mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-15 04:31:49 +08:00
1d506c26d9
This commit is the result of the following actions: - Running gdb/copyright.py to update all of the copyright headers to include 2024, - Manually updating a few files the copyright.py script told me to update, these files had copyright headers embedded within the file, - Regenerating gdbsupport/Makefile.in to refresh it's copyright date, - Using grep to find other files that still mentioned 2023. If these files were updated last year from 2022 to 2023 then I've updated them this year to 2024. I'm sure I've probably missed some dates. Feel free to fix them up as you spot them.
922 lines
22 KiB
C
922 lines
22 KiB
C
/* Simulator for the FT32 processor
|
|
|
|
Copyright (C) 2008-2024 Free Software Foundation, Inc.
|
|
Contributed by FTDI <support@ftdichip.com>
|
|
|
|
This file is part of simulators.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
/* This must come before any other includes. */
|
|
#include "defs.h"
|
|
|
|
#include <fcntl.h>
|
|
#include <signal.h>
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
|
|
#include "bfd.h"
|
|
#include "sim/callback.h"
|
|
#include "libiberty.h"
|
|
#include "sim/sim.h"
|
|
|
|
#include "sim-main.h"
|
|
#include "sim-options.h"
|
|
#include "sim-signal.h"
|
|
|
|
#include "opcode/ft32.h"
|
|
|
|
#include "ft32-sim.h"
|
|
|
|
/*
|
|
* FT32 is a Harvard architecture: RAM and code occupy
|
|
* different address spaces.
|
|
*
|
|
* sim and gdb model FT32 memory by adding 0x800000 to RAM
|
|
* addresses. This means that sim/gdb can treat all addresses
|
|
* similarly.
|
|
*
|
|
* The address space looks like:
|
|
*
|
|
* 00000 start of code memory
|
|
* 3ffff end of code memory
|
|
* 800000 start of RAM
|
|
* 80ffff end of RAM
|
|
*/
|
|
|
|
#define RAM_BIAS 0x800000 /* Bias added to RAM addresses. */
|
|
|
|
static unsigned long
|
|
ft32_extract_unsigned_integer (const unsigned char *addr, int len)
|
|
{
|
|
unsigned long retval;
|
|
unsigned char *p;
|
|
unsigned char *startaddr = (unsigned char *) addr;
|
|
unsigned char *endaddr = startaddr + len;
|
|
|
|
/* Start at the most significant end of the integer, and work towards
|
|
the least significant. */
|
|
retval = 0;
|
|
|
|
for (p = endaddr; p > startaddr;)
|
|
retval = (retval << 8) | * -- p;
|
|
|
|
return retval;
|
|
}
|
|
|
|
static void
|
|
ft32_store_unsigned_integer (unsigned char *addr, int len, unsigned long val)
|
|
{
|
|
unsigned char *p;
|
|
unsigned char *startaddr = (unsigned char *)addr;
|
|
unsigned char *endaddr = startaddr + len;
|
|
|
|
for (p = startaddr; p < endaddr; p++)
|
|
{
|
|
*p = val & 0xff;
|
|
val >>= 8;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Align EA according to its size DW.
|
|
* The FT32 ignores the low bit of a 16-bit addresss,
|
|
* and the low two bits of a 32-bit address.
|
|
*/
|
|
static uint32_t ft32_align (uint32_t dw, uint32_t ea)
|
|
{
|
|
switch (dw)
|
|
{
|
|
case 1:
|
|
ea &= ~1;
|
|
break;
|
|
case 2:
|
|
