mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-06 12:09:26 +08:00
dcc050c86c
This commit:
commit 8c95582da8
Date: Mon Dec 30 21:04:51 2019 +0000
gdb: Add support for tracking the DWARF line table is-stmt field
Introduced an invalid memory access, by reading outside the bounds of
an array.
This would cause this valgrind error:
==7633== Invalid read of size 4
==7633== at 0x4D002C: buildsym_compunit::record_line(subfile*, int, unsigned long, bool) (buildsym.c:688)
==7633== by 0x5F60A5: dwarf_record_line_1(gdbarch*, subfile*, unsigned int, unsigned long, bool, dwarf2_cu*) (read.c:19956)
==7633== by 0x5F63B0: lnp_state_machine::record_line(bool) (read.c:20024)
==7633== by 0x5F5DD5: lnp_state_machine::handle_special_opcode(unsigned char) (read.c:19851)
==7633== by 0x5F6706: dwarf_decode_lines_1(line_header*, dwarf2_cu*, int, unsigned long) (read.c:20135)
==7633== by 0x5F6C57: dwarf_decode_lines(line_header*, char const*, dwarf2_cu*, dwarf2_psymtab*, unsigned long, int) (read.c:20328)
==7633== by 0x5DF5F1: handle_DW_AT_stmt_list(die_info*, dwarf2_cu*, char const*, unsigned long) (read.c:10748)
==7633== by 0x5DF823: read_file_scope(die_info*, dwarf2_cu*) (read.c:10796)
==7633== by 0x5DDA63: process_die(die_info*, dwarf2_cu*) (read.c:9815)
==7633== by 0x5DD44A: process_full_comp_unit(dwarf2_per_cu_data*, language) (read.c:9580)
==7633== by 0x5DAB58: process_queue(dwarf2_per_objfile*) (read.c:8867)
==7633== by 0x5CB30E: dw2_do_instantiate_symtab(dwarf2_per_cu_data*, bool) (read.c:2374)
==7633== Address 0xa467f48 is 8 bytes before a block of size 16,024 alloc'd
==7633== at 0x4C2CDCB: malloc (vg_replace_malloc.c:299)
==7633== by 0x451FC4: xmalloc (alloc.c:60)
==7633== by 0x4CFFDF: buildsym_compunit::record_line(subfile*, int, unsigned long, bool) (buildsym.c:678)
==7633== by 0x5F60A5: dwarf_record_line_1(gdbarch*, subfile*, unsigned int, unsigned long, bool, dwarf2_cu*) (read.c:19956)
==7633== by 0x5F63B0: lnp_state_machine::record_line(bool) (read.c:20024)
==7633== by 0x5F5DD5: lnp_state_machine::handle_special_opcode(unsigned char) (read.c:19851)
==7633== by 0x5F6706: dwarf_decode_lines_1(line_header*, dwarf2_cu*, int, unsigned long) (read.c:20135)
==7633== by 0x5F6C57: dwarf_decode_lines(line_header*, char const*, dwarf2_cu*, dwarf2_psymtab*, unsigned long, int) (read.c:20328)
==7633== by 0x5DF5F1: handle_DW_AT_stmt_list(die_info*, dwarf2_cu*, char const*, unsigned long) (read.c:10748)
==7633== by 0x5DF823: read_file_scope(die_info*, dwarf2_cu*) (read.c:10796)
==7633== by 0x5DDA63: process_die(die_info*, dwarf2_cu*) (read.c:9815)
==7633== by 0x5DD44A: process_full_comp_unit(dwarf2_per_cu_data*, language) (read.c:9580)
gdb/ChangeLog:
* buildsyms.c (buildsym_compunit::record_line): Avoid accessing
previous item in the list, when the list has no items.
1258 lines
39 KiB
C
1258 lines
39 KiB
C
/* Support routines for building symbol tables in GDB's internal format.
|
||
Copyright (C) 1986-2020 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "buildsym-legacy.h"
|
||
#include "bfd.h"
|
||
#include "gdb_obstack.h"
|
||
#include "symtab.h"
|
||
#include "symfile.h"
|
||
#include "objfiles.h"
|
||
#include "gdbtypes.h"
|
||
#include "complaints.h"
|
||
#include "expression.h" /* For "enum exp_opcode" used by... */
|
||
#include "filenames.h" /* For DOSish file names. */
|
||
#include "macrotab.h"
|
||
#include "demangle.h" /* Needed by SYMBOL_INIT_DEMANGLED_NAME. */
|
||
#include "block.h"
|
||
#include "cp-support.h"
|
||
#include "dictionary.h"
|
||
#include "addrmap.h"
|
||
#include <algorithm>
|
||
|
||
/* For cleanup_undefined_stabs_types and finish_global_stabs (somewhat
|
||
questionable--see comment where we call them). */
|
||
|
||
#include "stabsread.h"
|
||
|
||
/* List of blocks already made (lexical contexts already closed).
|
||
This is used at the end to make the blockvector. */
|
||
|
||
struct pending_block
|
||
{
|
||
struct pending_block *next;
|
||
struct block *block;
|
||
};
|
||
|
||
/* Initial sizes of data structures. These are realloc'd larger if
|
||
needed, and realloc'd down to the size actually used, when
|
||
completed. */
|
||
|
||
#define INITIAL_LINE_VECTOR_LENGTH 1000
|
||
|
||
|
||
buildsym_compunit::buildsym_compunit (struct objfile *objfile_,
|
||
const char *name,
|
||
const char *comp_dir_,
|
||
enum language language_,
|
||
CORE_ADDR last_addr)
|
||
: m_objfile (objfile_),
|
||
m_last_source_file (name == nullptr ? nullptr : xstrdup (name)),
|
||
m_comp_dir (comp_dir_ == nullptr ? nullptr : xstrdup (comp_dir_)),
|
||
m_language (language_),
|
||
m_last_source_start_addr (last_addr)
|
||
{
|
||
/* Allocate the compunit symtab now. The caller needs it to allocate
|
||
non-primary symtabs. It is also needed by get_macro_table. */
|
||
m_compunit_symtab = allocate_compunit_symtab (m_objfile, name);
|
||
|
||
/* Build the subfile for NAME (the main source file) so that we can record
|
||
a pointer to it for later.
|
||
IMPORTANT: Do not allocate a struct symtab for NAME here.
