPS64_EF_HI;
|
|
break;
|
|
case PC_REGNUM:
|
|
regaddr = MIPS64_EF_CP0_EPC;
|
|
break;
|
|
case BADVADDR_REGNUM:
|
|
regaddr = MIPS64_EF_CP0_BADVADDR;
|
|
break;
|
|
case PS_REGNUM:
|
|
regaddr = MIPS64_EF_CP0_STATUS;
|
|
break;
|
|
case CAUSE_REGNUM:
|
|
regaddr = MIPS64_EF_CP0_CAUSE;
|
|
break;
|
|
}
|
|
|
|
if (regaddr != -1)
|
|
{
|
|
dst = regp + regaddr;
|
|
regcache_collect (regno, dst);
|
|
}
|
|
}
|
|
|
|
/* Likewise, unpack an elf_fpregset_t. */
|
|
|
|
static void
|
|
mips64_supply_fpregset (mips64_elf_fpregset_t *fpregsetp)
|
|
{
|
|
register int regi;
|
|
char *zerobuf = alloca (MAX_REGISTER_RAW_SIZE);
|
|
|
|
memset (zerobuf, 0, MAX_REGISTER_RAW_SIZE);
|
|
|
|
for (regi = 0; regi < 32; regi++)
|
|
supply_register (FP0_REGNUM + regi,
|
|
(char *)(*fpregsetp + regi));
|
|
|
|
supply_register (FCRCS_REGNUM, (char *)(*fpregsetp + 32));
|
|
|
|
/* FIXME: how can we supply FCRIR_REGNUM? The ABI doesn't tell us. */
|
|
supply_register (FCRIR_REGNUM, zerobuf);
|
|
}
|
|
|
|
/* Likewise, pack one or all floating point registers into an
|
|
elf_fpregset_t. */
|
|
|
|
static void
|
|
mips64_fill_fpregset (mips64_elf_fpregset_t *fpregsetp, int regno)
|
|
{
|
|
char *from, *to;
|
|
|
|
if ((regno >= FP0_REGNUM) && (regno < FP0_REGNUM + 32))
|
|
{
|
|
from = (char *) &deprecated_registers[REGISTER_BYTE (regno)];
|
|
to = (char *) (*fpregsetp + regno - FP0_REGNUM);
|
|
memcpy (to, from, REGISTER_RAW_SIZE (regno - FP0_REGNUM));
|
|
}
|
|
else if (regno == FCRCS_REGNUM)
|
|
{
|
|
from = (char *) &deprecated_registers[REGISTER_BYTE (regno)];
|
|
to = (char *) (*fpregsetp + 32);
|
|
memcpy (to, from, REGISTER_RAW_SIZE (regno));
|
|
}
|
|
else if (regno == -1)
|
|
{
|
|
int regi;
|
|
|
|
for (regi = 0; regi < 32; regi++)
|
|
mips64_fill_fpregset (fpregsetp, FP0_REGNUM + regi);
|
|
mips64_fill_fpregset(fpregsetp, FCRCS_REGNUM);
|
|
}
|
|
}
|
|
|
|
|
|
/* Map gdb internal register number to ptrace ``address''.
|
|
These ``addresses'' are normally defined in <asm/ptrace.h>. */
|
|
|
|
static CORE_ADDR
|
|
mips64_linux_register_addr (int regno, CORE_ADDR blockend)
|
|
{
|
|
int regaddr;
|
|
|
|
if (regno < 0 || regno >= NUM_REGS)
|
|
error ("Bogon register number %d.", regno);
|
|
|
|
if (regno < 32)
|
|
regaddr = regno;
|
|
else if ((regno >= FP0_REGNUM) && (regno < FP0_REGNUM + 32))
|
|
regaddr = MIPS64_FPR_BASE + (regno - FP0_REGNUM);
|
|
else if (regno == PC_REGNUM)
|
|
regaddr = MIPS64_PC;
|
|
else if (regno == CAUSE_REGNUM)
|
|
regaddr = MIPS64_CAUSE;
|
|
else if (regno == BADVADDR_REGNUM)
|
|
regaddr = MIPS64_BADVADDR;
|
|
else if (regno == LO_REGNUM)
|
|
regaddr = MIPS64_MMLO;
|
|
else if (regno == HI_REGNUM)
|
|
regaddr = MIPS64_MMHI;
|
|
else if (regno == FCRCS_REGNUM)
|
|
regaddr = MIPS64_FPC_CSR;
|
|
else if (regno == FCRIR_REGNUM)
|
|
regaddr = MIPS64_FPC_EIR;
|
|
else
|
|
error ("Unknowable register number %d.", regno);
|
|
|
|
return regaddr;
|
|
}
|
|
|
|
/* Use a local version of this function to get the correct types for
|
|
regsets, until multi-arch core support is ready. */
|
|
|
|
static void
|
|
fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
|
|
int which, CORE_ADDR reg_addr)
|
|
{
|
|
elf_gregset_t gregset;
|
|
elf_fpregset_t fpregset;
|
|
mips64_elf_gregset_t gregset64;
|
|
mips64_elf_fpregset_t fpregset64;
|
|
|
|
if (which == 0)
|
|
{
|
|
if (core_reg_size == sizeof (gregset))
|
|
{
|
|
memcpy ((char *) &gregset, core_reg_sect, sizeof (gregset));
|
|
supply_gregset (&gregset);
|
|
}
|
|
else if (core_reg_size == sizeof (gregset64))
|
|
{
|
|
memcpy ((char *) &gregset64, core_reg_sect, sizeof (gregset64));
|
|
mips64_supply_gregset (&gregset64);
|
|
}
|
|
else
|
|
{
|
|
warning ("wrong size gregset struct in core file");
|
|
}
|
|
}
|
|
else if (which == 2)
|
|
{
|
|
if (core_reg_size == sizeof (fpregset))
|
|
{
|
|
memcpy ((char *) &fpregset, core_reg_sect, sizeof (fpregset));
|
|
supply_fpregset (&fpregset);
|
|
}
|
|
else if (core_reg_size == sizeof (fpregset64))
|
|
{
|
|
memcpy ((char *) &fpregset64, core_reg_sect, sizeof (fpregset64));
|
|
mips64_supply_fpregset (&fpregset64);
|
|
}
|
|
else
|
|
{
|
|
warning ("wrong size fpregset struct in core file");
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Register that we are able to handle ELF file formats using standard
|
|
procfs "regset" structures. */
|
|
|
|
static struct core_fns regset_core_fns =
|
|
{
|
|
bfd_target_elf_flavour, /* core_flavour */
|
|
default_check_format, /* check_format */
|
|
default_core_sniffer, /* core_sniffer */
|
|
fetch_core_registers, /* core_read_registers */
|
|
NULL /* next */
|
|
};
|
|
|
|
/* Fetch (and possibly build) an appropriate link_map_offsets
|
|
structure for native GNU/Linux MIPS targets using the struct offsets
|
|
defined in link.h (but without actual reference to that file).