ea &= ~3;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return ea;
|
|
}
|
|
|
|
/* Read an item from memory address EA, sized DW. */
|
|
static uint32_t
|
|
ft32_read_item (SIM_DESC sd, int dw, uint32_t ea)
|
|
{
|
|
sim_cpu *cpu = STATE_CPU (sd, 0);
|
|
address_word cia = CPU_PC_GET (cpu);
|
|
|
|
ea = ft32_align (dw, ea);
|
|
|
|
switch (dw) {
|
|
case 0:
|
|
return sim_core_read_aligned_1 (cpu, cia, read_map, ea);
|
|
case 1:
|
|
return sim_core_read_aligned_2 (cpu, cia, read_map, ea);
|
|
case 2:
|
|
return sim_core_read_aligned_4 (cpu, cia, read_map, ea);
|
|
default:
|
|
abort ();
|
|
}
|
|
}
|
|
|
|
/* Write item V to memory address EA, sized DW. */
|
|
static void
|
|
ft32_write_item (SIM_DESC sd, int dw, uint32_t ea, uint32_t v)
|
|
{
|
|
sim_cpu *cpu = STATE_CPU (sd, 0);
|
|
address_word cia = CPU_PC_GET (cpu);
|
|
|
|
ea = ft32_align (dw, ea);
|
|
|
|
switch (dw) {
|
|
case 0:
|
|
sim_core_write_aligned_1 (cpu, cia, write_map, ea, v);
|
|
break;
|
|
case 1:
|
|
sim_core_write_aligned_2 (cpu, cia, write_map, ea, v);
|
|
break;
|
|
case 2:
|
|
sim_core_write_aligned_4 (cpu, cia, write_map, ea, v);
|
|
break;
|
|
default:
|
|
abort ();
|
|
}
|
|
}
|
|
|
|
#define ILLEGAL() \
|
|
sim_engine_halt (sd, cpu, NULL, insnpc, sim_signalled, SIM_SIGILL)
|
|
|
|
static uint32_t cpu_mem_read (SIM_DESC sd, uint32_t dw, uint32_t ea)
|
|
{
|
|
sim_cpu *cpu = STATE_CPU (sd, 0);
|
|
struct ft32_cpu_state *ft32_cpu = FT32_SIM_CPU (cpu);
|
|
uint32_t insnpc = ft32_cpu->pc;
|
|
|
|
ea &= 0x1ffff;
|
|
if (ea & ~0xffff)
|
|
{
|
|
/* Simulate some IO devices */
|
|
switch (ea)
|
|
{
|
|
case 0x10000:
|
|
return getchar ();
|
|
case 0x1fff4:
|
|
/* Read the simulator cycle timer. */
|
|
return ft32_cpu->cycles / 100;
|
|
default:
|
|
sim_io_eprintf (sd, "Illegal IO read address %08x, pc %#x\n",
|
|
ea, insnpc);
|
|
ILLEGAL ();
|
|
}
|
|
}
|
|
return ft32_read_item (sd, dw, RAM_BIAS + ea);
|
|
}
|
|
|
|
static void cpu_mem_write (SIM_DESC sd, uint32_t dw, uint32_t ea, uint32_t d)
|
|
{
|
|
sim_cpu *cpu = STATE_CPU (sd, 0);
|
|
struct ft32_cpu_state *ft32_cpu = FT32_SIM_CPU (cpu);
|
|
ea &= 0x1ffff;
|
|
if (ea & 0x10000)
|
|
{
|
|
/* Simulate some IO devices */
|
|
switch (ea)
|
|
{
|
|
case 0x10000:
|
|
/* Console output */
|
|
putchar (d & 0xff);
|
|
break;
|
|
case 0x1fc80:
|
|
/* Unlock the PM write port */
|
|
ft32_cpu->pm_unlock = (d == 0x1337f7d1);
|
|
break;
|
|
case 0x1fc84:
|
|
/* Set the PM write address register */
|
|
ft32_cpu->pm_addr = d;
|
|
break;
|
|
case 0x1fc88:
|
|
if (ft32_cpu->pm_unlock)
|
|
{
|
|
/* Write to PM. */
|
|
ft32_write_item (sd, dw, ft32_cpu->pm_addr, d);
|
|
ft32_cpu->pm_addr += 4;
|
|
}
|
|
break;
|
|
case 0x1fffc:
|
|
/* Normal exit. */
|
|
sim_engine_halt (sd, cpu, NULL, ft32_cpu->pc, sim_exited, ft32_cpu->regs[0]);
|
|
break;
|
|
case 0x1fff8:
|
|
sim_io_printf (sd, "Debug write %08x\n", d);
|
|
break;
|
|
default:
|
|
sim_io_eprintf (sd, "Unknown IO write %08x to to %08x\n", d, ea);
|
|
}
|
|
}
|
|
else
|
|
ft32_write_item (sd, dw, RAM_BIAS + ea, d);
|
|
}
|
|