|
||
It can happen that the debug info provides a different path to NAME than
|
||
DIRNAME,NAME. We cope with this in watch_main_source_file_lossage but
|
||
that only works if the main_subfile doesn't have a symtab yet. */
|
||
start_subfile (name);
|
||
/* Save this so that we don't have to go looking for it at the end
|
||
of the subfiles list. */
|
||
m_main_subfile = m_current_subfile;
|
||
}
|
||
|
||
buildsym_compunit::~buildsym_compunit ()
|
||
{
|
||
struct subfile *subfile, *nextsub;
|
||
|
||
if (m_pending_macros != nullptr)
|
||
free_macro_table (m_pending_macros);
|
||
|
||
for (subfile = m_subfiles;
|
||
subfile != NULL;
|
||
subfile = nextsub)
|
||
{
|
||
nextsub = subfile->next;
|
||
xfree (subfile->name);
|
||
xfree (subfile->line_vector);
|
||
xfree (subfile);
|
||
}
|
||
|
||
struct pending *next, *next1;
|
||
|
||
for (next = m_file_symbols; next != NULL; next = next1)
|
||
{
|
||
next1 = next->next;
|
||
xfree ((void *) next);
|
||
}
|
||
|
||
for (next = m_global_symbols; next != NULL; next = next1)
|
||
{
|
||
next1 = next->next;
|
||
xfree ((void *) next);
|
||
}
|
||
}
|
||
|
||
struct macro_table *
|
||
buildsym_compunit::get_macro_table ()
|
||
{
|
||
if (m_pending_macros == nullptr)
|
||
m_pending_macros = new_macro_table (&m_objfile->per_bfd->storage_obstack,
|
||
&m_objfile->per_bfd->string_cache,
|
||
m_compunit_symtab);
|
||
return m_pending_macros;
|
||
}
|
||
|
||
/* Maintain the lists of symbols and blocks. */
|
||
|
||
/* Add a symbol to one of the lists of symbols. */
|
||
|
||
void
|
||
add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
|
||
{
|
||
struct pending *link;
|
||
|
||
/* If this is an alias for another symbol, don't add it. */
|
||
if (symbol->linkage_name () && symbol->linkage_name ()[0] == '#')
|
||
return;
|
||
|
||
/* We keep PENDINGSIZE symbols in each link of the list. If we
|
||
don't have a link with room in it, add a new link. */
|
||
if (*listhead == NULL || (*listhead)->nsyms == PENDINGSIZE)
|
||
{
|
||
link = XNEW (struct pending);
|
||
link->next = *listhead;
|
||
*listhead = link;
|
||
link->nsyms = 0;
|
||
}
|
||
|
||
(*listhead)->symbol[(*listhead)->nsyms++] = symbol;
|
||
}
|
||
|
||
/* Find a symbol named NAME on a LIST. NAME need not be
|
||
'\0'-terminated; LENGTH is the length of the name. */
|
||
|
||
struct symbol *
|
||
find_symbol_in_list (struct pending *list, char *name, int length)
|
||
{
|
||
int j;
|
||
const char *pp;
|
||
|
||
while (list != NULL)
|
||
{
|
||
for (j = list->nsyms; --j >= 0;)
|
||
{
|
||
pp = list->symbol[j]->linkage_name ();
|
||
if (*pp == *name && strncmp (pp, name, length) == 0
|
||
&& pp[length] == '\0')
|
||
{
|
||
return (list->symbol[j]);
|
||
}
|
||
}
|
||
list = list->next;
|
||
}
|
||
return (NULL);
|
||
}
|
||
|
||
/* Record BLOCK on the list of all blocks in the file. Put it after
|
||
OPBLOCK, or at the beginning if opblock is NULL. This puts the
|
||
block in the list after all its subblocks. */
|
||
|
||
void
|
||
buildsym_compunit::record_pending_block (struct block *block,
|
||
struct pending_block *opblock)
|
||
{
|
||
struct pending_block *pblock;
|
||
|
||
pblock = XOBNEW (&m_pending_block_obstack, struct pending_block);
|
||
pblock->block = block;
|
||
if (opblock)
|
||
{
|
||
pblock->next = opblock->next;
|
||
opblock->next = pblock;
|
||
}
|
||
else
|
||
{
|
||
pblock->next = m_pending_blocks;
|
||
m_pending_blocks = pblock;
|
||
}
|
||
}
|
||
|
||
/* Take one of the lists of symbols and make a block from it. Keep
|
||
the order the symbols have in the list (reversed from the input
|
||
file). Put the block on the list of pending blocks. */
|
||
|
||
struct block *
|
||
buildsym_compunit::finish_block_internal
|
||
(struct symbol *symbol,
|
||
struct pending **listhead,
|
||
struct pending_block *old_blocks,
|
||
const struct dynamic_prop *static_link,
|
||
CORE_ADDR start, CORE_ADDR end,
|
||
int is_global, int expandable)
|
||
{
|
||
struct gdbarch *gdbarch = get_objfile_arch (m_objfile);
|
||
struct pending *next, *next1;
|
||
struct block *block;
|
||
struct pending_block *pblock;
|
||
struct pending_block *opblock;
|
||
|
||
block = (is_global
|
||
? allocate_global_block (&m_objfile->objfile_obstack)
|
||
: allocate_block (&m_objfile->objfile_obstack));
|
||
|
||
if (symbol)
|
||
{
|
||
BLOCK_MULTIDICT (block)
|
||
= mdict_create_linear (&m_objfile->objfile_obstack, *listhead);
|
||
}
|
||
else
|
||
{
|
||
if (expandable)
|
||
{
|
||
BLOCK_MULTIDICT (block) = mdict_create_hashed_expandable (m_language);
|
||
mdict_add_pending (BLOCK_MULTIDICT (block), *listhead);
|
||
}
|
||
else
|
||
{
|
||
BLOCK_MULTIDICT (block) =
|
||
mdict_create_hashed (&m_objfile->objfile_obstack, *listhead);
|
||
}
|
||
}
|
||
|
||
BLOCK_START (block) = start;
|
||
BLOCK_END (block) = end;
|
||
|
||
