mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-06 12:09:26 +08:00
965b71a7f7
Some ravenscar runtimes implement lazy FPU handling. On these runtimes, the FPU is only initialized when a task tries to use it. Furthermore, the FP registers aren't automatically saved on a task switch -- instead, the save is deferred until the new task tries to use the FPU. Furthermore, each task's context area has a flag indicating whether the FPU has been initialized for this task. This patch teaches GDB to understand this implementation. When fetching or storing registers, GDB now checks to see whether the live FP registers should be used. If not, the task's saved FP registers will be used if the task has caused FPU initialization. Currently only AArch64 uses this code. bb-runtimes implements this for ARM as well, but GDB doesn't yet have an arm-ravenscar-thread.c.
945 lines
29 KiB
C
945 lines
29 KiB
C
/* Ada Ravenscar thread support.
|
|
|
|
Copyright (C) 2004-2022 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "defs.h"
|
|
#include "gdbcore.h"
|
|
#include "gdbthread.h"
|
|
#include "ada-lang.h"
|
|
#include "target.h"
|
|
#include "inferior.h"
|
|
#include "command.h"
|
|
#include "ravenscar-thread.h"
|
|
#include "observable.h"
|
|
#include "gdbcmd.h"
|
|
#include "top.h"
|
|
#include "regcache.h"
|
|
#include "objfiles.h"
|
|
#include <unordered_map>
|
|
|
|
/* This module provides support for "Ravenscar" tasks (Ada) when
|
|
debugging on bare-metal targets.
|
|
|
|
The typical situation is when debugging a bare-metal target over
|
|
the remote protocol. In that situation, the system does not know
|
|
about high-level concepts such as threads, only about some code
|
|
running on one or more CPUs. And since the remote protocol does not
|
|
provide any handling for CPUs, the de facto standard for handling
|
|
them is to have one thread per CPU, where the thread's ptid has
|
|
its lwp field set to the CPU number (eg: 1 for the first CPU,
|
|
2 for the second one, etc). This module will make that assumption.
|
|
|
|
This module then creates and maintains the list of threads based
|
|
on the list of Ada tasks, with one thread per Ada task. The convention
|
|
is that threads corresponding to the CPUs (see assumption above)
|
|
have a ptid_t of the form (PID, LWP, 0), while threads corresponding
|
|
to our Ada tasks have a ptid_t of the form (PID, 0, TID) where TID
|
|
is the Ada task's ID as extracted from Ada runtime information.
|
|
|
|
Switching to a given Ada task (or its underlying thread) is performed
|
|
by fetching the registers of that task from the memory area where
|
|
the registers were saved. For any of the other operations, the
|
|
operation is performed by first finding the CPU on which the task
|
|
is running, switching to its corresponding ptid, and then performing
|
|
the operation on that ptid using the target beneath us. */
|
|
|
|
/* If true, ravenscar task support is enabled. */
|
|
static bool ravenscar_task_support = true;
|
|
|
|
static const char running_thread_name[] = "__gnat_running_thread_table";
|
|
|
|
static const char known_tasks_name[] = "system__tasking__debug__known_tasks";
|
|
static const char first_task_name[] = "system__tasking__debug__first_task";
|
|
|
|
static const char ravenscar_runtime_initializer[]
|
|
= "system__bb__threads__initialize";
|
|
|
|
static const target_info ravenscar_target_info = {
|
|
"ravenscar",
|
|
N_("Ravenscar tasks."),
|
|
N_("Ravenscar tasks support.")