|
|
#define GET_BYTE(ea) cpu_mem_read (sd, 0, (ea))
|
|
#define PUT_BYTE(ea, d) cpu_mem_write (sd, 0, (ea), (d))
|
|
|
|
/* LSBS (n) is a mask of the least significant N bits. */
|
|
#define LSBS(n) ((1U << (n)) - 1)
|
|
|
|
static void ft32_push (SIM_DESC sd, uint32_t v)
|
|
{
|
|
sim_cpu *cpu = STATE_CPU (sd, 0);
|
|
struct ft32_cpu_state *ft32_cpu = FT32_SIM_CPU (cpu);
|
|
ft32_cpu->regs[FT32_HARD_SP] -= 4;
|
|
ft32_cpu->regs[FT32_HARD_SP] &= 0xffff;
|
|
cpu_mem_write (sd, 2, ft32_cpu->regs[FT32_HARD_SP], v);
|
|
}
|
|
|
|
static uint32_t ft32_pop (SIM_DESC sd)
|
|
{
|
|
sim_cpu *cpu = STATE_CPU (sd, 0);
|
|
struct ft32_cpu_state *ft32_cpu = FT32_SIM_CPU (cpu);
|
|
uint32_t r = cpu_mem_read (sd, 2, ft32_cpu->regs[FT32_HARD_SP]);
|
|
ft32_cpu->regs[FT32_HARD_SP] += 4;
|
|
ft32_cpu->regs[FT32_HARD_SP] &= 0xffff;
|
|
return r;
|
|
}
|
|
|
|
/* Extract the low SIZ bits of N as an unsigned number. */
|
|
static int nunsigned (int siz, int n)
|
|
{
|
|
return n & LSBS (siz);
|
|
}
|
|
|
|
/* Extract the low SIZ bits of N as a signed number. */
|
|
static int nsigned (int siz, int n)
|
|
{
|
|
int shift = (sizeof (int) * 8) - siz;
|
|
return (n << shift) >> shift;
|
|
}
|
|
|
|
/* Signed division N / D, matching hw behavior for (MIN_INT, -1). */
|
|
static uint32_t ft32sdiv (uint32_t n, uint32_t d)
|
|
{
|
|
if (n == 0x80000000UL && d == 0xffffffffUL)
|
|
return 0x80000000UL;
|
|
else
|
|
return (uint32_t)((int)n / (int)d);
|
|
}
|
|
|
|
/* Signed modulus N % D, matching hw behavior for (MIN_INT, -1). */
|
|
static uint32_t ft32smod (uint32_t n, uint32_t d)
|
|
{
|
|
if (n == 0x80000000UL && d == 0xffffffffUL)
|
|
return 0;
|
|
else
|
|
return (uint32_t)((int)n % (int)d);
|
|
}
|
|
|
|
/* Circular rotate right N by B bits. */
|
|
static uint32_t ror (uint32_t n, uint32_t b)
|
|
{
|
|
b &= 31;
|
|
return (n >> b) | (n << (32 - b));
|
|
}
|
|
|
|
/* Implement the BINS machine instruction.
|
|
See FT32 Programmer's Reference for details. */
|
|
static uint32_t bins (uint32_t d, uint32_t f, uint32_t len, uint32_t pos)
|
|
{
|
|
uint32_t bitmask = LSBS (len) << pos;
|
|
return (d & ~bitmask) | ((f << pos) & bitmask);
|
|
}
|
|
|
|
/* Implement the FLIP machine instruction.
|
|
See FT32 Programmer's Reference for details. */
|
|
static uint32_t flip (uint32_t x, uint32_t b)
|
|
{
|
|
if (b & 1)
|
|
x = (x & 0x55555555) << 1 | (x & 0xAAAAAAAA) >> 1;
|
|
if (b & 2)
|
|
x = (x & 0x33333333) << 2 | (x & 0xCCCCCCCC) >> 2;
|
|
if (b & 4)
|
|
x = (x & 0x0F0F0F0F) << 4 | (x & 0xF0F0F0F0) >> 4;
|
|
if (b & 8)
|
|
x = (x & 0x00FF00FF) << 8 | (x & 0xFF00FF00) >> 8;
|
|
if (b & 16)
|
|
x = (x & 0x0000FFFF) << 16 | (x & 0xFFFF0000) >> 16;
|
|
return x;
|
|
}
|
|
|
|
static void
|
|
step_once (SIM_DESC sd)
|
|
{
|
|
sim_cpu *cpu = STATE_CPU (sd, 0);
|
|
struct ft32_cpu_state *ft32_cpu = FT32_SIM_CPU (cpu);
|
|
uint32_t inst;
|
|
uint32_t dw;
|
|
uint32_t cb;
|
|
uint32_t r_d;
|
|
uint32_t cr;
|
|
uint32_t cv;
|
|
uint32_t bt;
|
|
uint32_t r_1;
|
|
uint32_t rimm;
|
|
uint32_t r_2;
|
|
uint32_t k20;