/* Put the block in as the value of the symbol that names it. */
|
||
|
||
if (symbol)
|
||
{
|
||
struct type *ftype = SYMBOL_TYPE (symbol);
|
||
struct mdict_iterator miter;
|
||
SYMBOL_BLOCK_VALUE (symbol) = block;
|
||
BLOCK_FUNCTION (block) = symbol;
|
||
|
||
if (TYPE_NFIELDS (ftype) <= 0)
|
||
{
|
||
/* No parameter type information is recorded with the
|
||
function's type. Set that from the type of the
|
||
parameter symbols. */
|
||
int nparams = 0, iparams;
|
||
struct symbol *sym;
|
||
|
||
/* Here we want to directly access the dictionary, because
|
||
we haven't fully initialized the block yet. */
|
||
ALL_DICT_SYMBOLS (BLOCK_MULTIDICT (block), miter, sym)
|
||
{
|
||
if (SYMBOL_IS_ARGUMENT (sym))
|
||
nparams++;
|
||
}
|
||
if (nparams > 0)
|
||
{
|
||
TYPE_NFIELDS (ftype) = nparams;
|
||
TYPE_FIELDS (ftype) = (struct field *)
|
||
TYPE_ALLOC (ftype, nparams * sizeof (struct field));
|
||
|
||
iparams = 0;
|
||
/* Here we want to directly access the dictionary, because
|
||
we haven't fully initialized the block yet. */
|
||
ALL_DICT_SYMBOLS (BLOCK_MULTIDICT (block), miter, sym)
|
||
{
|
||
if (iparams == nparams)
|
||
break;
|
||
|
||
if (SYMBOL_IS_ARGUMENT (sym))
|
||
{
|
||
TYPE_FIELD_TYPE (ftype, iparams) = SYMBOL_TYPE (sym);
|
||
TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
|
||
iparams++;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
BLOCK_FUNCTION (block) = NULL;
|
||
}
|
||
|
||
if (static_link != NULL)
|
||
objfile_register_static_link (m_objfile, block, static_link);
|
||
|
||
/* Now free the links of the list, and empty the list. */
|
||
|
||
for (next = *listhead; next; next = next1)
|
||
{
|
||
next1 = next->next;
|
||
xfree (next);
|
||
}
|
||
*listhead = NULL;
|
||
|
||
/* Check to be sure that the blocks have an end address that is
|
||
greater than starting address. */
|
||
|
||
if (BLOCK_END (block) < BLOCK_START (block))
|
||
{
|
||
if (symbol)
|
||
{
|
||
complaint (_("block end address less than block "
|
||
"start address in %s (patched it)"),
|
||
symbol->print_name ());
|
||
}
|
||
else
|
||
{
|
||
complaint (_("block end address %s less than block "
|
||
"start address %s (patched it)"),
|
||
paddress (gdbarch, BLOCK_END (block)),
|
||
paddress (gdbarch, BLOCK_START (block)));
|
||
}
|
||
/* Better than nothing. */
|
||
BLOCK_END (block) = BLOCK_START (block);
|
||
}
|
||
|
||
/* Install this block as the superblock of all blocks made since the
|
||
start of this scope that don't have superblocks yet. */
|
||
|
||
opblock = NULL;
|
||
for (pblock = m_pending_blocks;
|
||
pblock && pblock != old_blocks;
|
||
pblock = pblock->next)
|
||
{
|
||
if (BLOCK_SUPERBLOCK (pblock->block) == NULL)
|
||
{
|
||
/* Check to be sure the blocks are nested as we receive
|
||
them. If the compiler/assembler/linker work, this just
|
||
burns a small amount of time.
|
||
|
||
Skip blocks which correspond to a function; they're not
|
||
physically nested inside this other blocks, only
|
||
lexically nested. */
|
||
if (BLOCK_FUNCTION (pblock->block) == NULL
|
||
&& (BLOCK_START (pblock->block) < BLOCK_START (block)
|
||
|| BLOCK_END (pblock->block) > BLOCK_END (block)))
|
||
{
|
||
if (symbol)
|
||
{
|
||
complaint (_("inner block not inside outer block in %s"),
|
||
symbol->print_name ());
|
||
}
|
||
else
|
||
{
|
||
complaint (_("inner block (%s-%s) not "
|
||
"inside outer block (%s-%s)"),
|
||
paddress (gdbarch, BLOCK_START (pblock->block)),
|
||
paddress (gdbarch, BLOCK_END (pblock->block)),
|
||
paddress (gdbarch, BLOCK_START (block)),
|
||
paddress (gdbarch, BLOCK_END (block)));
|
||
}
|
||
if (BLOCK_START (pblock->block) < BLOCK_START (block))
|
||
BLOCK_START (pblock->block) = BLOCK_START (block);
|
||
if (BLOCK_END (pblock->block) > BLOCK_END (block))
|
||
BLOCK_END (pblock->block) = BLOCK_END (block);
|
||
}
|
||
BLOCK_SUPERBLOCK (pblock->block) = block;
|
||
}
|
||
opblock = pblock;
|
||
}
|
||
|
||
block_set_using (block,
|
||
(is_global
|
||
? m_global_using_directives
|
||
: m_local_using_directives),
|
||
&m_objfile->objfile_obstack);
|
||
if (is_global)
|
||
m_global_using_directives = NULL;
|
||
else
|
||
m_local_using_directives = NULL;
|
||
|
||
record_pending_block (block, opblock);
|
||
|
||
return block;
|
||
}
|
||
|
||
struct block *
|
||
buildsym_compunit::finish_block (struct symbol *symbol,
|
||
struct pending_block *old_blocks,
|
||
const struct dynamic_prop *static_link,
|
||
CORE_ADDR start, CORE_ADDR end)
|
||
{
|
||
return finish_block_internal (symbol, &m_local_symbols,
|
||
old_blocks, static_link, start, end, 0, 0);
|
||
}
|
||
|
||
/* Record that the range of addresses from START to END_INCLUSIVE
|
||
(inclusive, like it says) belongs to BLOCK. BLOCK's start and end
|
||
addresses must be set already. You must apply this function to all
|
||
BLOCK's children before applying it to BLOCK.