|
|
};
|
|
|
|
struct ravenscar_thread_target final : public target_ops
|
|
{
|
|
ravenscar_thread_target ()
|
|
: m_base_ptid (inferior_ptid)
|
|
{
|
|
}
|
|
|
|
const target_info &info () const override
|
|
{ return ravenscar_target_info; }
|
|
|
|
strata stratum () const override { return thread_stratum; }
|
|
|
|
ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override;
|
|
void resume (ptid_t, int, enum gdb_signal) override;
|
|
|
|
void fetch_registers (struct regcache *, int) override;
|
|
void store_registers (struct regcache *, int) override;
|
|
|
|
void prepare_to_store (struct regcache *) override;
|
|
|
|
bool stopped_by_sw_breakpoint () override;
|
|
|
|
bool stopped_by_hw_breakpoint () override;
|
|
|
|
bool stopped_by_watchpoint () override;
|
|
|
|
bool stopped_data_address (CORE_ADDR *) override;
|
|
|
|
enum target_xfer_status xfer_partial (enum target_object object,
|
|
const char *annex,
|
|
gdb_byte *readbuf,
|
|
const gdb_byte *writebuf,
|
|
ULONGEST offset, ULONGEST len,
|
|
ULONGEST *xfered_len) override;
|
|
|
|
bool thread_alive (ptid_t ptid) override;
|
|
|
|
int core_of_thread (ptid_t ptid) override;
|
|
|
|
void update_thread_list () override;
|
|
|
|
std::string pid_to_str (ptid_t) override;
|
|
|
|
ptid_t get_ada_task_ptid (long lwp, ULONGEST thread) override;
|
|
|
|
struct btrace_target_info *enable_btrace (thread_info *tp,
|
|
const struct btrace_config *conf)
|
|
override
|
|
{
|
|
process_stratum_target *proc_target
|
|
= as_process_stratum_target (this->beneath ());
|
|
ptid_t underlying = get_base_thread_from_ravenscar_task (tp->ptid);
|
|
tp = find_thread_ptid (proc_target, underlying);
|
|
|
|
return beneath ()->enable_btrace (tp, conf);
|
|
}
|
|
|
|
void mourn_inferior () override;
|
|
|
|
void close () override
|
|
{
|
|
delete this;
|
|
}
|
|
|
|
thread_info *add_active_thread ();
|
|
|
|
private:
|
|
|
|
/* PTID of the last thread that received an event.
|
|
This can be useful to determine the associated task that received
|
|
the event, to make it the current task. */
|
|
ptid_t m_base_ptid;
|
|
|
|
ptid_t active_task (int cpu);
|
|
bool task_is_currently_active (ptid_t ptid);
|
|
bool runtime_initialized ();
|
|
int get_thread_base_cpu (ptid_t ptid);
|
|
ptid_t get_base_thread_from_ravenscar_task (ptid_t ptid);
|
|
void add_thread (struct ada_task_info *task);
|
|
|
|
/* Like switch_to_thread, but uses the base ptid for the thread. */
|
|
void set_base_thread_from_ravenscar_task (ptid_t ptid)
|
|
{
|
|
process_stratum_target *proc_target
|
|
= as_process_stratum_target (this->beneath ());
|
|
ptid_t underlying = get_base_thread_from_ravenscar_task (ptid);
|
|
switch_to_thread (find_thread_ptid (proc_target, underlying));
|
|
}
|
|
|
|
/* Some targets use lazy FPU initialization. On these, the FP
|
|
registers for a given task might be uninitialized, or stored in
|
|
the per-task context, or simply be the live registers on the CPU.
|
|
This enum is used to encode this information. */
|
|
enum fpu_state
|
|
{
|
|
/* This target doesn't do anything special for FP registers -- if
|
|
any exist, they are treated just identical to non-FP
|
|
registers. */
|
|
NOTHING_SPECIAL,
|
|
/* This target uses the lazy FP scheme, and the FP registers are
|
|
taken from the CPU. This can happen for any task, because if a
|
|
task switch occurs, the registers aren't immediately written to
|
|
the per-task context -- this is deferred until the current task
|
|
causes an FPU trap. */
|
|
LIVE_FP_REGISTERS,
|
|
/* This target uses the lazy FP scheme, and the FP registers are
|
|
not available. Maybe this task never initialized the FPU, or
|
|
maybe GDB couldn't find the required symbol. */
|
|
NO_FP_REGISTERS
|
|
};
|
|
|
|
/* Return the FPU state. */
|
|
fpu_state get_fpu_state (struct regcache *regcache,
|
|
const ravenscar_arch_ops *arch_ops);
|
|
|
|
/* This maps a TID to the CPU on which it was running. This is
|
|
needed because sometimes the runtime will report an active task
|
|
that hasn't yet been put on the list of tasks that is read by
|
|
ada-tasks.c. */
|
|
std::unordered_map<ULONGEST, int> m_cpu_map;
|
|
};
|
|
|
|
/* Return true iff PTID corresponds to a ravenscar task. */
|
|
|
|
static bool
|
|
is_ravenscar_task (ptid_t ptid)
|
|
{
|
|
/* By construction, ravenscar tasks have their LWP set to zero.