|
|
uint32_t pa;
|
|
uint32_t aa;
|
|
uint32_t k16;
|
|
uint32_t k15;
|
|
uint32_t al;
|
|
uint32_t r_1v;
|
|
uint32_t rimmv;
|
|
uint32_t bit_pos;
|
|
uint32_t bit_len;
|
|
uint32_t upper;
|
|
uint32_t insnpc;
|
|
unsigned int sc[2];
|
|
int isize;
|
|
|
|
inst = ft32_read_item (sd, 2, ft32_cpu->pc);
|
|
ft32_cpu->cycles += 1;
|
|
|
|
if ((STATE_ARCHITECTURE (sd)->mach == bfd_mach_ft32b)
|
|
&& ft32_decode_shortcode (ft32_cpu->pc, inst, sc))
|
|
{
|
|
if ((ft32_cpu->pc & 3) == 0)
|
|
inst = sc[0];
|
|
else
|
|
inst = sc[1];
|
|
isize = 2;
|
|
}
|
|
else
|
|
isize = 4;
|
|
|
|
/* Handle "call 8" (which is FT32's "break" equivalent) here. */
|
|
if (inst == 0x00340002)
|
|
{
|
|
sim_engine_halt (sd, cpu, NULL,
|
|
ft32_cpu->pc,
|
|
sim_stopped, SIM_SIGTRAP);
|
|
goto escape;
|
|
}
|
|
|
|
dw = (inst >> FT32_FLD_DW_BIT) & LSBS (FT32_FLD_DW_SIZ);
|
|
cb = (inst >> FT32_FLD_CB_BIT) & LSBS (FT32_FLD_CB_SIZ);
|
|
r_d = (inst >> FT32_FLD_R_D_BIT) & LSBS (FT32_FLD_R_D_SIZ);
|
|
cr = (inst >> FT32_FLD_CR_BIT) & LSBS (FT32_FLD_CR_SIZ);
|
|
cv = (inst >> FT32_FLD_CV_BIT) & LSBS (FT32_FLD_CV_SIZ);
|
|
bt = (inst >> FT32_FLD_BT_BIT) & LSBS (FT32_FLD_BT_SIZ);
|
|
r_1 = (inst >> FT32_FLD_R_1_BIT) & LSBS (FT32_FLD_R_1_SIZ);
|
|
rimm = (inst >> FT32_FLD_RIMM_BIT) & LSBS (FT32_FLD_RIMM_SIZ);
|
|
r_2 = (inst >> FT32_FLD_R_2_BIT) & LSBS (FT32_FLD_R_2_SIZ);
|
|
k20 = nsigned (20, (inst >> FT32_FLD_K20_BIT) & LSBS (FT32_FLD_K20_SIZ));
|
|
pa = (inst >> FT32_FLD_PA_BIT) & LSBS (FT32_FLD_PA_SIZ);
|
|
aa = (inst >> FT32_FLD_AA_BIT) & LSBS (FT32_FLD_AA_SIZ);
|
|
k16 = (inst >> FT32_FLD_K16_BIT) & LSBS (FT32_FLD_K16_SIZ);
|
|
k15 = (inst >> FT32_FLD_K15_BIT) & LSBS (FT32_FLD_K15_SIZ);
|
|
if (k15 & 0x80)
|
|
k15 ^= 0x7f00;
|
|
if (k15 & 0x4000)
|
|
k15 -= 0x8000;
|
|
al = (inst >> FT32_FLD_AL_BIT) & LSBS (FT32_FLD_AL_SIZ);
|
|
|
|
r_1v = ft32_cpu->regs[r_1];
|
|
rimmv = (rimm & 0x400) ? nsigned (10, rimm) : ft32_cpu->regs[rimm & 0x1f];
|
|
|
|
bit_pos = rimmv & 31;
|
|
bit_len = 0xf & (rimmv >> 5);
|
|
if (bit_len == 0)
|
|
bit_len = 16;
|
|
|
|
upper = (inst >> 27);
|
|
|
|
insnpc = ft32_cpu->pc;
|
|
ft32_cpu->pc += isize;
|
|
switch (upper)
|
|
{
|
|
case FT32_PAT_TOC:
|
|
case FT32_PAT_TOCI:
|
|
{
|
|
int take = (cr == 3) || ((1 & (ft32_cpu->regs[28 + cr] >> cb)) == cv);
|
|
if (take)
|
|
{
|
|
ft32_cpu->cycles += 1;
|
|
if (bt)
|
|
ft32_push (sd, ft32_cpu->pc); /* this is a call. */
|
|
if (upper == FT32_PAT_TOC)
|
|
ft32_cpu->pc = pa << 2;
|
|
else
|
|
ft32_cpu->pc = ft32_cpu->regs[r_2];
|
|
if (ft32_cpu->pc == 0x8)
|
|
goto escape;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case FT32_PAT_ALUOP:
|
|
case FT32_PAT_CMPOP:
|
|
{
|
|
uint32_t result;
|
|
switch (al)
|
|
{
|
|
case 0x0: result = r_1v + rimmv; break;
|
|
case 0x1: result = ror (r_1v, rimmv); break;
|
|
case 0x2: result = r_1v - rimmv; break;
|
|
case 0x3: result = (r_1v << 10) | (1023 & rimmv); break;
|
|
case 0x4: result = r_1v & rimmv; break;
|
|
case 0x5: result = r_1v | rimmv; break;
|
|
case 0x6: result = r_1v ^ rimmv; break;