|
||
|
||
If a call to this function complicates the picture beyond that
|
||
already provided by BLOCK_START and BLOCK_END, then we create an
|
||
address map for the block. */
|
||
void
|
||
buildsym_compunit::record_block_range (struct block *block,
|
||
CORE_ADDR start,
|
||
CORE_ADDR end_inclusive)
|
||
{
|
||
/* If this is any different from the range recorded in the block's
|
||
own BLOCK_START and BLOCK_END, then note that the address map has
|
||
become interesting. Note that even if this block doesn't have
|
||
any "interesting" ranges, some later block might, so we still
|
||
need to record this block in the addrmap. */
|
||
if (start != BLOCK_START (block)
|
||
|| end_inclusive + 1 != BLOCK_END (block))
|
||
m_pending_addrmap_interesting = true;
|
||
|
||
if (m_pending_addrmap == nullptr)
|
||
m_pending_addrmap = addrmap_create_mutable (&m_pending_addrmap_obstack);
|
||
|
||
addrmap_set_empty (m_pending_addrmap, start, end_inclusive, block);
|
||
}
|
||
|
||
struct blockvector *
|
||
buildsym_compunit::make_blockvector ()
|
||
{
|
||
struct pending_block *next;
|
||
struct blockvector *blockvector;
|
||
int i;
|
||
|
||
/* Count the length of the list of blocks. */
|
||
|
||
for (next = m_pending_blocks, i = 0; next; next = next->next, i++)
|
||
{
|
||
}
|
||
|
||
blockvector = (struct blockvector *)
|
||
obstack_alloc (&m_objfile->objfile_obstack,
|
||
(sizeof (struct blockvector)
|
||
+ (i - 1) * sizeof (struct block *)));
|
||
|
||
/* Copy the blocks into the blockvector. This is done in reverse
|
||
order, which happens to put the blocks into the proper order
|
||
(ascending starting address). finish_block has hair to insert
|
||
each block into the list after its subblocks in order to make
|
||
sure this is true. */
|
||
|
||
BLOCKVECTOR_NBLOCKS (blockvector) = i;
|
||
for (next = m_pending_blocks; next; next = next->next)
|
||
{
|
||
BLOCKVECTOR_BLOCK (blockvector, --i) = next->block;
|
||
}
|
||
|
||
free_pending_blocks ();
|
||
|
||
/* If we needed an address map for this symtab, record it in the
|
||
blockvector. */
|
||
if (m_pending_addrmap != nullptr && m_pending_addrmap_interesting)
|
||
BLOCKVECTOR_MAP (blockvector)
|
||
= addrmap_create_fixed (m_pending_addrmap, &m_objfile->objfile_obstack);
|
||
else
|
||
BLOCKVECTOR_MAP (blockvector) = 0;
|
||
|
||
/* Some compilers output blocks in the wrong order, but we depend on
|
||
their being in the right order so we can binary search. Check the
|
||
order and moan about it.
|
||
Note: Remember that the first two blocks are the global and static
|
||
blocks. We could special case that fact and begin checking at block 2.
|
||
To avoid making that assumption we do not. */
|
||
if (BLOCKVECTOR_NBLOCKS (blockvector) > 1)
|
||
{
|
||
for (i = 1; i < BLOCKVECTOR_NBLOCKS (blockvector); i++)
|
||
{
|
||
if (BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i - 1))
|
||
> BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i)))
|
||
{
|
||
CORE_ADDR start
|
||
= BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i));
|
||
|
||
complaint (_("block at %s out of order"),
|
||
hex_string ((LONGEST) start));
|
||
}
|
||
}
|
||
}
|
||
|
||
return (blockvector);
|
||
}
|
||
|
||
/* Start recording information about source code that came from an
|
||
included (or otherwise merged-in) source file with a different
|
||
name. NAME is the name of the file (cannot be NULL). */
|
||
|
||
void
|
||
buildsym_compunit::start_subfile (const char *name)
|
||
{
|
||
const char *subfile_dirname;
|
||
struct subfile *subfile;
|
||
|
||
subfile_dirname = m_comp_dir.get ();
|
||
|
||
/* See if this subfile is already registered. */
|
||
|
||
for (subfile = m_subfiles; subfile; subfile = subfile->next)
|
||
{
|
||
char *subfile_name;
|
||
|
||
/* If NAME is an absolute path, and this subfile is not, then
|
||
attempt to create an absolute path to compare. */
|
||
if (IS_ABSOLUTE_PATH (name)
|
||
&& !IS_ABSOLUTE_PATH (subfile->name)
|
||
&& subfile_dirname != NULL)
|
||
subfile_name = concat (subfile_dirname, SLASH_STRING,
|
||
subfile->name, (char *) NULL);
|
||
else
|
||
subfile_name = subfile->name;
|
||
|
||
if (FILENAME_CMP (subfile_name, name) == 0)
|
||
{
|
||
m_current_subfile = subfile;
|
||
if (subfile_name != subfile->name)
|
||
xfree (subfile_name);
|
||
return;
|
||
}
|
||
if (subfile_name != subfile->name)
|
||
xfree (subfile_name);
|
||
}
|
||
|
||
/* This subfile is not known. Add an entry for it. */
|
||
|
||
subfile = XNEW (struct subfile);
|
||
memset (subfile, 0, sizeof (struct subfile));
|
||
subfile->buildsym_compunit = this;
|
||
|
||
subfile->next = m_subfiles;
|
||
m_subfiles = subfile;
|
||
|
||
m_current_subfile = subfile;
|
||
|
||
subfile->name = xstrdup (name);
|
||
|
||
/* Initialize line-number recording for this subfile. */
|
||
subfile->line_vector = NULL;
|
||
|
||
/* Default the source language to whatever can be deduced from the
|
||
filename. If nothing can be deduced (such as for a C/C++ include
|
||
file with a ".h" extension), then inherit whatever language the
|
||
previous subfile had. This kludgery is necessary because there
|
||
is no standard way in some object formats to record the source
|
||
language. Also, when symtabs are allocated we try to deduce a
|
||
language then as well, but it is too late for us to use that
|
||
information while reading symbols, since symtabs aren't allocated
|
||
until after all the symbols have been processed for a given
|
||
source file. */
|
||
|
||
subfile->language = deduce_language_from_filename (subfile->name);
|
||
if (subfile->language == language_unknown
|
||
&& subfile->next != NULL)
|
||
{
|
||
subfile->language = subfile->next->language;
|
||
}
|
||
|
||
/* If the filename of this subfile ends in .C, then change the
|
||
language of any pending subfiles from C to C++. We also accept
|
||
any other C++ suffixes accepted by deduce_language_from_filename. */
|
||
/* Likewise for f2c. */
|
||
|
||
if (subfile->name)
|
||
{
|
||
struct subfile *s;
|
||
enum language sublang = deduce_language_from_filename (subfile->name);
|
||
|
||
if (sublang == language_cplus || sublang == language_fortran)
|
||
for (s = m_subfiles; s != NULL; s = s->next)
|
||
if (s->language == language_c)
|
||
s->language = sublang;
|
||
}
|
||
|
||
/* And patch up this file if necessary. */
|
||
if (subfile->language == language_c
|
||
&& subfile->next != NULL
|
||
&& (subfile->next->language == language_cplus
|
||
|| subfile->next->language == language_fortran))
|
||
{
|
||
subfile->language = subfile->next->language;
|
||
}
|
||
}
|
||
|
||
/* For stabs readers, the first N_SO symbol is assumed to be the
|
||
source file name, and the subfile struct is initialized using that
|
||
assumption. If another N_SO symbol is later seen, immediately
|
||
following the first one, then the first one is assumed to be the
|
||
directory name and the second one is really the source file name.