|
|
Also make sure that the TID is nonzero, as some remotes, when
|
|
asked for the list of threads, will return the first thread
|
|
as having its TID set to zero. For instance, TSIM version
|
|
2.0.48 for LEON3 sends 'm0' as a reply to the 'qfThreadInfo'
|
|
query, which the remote protocol layer then treats as a thread
|
|
whose TID is 0. This is obviously not a ravenscar task. */
|
|
return ptid.lwp () == 0 && ptid.tid () != 0;
|
|
}
|
|
|
|
/* Given PTID, which can be either a ravenscar task or a CPU thread,
|
|
return which CPU that ptid is running on.
|
|
|
|
This assume that PTID is a valid ptid_t. Otherwise, a gdb_assert
|
|
will be triggered. */
|
|
|
|
int
|
|
ravenscar_thread_target::get_thread_base_cpu (ptid_t ptid)
|
|
{
|
|
int base_cpu;
|
|
|
|
if (is_ravenscar_task (ptid))
|
|
{
|
|
/* Prefer to not read inferior memory if possible, to avoid
|
|
reentrancy problems with xfer_partial. */
|
|
auto iter = m_cpu_map.find (ptid.tid ());
|
|
|
|
if (iter != m_cpu_map.end ())
|
|
base_cpu = iter->second;
|
|
else
|
|
{
|
|
struct ada_task_info *task_info = ada_get_task_info_from_ptid (ptid);
|
|
|
|
gdb_assert (task_info != NULL);
|
|
base_cpu = task_info->base_cpu;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* We assume that the LWP of the PTID is equal to the CPU number. */
|
|
base_cpu = ptid.lwp ();
|
|
}
|
|
|
|
return base_cpu;
|
|
}
|
|
|
|
/* Given a ravenscar task (identified by its ptid_t PTID), return true
|
|
if this task is the currently active task on the cpu that task is
|
|
running on.
|
|
|
|
In other words, this function determine which CPU this task is
|
|
currently running on, and then return nonzero if the CPU in question
|
|
is executing the code for that task. If that's the case, then
|
|
that task's registers are in the CPU bank. Otherwise, the task
|
|
is currently suspended, and its registers have been saved in memory. */
|
|
|
|
bool
|
|
ravenscar_thread_target::task_is_currently_active (ptid_t ptid)
|
|
{
|
|
ptid_t active_task_ptid = active_task (get_thread_base_cpu (ptid));
|
|
|
|
return ptid == active_task_ptid;
|
|
}
|
|
|
|
/* Return the CPU thread (as a ptid_t) on which the given ravenscar
|
|
task is running.
|
|
|
|
This is the thread that corresponds to the CPU on which the task
|
|
is running. */
|
|
|
|
ptid_t
|
|
ravenscar_thread_target::get_base_thread_from_ravenscar_task (ptid_t ptid)
|
|
{
|
|
int base_cpu;
|
|
|
|
if (!is_ravenscar_task (ptid))
|
|
return ptid;
|
|
|
|
base_cpu = get_thread_base_cpu (ptid);
|
|
return ptid_t (ptid.pid (), base_cpu);
|
|
}
|
|
|
|
/* Fetch the ravenscar running thread from target memory, make sure
|
|
there's a corresponding thread in the thread list, and return it.