|
|
case 0x7: result = ~(r_1v ^ rimmv); break;
|
|
case 0x8: result = r_1v << rimmv; break;
|
|
case 0x9: result = r_1v >> rimmv; break;
|
|
case 0xa: result = (int32_t)r_1v >> rimmv; break;
|
|
case 0xb: result = bins (r_1v, rimmv >> 10, bit_len, bit_pos); break;
|
|
case 0xc: result = nsigned (bit_len, r_1v >> bit_pos); break;
|
|
case 0xd: result = nunsigned (bit_len, r_1v >> bit_pos); break;
|
|
case 0xe: result = flip (r_1v, rimmv); break;
|
|
default:
|
|
sim_io_eprintf (sd, "Unhandled alu %#x\n", al);
|
|
ILLEGAL ();
|
|
}
|
|
if (upper == FT32_PAT_ALUOP)
|
|
ft32_cpu->regs[r_d] = result;
|
|
else
|
|
{
|
|
uint32_t dwmask = 0;
|
|
int dwsiz = 0;
|
|
int zero;
|
|
int sign;
|
|
int ahi;
|
|
int bhi;
|
|
int overflow;
|
|
int carry;
|
|
int bit;
|
|
uint64_t ra;
|
|
uint64_t rb;
|
|
int above;
|
|
int greater;
|
|
int greatereq;
|
|
|
|
switch (dw)
|
|
{
|
|
case 0: dwsiz = 7; dwmask = 0xffU; break;
|
|
case 1: dwsiz = 15; dwmask = 0xffffU; break;
|
|
case 2: dwsiz = 31; dwmask = 0xffffffffU; break;
|
|
}
|
|
|
|
zero = (0 == (result & dwmask));
|
|
sign = 1 & (result >> dwsiz);
|
|
ahi = 1 & (r_1v >> dwsiz);
|
|
bhi = 1 & (rimmv >> dwsiz);
|
|
overflow = (sign != ahi) & (ahi == !bhi);
|
|
bit = (dwsiz + 1);
|
|
ra = r_1v & dwmask;
|
|
rb = rimmv & dwmask;
|
|
switch (al)
|
|
{
|
|
case 0x0: carry = 1 & ((ra + rb) >> bit); break;
|
|
case 0x2: carry = 1 & ((ra - rb) >> bit); break;
|
|
default: carry = 0; break;
|
|
}
|
|
above = (!carry & !zero);
|
|
greater = (sign == overflow) & !zero;
|
|
greatereq = (sign == overflow);
|
|
|
|
ft32_cpu->regs[r_d] = (
|
|
(above << 6) |
|
|
(greater << 5) |
|
|
(greatereq << 4) |
|
|
(sign << 3) |
|
|
(overflow << 2) |
|
|
(carry << 1) |
|
|
(zero << 0));
|
|
}
|
|
}
|
|
break;
|
|
|
|
case FT32_PAT_LDK:
|
|
ft32_cpu->regs[r_d] = k20;
|
|
break;
|
|
|
|
case FT32_PAT_LPM:
|
|
ft32_cpu->regs[r_d] = ft32_read_item (sd, dw, pa << 2);
|
|
ft32_cpu->cycles += 1;
|
|
break;
|
|
|
|
case FT32_PAT_LPMI:
|
|
ft32_cpu->regs[r_d] = ft32_read_item (sd, dw, ft32_cpu->regs[r_1] + k15);
|
|
ft32_cpu->cycles += 1;
|
|
break;
|
|
|
|
case FT32_PAT_STA:
|
|
cpu_mem_write (sd, dw, aa, ft32_cpu->regs[r_d]);
|
|
break;
|
|
|
|
case FT32_PAT_STI:
|
|
cpu_mem_write (sd, dw, ft32_cpu->regs[r_d] + k15, ft32_cpu->regs[r_1]);
|
|
break;
|
|
|
|
case FT32_PAT_LDA:
|
|
ft32_cpu->regs[r_d] = cpu_mem_read (sd, dw, aa);
|
|
ft32_cpu->cycles += 1;
|
|
break;
|
|
|
|
case FT32_PAT_LDI:
|
|
ft32_cpu->regs[r_d] = cpu_mem_read (sd, dw, ft32_cpu->regs[r_1] + k15);
|
|
ft32_cpu->cycles += 1;
|
|
break;
|
|
|
|
case FT32_PAT_EXA:
|
|
{
|
|
uint32_t tmp;
|
|
tmp = cpu_mem_read (sd, dw, aa);
|
|
cpu_mem_write (sd, dw, aa, ft32_cpu->regs[r_d]);
|
|
ft32_cpu->regs[r_d] = tmp;
|
|
ft32_cpu->cycles += 1;
|
|
}
|
|
break;
|
|
|
|
case FT32_PAT_EXI:
|
|
{
|
|
uint32_t tmp;
|
|
tmp = cpu_mem_read (sd, dw, ft32_cpu->regs[r_1] + k15);
|
|
cpu_mem_write (sd, dw, ft32_cpu->regs[r_1] + k15, ft32_cpu->regs[r_d]);
|
|
ft32_cpu->regs[r_d] = tmp;
|
|
ft32_cpu->cycles += 1;
|