|
||
|
||
So we have to patch up the subfile struct by moving the old name
|
||
value to dirname and remembering the new name. Some sanity
|
||
checking is performed to ensure that the state of the subfile
|
||
struct is reasonable and that the old name we are assuming to be a
|
||
directory name actually is (by checking for a trailing '/'). */
|
||
|
||
void
|
||
buildsym_compunit::patch_subfile_names (struct subfile *subfile,
|
||
const char *name)
|
||
{
|
||
if (subfile != NULL
|
||
&& m_comp_dir == NULL
|
||
&& subfile->name != NULL
|
||
&& IS_DIR_SEPARATOR (subfile->name[strlen (subfile->name) - 1]))
|
||
{
|
||
m_comp_dir.reset (subfile->name);
|
||
subfile->name = xstrdup (name);
|
||
set_last_source_file (name);
|
||
|
||
/* Default the source language to whatever can be deduced from
|
||
the filename. If nothing can be deduced (such as for a C/C++
|
||
include file with a ".h" extension), then inherit whatever
|
||
language the previous subfile had. This kludgery is
|
||
necessary because there is no standard way in some object
|
||
formats to record the source language. Also, when symtabs
|
||
are allocated we try to deduce a language then as well, but
|
||
it is too late for us to use that information while reading
|
||
symbols, since symtabs aren't allocated until after all the
|
||
symbols have been processed for a given source file. */
|
||
|
||
subfile->language = deduce_language_from_filename (subfile->name);
|
||
if (subfile->language == language_unknown
|
||
&& subfile->next != NULL)
|
||
{
|
||
subfile->language = subfile->next->language;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Handle the N_BINCL and N_EINCL symbol types that act like N_SOL for
|
||
switching source files (different subfiles, as we call them) within
|
||
one object file, but using a stack rather than in an arbitrary
|
||
order. */
|
||
|
||
void
|
||
buildsym_compunit::push_subfile ()
|
||
{
|
||
gdb_assert (m_current_subfile != NULL);
|
||
gdb_assert (m_current_subfile->name != NULL);
|
||
m_subfile_stack.push_back (m_current_subfile->name);
|
||
}
|
||
|
||
const char *
|
||
buildsym_compunit::pop_subfile ()
|
||
{
|
||
gdb_assert (!m_subfile_stack.empty ());
|
||
const char *name = m_subfile_stack.back ();
|
||
m_subfile_stack.pop_back ();
|
||
return name;
|
||
}
|
||
|
||
/* Add a linetable entry for line number LINE and address PC to the
|
||
line vector for SUBFILE. */
|
||
|
||
void
|
||
buildsym_compunit::record_line (struct subfile *subfile, int line,
|
||
CORE_ADDR pc, bool is_stmt)
|
||
{
|
||
struct linetable_entry *e;
|
||
|
||
/* Make sure line vector exists and is big enough. */
|
||
if (!subfile->line_vector)
|
||
{
|
||
subfile->line_vector_length = INITIAL_LINE_VECTOR_LENGTH;
|
||
subfile->line_vector = (struct linetable *)
|
||
xmalloc (sizeof (struct linetable)
|
||
+ subfile->line_vector_length * sizeof (struct linetable_entry));
|
||
subfile->line_vector->nitems = 0;
|
||
m_have_line_numbers = true;
|
||
}
|
||
|
||
if (subfile->line_vector->nitems > 0)
|
||
{
|
||
/* If we have a duplicate for the previous entry then ignore the new
|
||
entry, except, if the new entry is setting the is_stmt flag, then
|
||
ensure the previous entry respects the new setting. */
|
||
e = subfile->line_vector->item + subfile->line_vector->nitems - 1;
|
||
if (e->line == line && e->pc == pc)
|
||
{
|
||
if (is_stmt && !e->is_stmt)
|
||
e->is_stmt = 1;
|
||
return;
|
||
}
|
||
}
|
||
|
||
if (subfile->line_vector->nitems + 1 >= subfile->line_vector_length)
|
||
{
|
||
subfile->line_vector_length *= 2;
|
||
subfile->line_vector = (struct linetable *)
|
||
xrealloc ((char *) subfile->line_vector,
|
||
(sizeof (struct linetable)
|
||
+ (subfile->line_vector_length
|
||
* sizeof (struct linetable_entry))));
|
||
}
|
||
|
||
/* Normally, we treat lines as unsorted. But the end of sequence
|
||
marker is special. We sort line markers at the same PC by line
|
||
number, so end of sequence markers (which have line == 0) appear
|
||
first. This is right if the marker ends the previous function,
|
||
and there is no padding before the next function. But it is
|
||
wrong if the previous line was empty and we are now marking a
|
||
switch to a different subfile. We must leave the end of sequence
|
||
marker at the end of this group of lines, not sort the empty line
|
||
to after the marker. The easiest way to accomplish this is to
|
||
delete any empty lines from our table, if they are followed by
|
||
end of sequence markers. All we lose is the ability to set
|
||
breakpoints at some lines which contain no instructions
|
||
anyway. */
|
||
if (line == 0 && subfile->line_vector->nitems > 0)
|
||
{
|
||
e = subfile->line_vector->item + subfile->line_vector->nitems - 1;
|
||
while (subfile->line_vector->nitems > 0 && e->pc == pc)
|
||
{
|
||
e--;
|
||
subfile->line_vector->nitems--;
|
||
}
|
||
}
|
||
|
||
e = subfile->line_vector->item + subfile->line_vector->nitems++;
|
||
e->line = line;
|
||
e->is_stmt = is_stmt ? 1 : 0;
|
||
e->pc = pc;
|
||
}
|
||
|
||
|
||
/* Subroutine of end_symtab to simplify it. Look for a subfile that
|
||
matches the main source file's basename. If there is only one, and
|
||
if the main source file doesn't have any symbol or line number
|
||
information, then copy this file's symtab and line_vector to the
|
||
main source file's subfile and discard the other subfile. This can
|
||
happen because of a compiler bug or from the user playing games
|
||
with #line or from things like a distributed build system that
|
||
manipulates the debug info. This can also happen from an innocent
|
||
symlink in the paths, we don't canonicalize paths here. */
|
||
|
||
void
|
||
buildsym_compunit::watch_main_source_file_lossage ()
|
||
{
|
||
struct subfile *mainsub, *subfile;
|
||
|
||
/* Get the main source file. */
|
||
mainsub = m_main_subfile;
|
||
|
||
/* If the main source file doesn't have any line number or symbol
|
||
info, look for an alias in another subfile. */
|
||
|
||
if (mainsub->line_vector == NULL
|
||
&& mainsub->symtab == NULL)
|
||
{
|
||
const char *mainbase = lbasename (mainsub->name);
|
||
int nr_matches = 0;
|
||
struct subfile *prevsub;
|
||
struct subfile *mainsub_alias = NULL;
|
||
struct subfile *prev_mainsub_alias = NULL;
|
||
|
||
prevsub = NULL;
|
||
for (subfile = m_subfiles;
|
||
subfile != NULL;
|
||
subfile = subfile->next)
|
||
{
|
||
if (subfile == mainsub)
|
||
continue;
|
||
if (filename_cmp (lbasename (subfile->name), mainbase) == 0)
|
||
{
|
||
++nr_matches;
|
||
mainsub_alias = subfile;
|
||
prev_mainsub_alias = prevsub;
|
||
}
|
||
prevsub = subfile;
|
||
}
|
||
|
||
if (nr_matches == 1)
|
||
{
|
||
gdb_assert (mainsub_alias != NULL && mainsub_alias != mainsub);
|
||
|
||
/* Found a match for the main source file.