|
|
|
|
This makes it possible to access GNU/Linux MIPS shared libraries from a
|
|
GDB that was built on a different host platform (for cross debugging). */
|
|
|
|
static struct link_map_offsets *
|
|
mips64_linux_svr4_fetch_link_map_offsets (void)
|
|
{
|
|
static struct link_map_offsets lmo;
|
|
static struct link_map_offsets *lmp = NULL;
|
|
|
|
if (lmp == NULL)
|
|
{
|
|
lmp = &lmo;
|
|
|
|
lmo.r_debug_size = 16; /* The actual size is 40 bytes, but
|
|
this is all we need. */
|
|
lmo.r_map_offset = 8;
|
|
lmo.r_map_size = 8;
|
|
|
|
lmo.link_map_size = 40;
|
|
|
|
lmo.l_addr_offset = 0;
|
|
lmo.l_addr_size = 8;
|
|
|
|
lmo.l_name_offset = 8;
|
|
lmo.l_name_size = 8;
|
|
|
|
lmo.l_next_offset = 24;
|
|
lmo.l_next_size = 8;
|
|
|
|
lmo.l_prev_offset = 32;
|
|
lmo.l_prev_size = 8;
|
|
}
|
|
|
|
return lmp;
|
|
}
|
|
|
|
/* Handle for obtaining pointer to the current register_addr() function
|
|
for a given architecture. */
|
|
static struct gdbarch_data *register_addr_data;
|
|
|
|
CORE_ADDR
|
|
register_addr (int regno, CORE_ADDR blockend)
|
|
{
|
|
CORE_ADDR (*register_addr_ptr) (int, CORE_ADDR) =
|
|
gdbarch_data (current_gdbarch, register_addr_data);
|
|
|
|
gdb_assert (register_addr_ptr != 0);
|
|
|
|
return register_addr_ptr (regno, blockend);
|
|
}
|
|
|
|
static void
|
|
set_mips_linux_register_addr (struct gdbarch *gdbarch,
|
|
CORE_ADDR (*register_addr_ptr) (int, CORE_ADDR))
|
|
{
|
|
set_gdbarch_data (gdbarch, register_addr_data, register_addr_ptr);
|
|
}
|
|
|
|
static void *
|
|
init_register_addr_data (struct gdbarch *gdbarch)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
mips_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
enum mips_abi abi = mips_abi (gdbarch);
|
|
|
|
switch (abi)
|
|
{
|
|
case MIPS_ABI_O32:
|
|
set_gdbarch_get_longjmp_target (gdbarch,
|
|
mips_linux_get_longjmp_target);
|
|
set_solib_svr4_fetch_link_map_offsets
|
|
(gdbarch, mips_linux_svr4_fetch_link_map_offsets);
|
|
set_mips_linux_register_addr (gdbarch, mips_linux_register_addr);
|
|
break;
|
|
case MIPS_ABI_N32:
|
|
set_gdbarch_get_longjmp_target (gdbarch,
|
|
mips_linux_get_longjmp_target);
|
|
set_solib_svr4_fetch_link_map_offsets
|
|
(gdbarch, mips_linux_svr4_fetch_link_map_offsets);
|
|
set_mips_linux_register_addr (gdbarch, mips64_linux_register_addr);
|
|
break;
|
|
case MIPS_ABI_N64:
|
|
set_gdbarch_get_longjmp_target (gdbarch,
|
|
mips64_linux_get_longjmp_target);
|
|
set_solib_svr4_fetch_link_map_offsets
|
|
(gdbarch, mips64_linux_svr4_fetch_link_map_offsets);
|
|
set_mips_linux_register_addr (gdbarch, mips64_linux_register_addr);
|
|
break;
|
|
default:
|
|
internal_error (__FILE__, __LINE__, "can't handle ABI");
|
|
break;
|
|
}
|
|
}
|
|
|
|
void
|
|
_initialize_mips_linux_tdep (void)
|
|
{
|
|
const struct bfd_arch_info *arch_info;
|
|
|
|
register_addr_data =
|
|
register_gdbarch_data (init_register_addr_data, 0);
|
|
|
|
for (arch_info = bfd_lookup_arch (bfd_arch_mips, 0);
|
|
arch_info != NULL;
|
|
arch_info = arch_info->next)
|
|
{
|
|
gdbarch_register_osabi (bfd_arch_mips, arch_info->mach, GDB_OSABI_LINUX,
|
|
mips_linux_init_abi);
|
|
}
|
|
|
|
add_core_fns (®set_core_fns);
|
|
}
|