|
}
|
|
break;
|
|
|
|
case FT32_PAT_PUSH:
|
|
ft32_push (sd, r_1v);
|
|
break;
|
|
|
|
case FT32_PAT_LINK:
|
|
ft32_push (sd, ft32_cpu->regs[r_d]);
|
|
ft32_cpu->regs[r_d] = ft32_cpu->regs[FT32_HARD_SP];
|
|
ft32_cpu->regs[FT32_HARD_SP] -= k16;
|
|
ft32_cpu->regs[FT32_HARD_SP] &= 0xffff;
|
|
break;
|
|
|
|
case FT32_PAT_UNLINK:
|
|
ft32_cpu->regs[FT32_HARD_SP] = ft32_cpu->regs[r_d];
|
|
ft32_cpu->regs[FT32_HARD_SP] &= 0xffff;
|
|
ft32_cpu->regs[r_d] = ft32_pop (sd);
|
|
break;
|
|
|
|
case FT32_PAT_POP:
|
|
ft32_cpu->cycles += 1;
|
|
ft32_cpu->regs[r_d] = ft32_pop (sd);
|
|
break;
|
|
|
|
case FT32_PAT_RETURN:
|
|
ft32_cpu->pc = ft32_pop (sd);
|
|
break;
|
|
|
|
case FT32_PAT_FFUOP:
|
|
switch (al)
|
|
{
|
|
case 0x0:
|
|
ft32_cpu->regs[r_d] = r_1v / rimmv;
|
|
break;
|
|
case 0x1:
|
|
ft32_cpu->regs[r_d] = r_1v % rimmv;
|
|
break;
|
|
case 0x2:
|
|
ft32_cpu->regs[r_d] = ft32sdiv (r_1v, rimmv);
|
|
break;
|
|
case 0x3:
|
|
ft32_cpu->regs[r_d] = ft32smod (r_1v, rimmv);
|
|
break;
|
|
|
|
case 0x4:
|
|
{
|
|
/* strcmp instruction. */
|
|
uint32_t a = r_1v;
|
|
uint32_t b = rimmv;
|
|
uint32_t i = 0;
|
|
while ((GET_BYTE (a + i) != 0) &&
|
|
(GET_BYTE (a + i) == GET_BYTE (b + i)))
|
|
i++;
|
|
ft32_cpu->regs[r_d] = GET_BYTE (a + i) - GET_BYTE (b + i);
|
|
}
|
|
break;
|
|
|
|
case 0x5:
|
|
{
|
|
/* memcpy instruction. */
|
|
uint32_t src = r_1v;
|
|
uint32_t dst = ft32_cpu->regs[r_d];
|
|
uint32_t i;
|
|
for (i = 0; i < (rimmv & 0x7fff); i++)
|
|
PUT_BYTE (dst + i, GET_BYTE (src + i));
|
|
}
|
|
break;
|
|
case 0x6:
|
|
{
|
|
/* strlen instruction. */
|
|
uint32_t src = r_1v;
|
|
uint32_t i;
|
|
for (i = 0; GET_BYTE (src + i) != 0; i++)
|
|
;
|
|
ft32_cpu->regs[r_d] = i;
|
|
}
|
|
break;
|
|
case 0x7:
|
|
{
|
|
/* memset instruction. */
|
|
uint32_t dst = ft32_cpu->regs[r_d];
|
|
uint32_t i;
|
|
for (i = 0; i < (rimmv & 0x7fff); i++)
|
|
PUT_BYTE (dst + i, r_1v);
|
|
}
|
|
break;
|
|
case 0x8:
|
|
ft32_cpu->regs[r_d] = r_1v * rimmv;
|
|
break;
|
|
case 0x9:
|
|
ft32_cpu->regs[r_d] = ((uint64_t)r_1v * (uint64_t)rimmv) >> 32;
|
|
break;
|
|
case 0xa:
|
|
{
|
|
/* stpcpy instruction. */
|
|
uint32_t src = r_1v;
|
|
uint32_t dst = ft32_cpu->regs[r_d];
|
|
uint32_t i;
|
|
for (i = 0; GET_BYTE (src + i) != 0; i++)
|
|
PUT_BYTE (dst + i, GET_BYTE (src + i));
|
|
PUT_BYTE (dst + i, 0);
|
|
ft32_cpu->regs[r_d] = dst + i;
|
|
}
|
|
break;
|
|
case 0xe:
|
|
{
|
|
/* streamout instruction. */
|
|
uint32_t i;
|
|
uint32_t src = ft32_cpu->regs[r_1];
|
|
for (i = 0; i < rimmv; i += (1 << dw))
|
|
{
|
|
cpu_mem_write (sd,
|
|
dw,
|
|
ft32_cpu->regs[r_d],
|
|
cpu_mem_read (sd, dw, src));
|
|
src += (1 << dw);
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
sim_io_eprintf (sd, "Unhandled ffu %#x at %08x\n", al, insnpc);
|
|
ILLEGAL ();
|
|
}
|
|
break;
|
|
|
|
default:
|
|
sim_io_eprintf (sd, "Unhandled pattern %d at %08x\n", upper, insnpc);
|
|
ILLEGAL ();
|
|
}
|
|
ft32_cpu->num_i++;
|
|
|
|
escape:
|
|
;
|
|
}
|
|
|
|
void
|
|
sim_engine_run (SIM_DESC sd,
|
|
int next_cpu_nr, /* ignore */