|
||
Copy its line_vector and symtab to the main subfile
|
||
and then discard it. */
|
||
|
||
mainsub->line_vector = mainsub_alias->line_vector;
|
||
mainsub->line_vector_length = mainsub_alias->line_vector_length;
|
||
mainsub->symtab = mainsub_alias->symtab;
|
||
|
||
if (prev_mainsub_alias == NULL)
|
||
m_subfiles = mainsub_alias->next;
|
||
else
|
||
prev_mainsub_alias->next = mainsub_alias->next;
|
||
xfree (mainsub_alias->name);
|
||
xfree (mainsub_alias);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Implementation of the first part of end_symtab. It allows modifying
|
||
STATIC_BLOCK before it gets finalized by end_symtab_from_static_block.
|
||
If the returned value is NULL there is no blockvector created for
|
||
this symtab (you still must call end_symtab_from_static_block).
|
||
|
||
END_ADDR is the same as for end_symtab: the address of the end of the
|
||
file's text.
|
||
|
||
If EXPANDABLE is non-zero the STATIC_BLOCK dictionary is made
|
||
expandable.
|
||
|
||
If REQUIRED is non-zero, then a symtab is created even if it does
|
||
not contain any symbols. */
|
||
|
||
struct block *
|
||
buildsym_compunit::end_symtab_get_static_block (CORE_ADDR end_addr,
|
||
int expandable, int required)
|
||
{
|
||
/* Finish the lexical context of the last function in the file; pop
|
||
the context stack. */
|
||
|
||
if (!m_context_stack.empty ())
|
||
{
|
||
struct context_stack cstk = pop_context ();
|
||
|
||
/* Make a block for the local symbols within. */
|
||
finish_block (cstk.name, cstk.old_blocks, NULL,
|
||
cstk.start_addr, end_addr);
|
||
|
||
if (!m_context_stack.empty ())
|
||
{
|
||
/* This is said to happen with SCO. The old coffread.c
|
||
code simply emptied the context stack, so we do the
|
||
same. FIXME: Find out why it is happening. This is not
|
||
believed to happen in most cases (even for coffread.c);
|
||
it used to be an abort(). */
|
||
complaint (_("Context stack not empty in end_symtab"));
|
||
m_context_stack.clear ();
|
||
}
|
||
}
|
||
|
||
/* Reordered executables may have out of order pending blocks; if
|
||
OBJF_REORDERED is true, then sort the pending blocks. */
|
||
|
||
if ((m_objfile->flags & OBJF_REORDERED) && m_pending_blocks)
|
||
{
|
||
struct pending_block *pb;
|
||
|
||
std::vector<block *> barray;
|
||
|
||
for (pb = m_pending_blocks; pb != NULL; pb = pb->next)
|
||
barray.push_back (pb->block);
|
||
|
||
/* Sort blocks by start address in descending order. Blocks with the
|
||
same start address must remain in the original order to preserve
|
||
inline function caller/callee relationships. */
|
||
std::stable_sort (barray.begin (), barray.end (),
|
||
[] (const block *a, const block *b)
|
||
{
|
||
return BLOCK_START (a) > BLOCK_START (b);
|
||
});
|
||
|
||
int i = 0;
|
||
for (pb = m_pending_blocks; pb != NULL; pb = pb->next)
|
||
pb->block = barray[i++];
|
||
}
|
||
|
||
/* Cleanup any undefined types that have been left hanging around
|
||
(this needs to be done before the finish_blocks so that
|
||
file_symbols is still good).
|
||
|
||
Both cleanup_undefined_stabs_types and finish_global_stabs are stabs
|
||
specific, but harmless for other symbol readers, since on gdb
|
||
startup or when finished reading stabs, the state is set so these
|
||
are no-ops. FIXME: Is this handled right in case of QUIT? Can
|
||
we make this cleaner? */
|
||
|
||
cleanup_undefined_stabs_types (m_objfile);
|
||
finish_global_stabs (m_objfile);
|
||
|
||
if (!required
|
||
&& m_pending_blocks == NULL
|
||
&& m_file_symbols == NULL
|
||
&& m_global_symbols == NULL
|
||
&& !m_have_line_numbers
|
||
&& m_pending_macros == NULL
|
||
&& m_global_using_directives == NULL)
|
||
{
|
||
/* Ignore symtabs that have no functions with real debugging info. */
|
||
return NULL;
|
||
}
|
||
else
|
||
{
|
||
/* Define the STATIC_BLOCK. */
|
||
return finish_block_internal (NULL, get_file_symbols (), NULL, NULL,
|
||
m_last_source_start_addr,
|
||
end_addr, 0, expandable);
|
||
}
|
||
}
|
||
|
||
/* Subroutine of end_symtab_from_static_block to simplify it.
|
||
Handle the "have blockvector" case.
|
||
See end_symtab_from_static_block for a description of the arguments. */
|
||
|
||
struct compunit_symtab *
|
||
buildsym_compunit::end_symtab_with_blockvector (struct block *static_block,
|
||
int section, int expandable)
|
||
{
|
||
struct compunit_symtab *cu = m_compunit_symtab;
|
||
struct blockvector *blockvector;
|
||
struct subfile *subfile;
|
||
CORE_ADDR end_addr;
|
||
|
||
gdb_assert (static_block != NULL);
|
||
gdb_assert (m_subfiles != NULL);
|
||
|
||
end_addr = BLOCK_END (static_block);
|
||
|
||
/* Create the GLOBAL_BLOCK and build the blockvector. */
|
||
finish_block_internal (NULL, get_global_symbols (), NULL, NULL,
|
||
m_last_source_start_addr, end_addr,
|
||
1, expandable);
|
||
blockvector = make_blockvector ();
|
||
|
||
/* Read the line table if it has to be read separately.
|
||
This is only used by xcoffread.c. */
|
||
if (m_objfile->sf->sym_read_linetable != NULL)
|
||
m_objfile->sf->sym_read_linetable (m_objfile);
|
||
|
||
/* Handle the case where the debug info specifies a different path
|
||
for the main source file. It can cause us to lose track of its
|
||
line number information. */
|
||
watch_main_source_file_lossage ();
|
||
|
||
/* Now create the symtab objects proper, if not already done,
|
||
one for each subfile. */
|
||
|
||
for (subfile = m_subfiles;
|
||
subfile != NULL;
|
||
subfile = subfile->next)
|
||
{
|
||
int linetablesize = 0;
|
||
|
||
if (subfile->line_vector)
|
||
{
|
||
linetablesize = sizeof (struct linetable) +
|
||
subfile->line_vector->nitems * sizeof (struct linetable_entry);
|
||
|
||
const auto lte_is_less_than
|
||
= [] (const linetable_entry &ln1,
|
||
const linetable_entry &ln2) -> bool
|
||
{
|
||
return (ln1.pc < ln2.pc);
|
||
};
|
||
|
||
/* Like the pending blocks, the line table may be scrambled in
|
||
reordered executables. Sort it if OBJF_REORDERED is true. It
|
||
is important to preserve the order of lines at the same
|
||
address, as this maintains the inline function caller/callee
|
||
relationships, this is why std::stable_sort is used. */
|
||
if (m_objfile->flags & OBJF_REORDERED)
|
||
std::stable_sort (subfile->line_vector->item,
|
||
subfile->line_vector->item
|
||
+ subfile->line_vector->nitems,
|
||
lte_is_less_than);
|
||
}
|
||
|
||
/* Allocate a symbol table if necessary. */
|
||
if (subfile->symtab == NULL)
|
||
subfile->symtab = allocate_symtab (cu, subfile->name);
|
||
struct symtab *symtab = subfile->symtab;
|
||
|
||
/* Fill in its components. */
|
||
|
||
if (subfile->line_vector)
|
||
{
|
||
/* Reallocate the line table on the symbol obstack. */
|
||
SYMTAB_LINETABLE (symtab) = (struct linetable *)
|
||
obstack_alloc (&m_objfile->objfile_obstack, linetablesize);
|
||
memcpy (SYMTAB_LINETABLE (symtab), subfile->line_vector,
|
||
linetablesize);
|
||
}
|
||
else
|
||
{
|
||
SYMTAB_LINETABLE (symtab) = NULL;
|
||
}
|
||
|
||
/* Use whatever language we have been using for this
|
||
subfile, not the one that was deduced in allocate_symtab
|
||
from the filename. We already did our own deducing when
|
||
we created the subfile, and we may have altered our
|
||
opinion of what language it is from things we found in
|
||
the symbols. */
|
||
symtab->language = subfile->language;
|
||
}
|
||
|
||
/* Make sure the symtab of main_subfile is the first in its list. */
|
||
{
|
||
struct symtab *main_symtab, *prev_symtab;
|
||
|
||
main_symtab = m_main_subfile->symtab;
|
||
prev_symtab = NULL;
|
||
for (symtab *symtab : compunit_filetabs (cu))
|
||
{
|
||
if (symtab == main_symtab)
|
||
{
|
||
if (prev_symtab != NULL)
|
||
{
|
||
prev_symtab->next = main_symtab->next;
|
||
main_symtab->next = COMPUNIT_FILETABS (cu);
|
||
COMPUNIT_FILETABS (cu) = main_symtab;
|
||
}
|
||
break;
|
||
}
|
||
prev_symtab = symtab;
|
||
}
|
||
gdb_assert (main_symtab == COMPUNIT_FILETABS (cu));
|
||
}
|
||
|
||
/* Fill out the compunit symtab. */
|
||
|
||
if (m_comp_dir != NULL)
|
||
{
|
||
/* Reallocate the dirname on the symbol obstack. */
|
||
const char *comp_dir = m_comp_dir.get ();
|
||
COMPUNIT_DIRNAME (cu) = obstack_strdup (&m_objfile->objfile_obstack,
|
||
comp_dir);
|
||
}
|
||
|
||
/* Save the debug format string (if any) in the symtab. */
|
||
COMPUNIT_DEBUGFORMAT (cu) = m_debugformat;
|
||
|
||
/* Similarly for the producer. */
|
||
COMPUNIT_PRODUCER (cu) = m_producer;
|
||
|
||
COMPUNIT_BLOCKVECTOR (cu) = blockvector;
|
||
{
|
||
struct block *b = BLOCKVECTOR_BLOCK (blockvector, GLOBAL_BLOCK);
|
||
|
||
set_block_compunit_symtab (b, cu);
|
||
}
|
||
|
||
COMPUNIT_BLOCK_LINE_SECTION (cu) = section;
|
||
|
||
COMPUNIT_MACRO_TABLE (cu) = release_macros ();
|
||
|
||
/* Default any symbols without a specified symtab to the primary symtab. */
|
||
{
|
||
int block_i;
|
||
|
||
/* The main source file's symtab. */
|
||
struct symtab *symtab = COMPUNIT_FILETABS (cu);
|
||
|
||
for (block_i = 0; block_i < BLOCKVECTOR_NBLOCKS (blockvector); block_i++)
|
||
{
|
||
struct block *block = BLOCKVECTOR_BLOCK (blockvector, block_i);
|
||
struct symbol *sym;
|
||
struct mdict_iterator miter;
|
||
|
||
/* Inlined functions may have symbols not in the global or
|
||
static symbol lists. */
|
||
if (BLOCK_FUNCTION (block) != NULL)
|
||
if (symbol_symtab (BLOCK_FUNCTION (block)) == NULL)
|
||
symbol_set_symtab (BLOCK_FUNCTION (block), symtab);
|
||
|
||
/* Note that we only want to fix up symbols from the local
|
||
blocks, not blocks coming from included symtabs. That is why
|
||
we use ALL_DICT_SYMBOLS here and not ALL_BLOCK_SYMBOLS. */
|
||
ALL_DICT_SYMBOLS (BLOCK_MULTIDICT (block), miter, sym)
|
||
if (symbol_symtab (sym) == NULL)
|
||
symbol_set_symtab (sym, symtab);
|
||
}
|
||
}
|
||
|
||
add_compunit_symtab_to_objfile (cu);
|
||
|
||
return cu;
|
||
}
|
||
|
||
/* Implementation of the second part of end_symtab. Pass STATIC_BLOCK
|
||
as value returned by end_symtab_get_static_block.
|
||
|
||
SECTION is the same as for end_symtab: the section number
|
||
(in objfile->section_offsets) of the blockvector and linetable.