|
|
int nr_cpus, /* ignore */
|
|
int siggnal) /* ignore */
|
|
{
|
|
SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
|
|
|
|
while (1)
|
|
{
|
|
step_once (sd);
|
|
if (sim_events_tick (sd))
|
|
sim_events_process (sd);
|
|
}
|
|
}
|
|
|
|
static uint32_t *
|
|
ft32_lookup_register (SIM_CPU *cpu, int nr)
|
|
{
|
|
/* Handle the register number translation here.
|
|
* Sim registers are 0-31.
|
|
* Other tools (gcc, gdb) use:
|
|
* 0 - fp
|
|
* 1 - sp
|
|
* 2 - r0
|
|
* 31 - cc
|
|
*/
|
|
|
|
struct ft32_cpu_state *ft32_cpu = FT32_SIM_CPU (cpu);
|
|
|
|
if ((nr < 0) || (nr > 32))
|
|
{
|
|
sim_io_eprintf (CPU_STATE (cpu), "unknown register %i\n", nr);
|
|
abort ();
|
|
}
|
|
|
|
switch (nr)
|
|
{
|
|
case FT32_FP_REGNUM:
|
|
return &ft32_cpu->regs[FT32_HARD_FP];
|
|
case FT32_SP_REGNUM:
|
|
return &ft32_cpu->regs[FT32_HARD_SP];
|
|
case FT32_CC_REGNUM:
|
|
return &ft32_cpu->regs[FT32_HARD_CC];
|
|
case FT32_PC_REGNUM:
|
|
return &ft32_cpu->pc;
|
|
default:
|
|
return &ft32_cpu->regs[nr - 2];
|
|
}
|
|
}
|
|
|
|
static int
|
|
ft32_reg_store (SIM_CPU *cpu,
|
|
int rn,
|
|
const void *memory,
|
|
int length)
|
|
{
|
|
if (0 <= rn && rn <= 32)
|
|
{
|
|
if (length == 4)
|
|
*ft32_lookup_register (cpu, rn) = ft32_extract_unsigned_integer (memory, 4);
|
|
|
|
return 4;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
ft32_reg_fetch (SIM_CPU *cpu,
|
|
int rn,
|
|
void *memory,
|
|
int length)
|
|
{
|
|
if (0 <= rn && rn <= 32)
|
|
{
|
|
if (length == 4)
|
|
ft32_store_unsigned_integer (memory, 4, *ft32_lookup_register (cpu, rn));
|
|
|
|
return 4;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static sim_cia
|
|
ft32_pc_get (SIM_CPU *cpu)
|
|
{
|
|
return FT32_SIM_CPU (cpu)->pc;
|
|
}
|
|
|
|
static void
|
|
ft32_pc_set (SIM_CPU *cpu, sim_cia newpc)
|
|
{
|
|
FT32_SIM_CPU (cpu)->pc = newpc;
|
|
}
|
|
|
|
/* Cover function of sim_state_free to free the cpu buffers as well. */
|
|
|
|
static void
|
|
free_state (SIM_DESC sd)
|
|
{
|
|
if (STATE_MODULES (sd) != NULL)
|
|
sim_module_uninstall (sd);
|
|
sim_cpu_free_all (sd);
|
|
sim_state_free (sd);
|
|
}
|
|
|
|
SIM_DESC
|
|
sim_open (SIM_OPEN_KIND kind,
|
|
host_callback *cb,
|
|
struct bfd *abfd,
|
|
char * const *argv)
|
|
{
|
|
char c;
|
|
size_t i;
|
|
SIM_DESC sd = sim_state_alloc (kind, cb);
|
|
|
|
/* Set default options before parsing user options. */
|
|
current_alignment = STRICT_ALIGNMENT;
|
|
current_target_byte_order = BFD_ENDIAN_LITTLE;
|
|
|
|
/* The cpu data is kept in a separately allocated chunk of memory. */
|
|
if (sim_cpu_alloc_all_extra (sd, 0, sizeof (struct ft32_cpu_state))
|
|
!= SIM_RC_OK)
|
|
{
|
|
free_state (sd);
|
|
return 0;
|
|
}
|
|
|
|
if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
|
|
{
|
|
free_state (sd);
|
|
return 0;
|
|
}
|
|
|
|
/* The parser will print an error message for us, so we silently return. */
|
|
if (sim_parse_args (sd, argv) != SIM_RC_OK)
|
|
{
|
|
free_state (sd);
|
|
return 0;
|
|
}
|
|
|
|
/* Allocate external memory if none specified by user.