|
||
|
||
If EXPANDABLE is non-zero the GLOBAL_BLOCK dictionary is made
|
||
expandable. */
|
||
|
||
struct compunit_symtab *
|
||
buildsym_compunit::end_symtab_from_static_block (struct block *static_block,
|
||
int section, int expandable)
|
||
{
|
||
struct compunit_symtab *cu;
|
||
|
||
if (static_block == NULL)
|
||
{
|
||
/* Handle the "no blockvector" case.
|
||
When this happens there is nothing to record, so there's nothing
|
||
to do: memory will be freed up later.
|
||
|
||
Note: We won't be adding a compunit to the objfile's list of
|
||
compunits, so there's nothing to unchain. However, since each symtab
|
||
is added to the objfile's obstack we can't free that space.
|
||
We could do better, but this is believed to be a sufficiently rare
|
||
event. */
|
||
cu = NULL;
|
||
}
|
||
else
|
||
cu = end_symtab_with_blockvector (static_block, section, expandable);
|
||
|
||
return cu;
|
||
}
|
||
|
||
/* Finish the symbol definitions for one main source file, close off
|
||
all the lexical contexts for that file (creating struct block's for
|
||
them), then make the struct symtab for that file and put it in the
|
||
list of all such.
|
||
|
||
END_ADDR is the address of the end of the file's text. SECTION is
|
||
the section number (in objfile->section_offsets) of the blockvector
|
||
and linetable.
|
||
|
||
Note that it is possible for end_symtab() to return NULL. In
|
||
particular, for the DWARF case at least, it will return NULL when
|
||
it finds a compilation unit that has exactly one DIE, a
|
||
TAG_compile_unit DIE. This can happen when we link in an object
|
||
file that was compiled from an empty source file. Returning NULL
|
||
is probably not the correct thing to do, because then gdb will
|
||
never know about this empty file (FIXME).
|
||
|
||
If you need to modify STATIC_BLOCK before it is finalized you should
|
||
call end_symtab_get_static_block and end_symtab_from_static_block
|
||
yourself. */
|
||
|
||
struct compunit_symtab *
|
||
buildsym_compunit::end_symtab (CORE_ADDR end_addr, int section)
|
||
{
|
||
struct block *static_block;
|
||
|
||
static_block = end_symtab_get_static_block (end_addr, 0, 0);
|
||
return end_symtab_from_static_block (static_block, section, 0);
|
||
}
|
||
|
||
/* Same as end_symtab except create a symtab that can be later added to. */
|
||
|
||
struct compunit_symtab *
|
||
buildsym_compunit::end_expandable_symtab (CORE_ADDR end_addr, int section)
|
||
{
|
||
struct block *static_block;
|
||
|
||
static_block = end_symtab_get_static_block (end_addr, 1, 0);
|
||
return end_symtab_from_static_block (static_block, section, 1);
|
||
}
|
||
|
||
/* Subroutine of augment_type_symtab to simplify it.
|
||
Attach the main source file's symtab to all symbols in PENDING_LIST that
|
||
don't have one. */
|
||
|
||
static void
|
||
set_missing_symtab (struct pending *pending_list,
|
||
struct compunit_symtab *cu)
|
||
{
|
||
struct pending *pending;
|
||
int i;
|
||
|
||
for (pending = pending_list; pending != NULL; pending = pending->next)
|
||
{
|
||
for (i = 0; i < pending->nsyms; ++i)
|
||
{
|
||
if (symbol_symtab (pending->symbol[i]) == NULL)
|
||
symbol_set_symtab (pending->symbol[i], COMPUNIT_FILETABS (cu));
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Same as end_symtab, but for the case where we're adding more symbols
|
||
to an existing symtab that is known to contain only type information.
|
||
This is the case for DWARF4 Type Units. */
|
||
|
||
void
|
||
buildsym_compunit::augment_type_symtab ()
|
||
{
|
||
struct compunit_symtab *cust = m_compunit_symtab;
|
||
const struct blockvector *blockvector = COMPUNIT_BLOCKVECTOR (cust);
|
||
|
||
if (!m_context_stack.empty ())
|
||
complaint (_("Context stack not empty in augment_type_symtab"));
|
||
if (m_pending_blocks != NULL)
|
||
complaint (_("Blocks in a type symtab"));
|
||
if (m_pending_macros != NULL)
|
||
complaint (_("Macro in a type symtab"));
|
||
if (m_have_line_numbers)
|
||
complaint (_("Line numbers recorded in a type symtab"));
|
||
|
||
if (m_file_symbols != NULL)
|
||
{
|
||
struct block *block = BLOCKVECTOR_BLOCK (blockvector, STATIC_BLOCK);
|
||
|
||
/* First mark any symbols without a specified symtab as belonging
|
||
to the primary symtab. */
|
||
set_missing_symtab (m_file_symbols, cust);
|
||
|
||
mdict_add_pending (BLOCK_MULTIDICT (block), m_file_symbols);
|
||
}
|
||
|
||
if (m_global_symbols != NULL)
|
||
{
|
||
struct block *block = BLOCKVECTOR_BLOCK (blockvector, GLOBAL_BLOCK);
|
||
|
||
/* First mark any symbols without a specified symtab as belonging
|
||
to the primary symtab. */
|
||
set_missing_symtab (m_global_symbols, cust);
|
||
|
||
mdict_add_pending (BLOCK_MULTIDICT (block),
|
||
m_global_symbols);
|
||
}
|
||
}
|
||
|
||
/* Push a context block. Args are an identifying nesting level
|
||
(checkable when you pop it), and the starting PC address of this
|
||
context. */
|
||
|
||
struct context_stack *
|
||
buildsym_compunit::push_context (int desc, CORE_ADDR valu)
|
||
{
|
||
m_context_stack.emplace_back ();
|
||
struct context_stack *newobj = &m_context_stack.back ();
|
||
|
||
newobj->depth = desc;
|
||
newobj->locals = m_local_symbols;
|
||
newobj->old_blocks = m_pending_blocks;
|
||
newobj->start_addr = valu;
|
||
newobj->local_using_directives = m_local_using_directives;
|
||
newobj->name = NULL;
|
||
|
||
m_local_symbols = NULL;
|
||
m_local_using_directives = NULL;
|
||
|
||
return newobj;
|
||
}
|
||
|
||
/* Pop a context block. Returns the address of the context block just
|
||
popped. */
|
||
|
||
struct context_stack
|
||
buildsym_compunit::pop_context ()
|
||
{
|
||
gdb_assert (!m_context_stack.empty ());
|
||
struct context_stack result = m_context_stack.back ();
|
||
m_context_stack.pop_back ();
|
||
return result;
|
||
}
|