|
|
Use address 4 here in case the user wanted address 0 unmapped. */
|
|
if (sim_core_read_buffer (sd, NULL, read_map, &c, 4, 1) == 0)
|
|
{
|
|
sim_do_command (sd, "memory region 0x00000000,0x40000");
|
|
sim_do_command (sd, "memory region 0x800000,0x10000");
|
|
}
|
|
|
|
/* Check for/establish the reference program image. */
|
|
if (sim_analyze_program (sd, STATE_PROG_FILE (sd), abfd) != SIM_RC_OK)
|
|
{
|
|
free_state (sd);
|
|
return 0;
|
|
}
|
|
|
|
/* Configure/verify the target byte order and other runtime
|
|
configuration options. */
|
|
if (sim_config (sd) != SIM_RC_OK)
|
|
{
|
|
free_state (sd);
|
|
return 0;
|
|
}
|
|
|
|
if (sim_post_argv_init (sd) != SIM_RC_OK)
|
|
{
|
|
free_state (sd);
|
|
return 0;
|
|
}
|
|
|
|
/* CPU specific initialization. */
|
|
for (i = 0; i < MAX_NR_PROCESSORS; ++i)
|
|
{
|
|
SIM_CPU *cpu = STATE_CPU (sd, i);
|
|
|
|
CPU_REG_FETCH (cpu) = ft32_reg_fetch;
|
|
CPU_REG_STORE (cpu) = ft32_reg_store;
|
|
CPU_PC_FETCH (cpu) = ft32_pc_get;
|
|
CPU_PC_STORE (cpu) = ft32_pc_set;
|
|
}
|
|
|
|
return sd;
|
|
}
|
|
|
|
SIM_RC
|
|
sim_create_inferior (SIM_DESC sd,
|
|
struct bfd *abfd,
|
|
char * const *argv,
|
|
char * const *env)
|
|
{
|
|
uint32_t addr;
|
|
sim_cpu *cpu = STATE_CPU (sd, 0);
|
|
struct ft32_cpu_state *ft32_cpu = FT32_SIM_CPU (cpu);
|
|
host_callback *cb = STATE_CALLBACK (sd);
|
|
|
|
/* Set the PC. */
|
|
if (abfd != NULL)
|
|
addr = bfd_get_start_address (abfd);
|
|
else
|
|
addr = 0;
|
|
|
|
/* Standalone mode (i.e. `run`) will take care of the argv for us in
|
|
sim_open() -> sim_parse_args(). But in debug mode (i.e. 'target sim'
|
|
with `gdb`), we need to handle it because the user can change the
|
|
argv on the fly via gdb's 'run'. */
|
|
if (STATE_PROG_ARGV (sd) != argv)
|
|
{
|
|
freeargv (STATE_PROG_ARGV (sd));
|
|
STATE_PROG_ARGV (sd) = dupargv (argv);
|
|
}
|
|
|
|
if (STATE_PROG_ENVP (sd) != env)
|
|
{
|
|
freeargv (STATE_PROG_ENVP (sd));
|
|
STATE_PROG_ENVP (sd) = dupargv (env);
|
|
}
|
|
|
|
cb->argv = STATE_PROG_ARGV (sd);
|
|
cb->envp = STATE_PROG_ENVP (sd);
|
|
|
|
ft32_cpu->regs[FT32_HARD_SP] = addr;
|
|
ft32_cpu->num_i = 0;
|
|
ft32_cpu->cycles = 0;
|
|
ft32_cpu->next_tick_cycle = 100000;
|
|
|
|
return SIM_RC_OK;
|
|
}
|