|
|
If the runtime is not initialized, return NULL. */
|
|
|
|
thread_info *
|
|
ravenscar_thread_target::add_active_thread ()
|
|
{
|
|
process_stratum_target *proc_target
|
|
= as_process_stratum_target (this->beneath ());
|
|
|
|
int base_cpu;
|
|
|
|
gdb_assert (!is_ravenscar_task (m_base_ptid));
|
|
base_cpu = get_thread_base_cpu (m_base_ptid);
|
|
|
|
if (!runtime_initialized ())
|
|
return nullptr;
|
|
|
|
/* Make sure we set m_base_ptid before calling active_task
|
|
as the latter relies on it. */
|
|
ptid_t active_ptid = active_task (base_cpu);
|
|
gdb_assert (active_ptid != null_ptid);
|
|
|
|
/* The running thread may not have been added to
|
|
system.tasking.debug's list yet; so ravenscar_update_thread_list
|
|
may not always add it to the thread list. Add it here. */
|
|
thread_info *active_thr = find_thread_ptid (proc_target, active_ptid);
|
|
if (active_thr == nullptr)
|
|
{
|
|
active_thr = ::add_thread (proc_target, active_ptid);
|
|
m_cpu_map[active_ptid.tid ()] = base_cpu;
|
|
}
|
|
return active_thr;
|
|
}
|
|
|
|
/* The Ravenscar Runtime exports a symbol which contains the ID of
|
|
the thread that is currently running. Try to locate that symbol
|
|
and return its associated minimal symbol.
|
|
Return NULL if not found. */
|
|
|
|
static struct bound_minimal_symbol
|
|
get_running_thread_msymbol ()
|
|
{
|
|
struct bound_minimal_symbol msym;
|
|
|
|
msym = lookup_minimal_symbol (running_thread_name, NULL, NULL);
|
|
if (!msym.minsym)
|
|
/* Older versions of the GNAT runtime were using a different
|
|
(less ideal) name for the symbol where the active thread ID
|
|
is stored. If we couldn't find the symbol using the latest
|
|
name, then try the old one. */
|
|
msym = lookup_minimal_symbol ("running_thread", NULL, NULL);
|
|
|
|
return msym;
|
|
}
|
|
|
|
/* Return True if the Ada Ravenscar run-time can be found in the
|
|
application. */
|
|
|
|
static bool
|
|
has_ravenscar_runtime ()
|
|
{
|
|
struct bound_minimal_symbol msym_ravenscar_runtime_initializer
|
|
= lookup_minimal_symbol (ravenscar_runtime_initializer, NULL, NULL);
|
|
struct bound_minimal_symbol msym_known_tasks
|
|
= lookup_minimal_symbol (known_tasks_name, NULL, NULL);
|
|
struct bound_minimal_symbol msym_first_task
|
|
= lookup_minimal_symbol (first_task_name, NULL, NULL);
|
|
struct bound_minimal_symbol msym_running_thread
|
|
= get_running_thread_msymbol ();
|
|
|
|
return (msym_ravenscar_runtime_initializer.minsym
|
|
&& (msym_known_tasks.minsym || msym_first_task.minsym)
|
|
&& msym_running_thread.minsym);
|
|
}
|
|
|
|
/* Return True if the Ada Ravenscar run-time can be found in the
|
|
application, and if it has been initialized on target. */
|
|
|
|
bool
|
|
ravenscar_thread_target::runtime_initialized ()
|
|
{
|
|
return active_task (1) != null_ptid;
|
|
}
|
|
|
|
/* Return the ID of the thread that is currently running.
|
|
Return 0 if the ID could not be determined. */
|
|
|
|
static CORE_ADDR
|
|
get_running_thread_id (int cpu)
|
|
{
|
|
struct bound_minimal_symbol object_msym = get_running_thread_msymbol ();
|
|
int object_size;
|
|
int buf_size;
|
|
gdb_byte *buf;
|
|
CORE_ADDR object_addr;
|
|
struct type *builtin_type_void_data_ptr
|
|
= builtin_type (target_gdbarch ())->builtin_data_ptr;
|
|
|
|
if (!object_msym.minsym)
|
|
return 0;
|
|
|
|
object_size = TYPE_LENGTH (builtin_type_void_data_ptr);
|
|
object_addr = (object_msym.value_address ()
|
|
+ (cpu - 1) * object_size);
|
|
buf_size = object_size;
|
|
buf = (gdb_byte *) alloca (buf_size);
|
|
read_memory (object_addr, buf, buf_size);
|
|
return extract_typed_address (buf, builtin_type_void_data_ptr);
|
|
}
|
|
|
|
void
|
|
ravenscar_thread_target::resume (ptid_t ptid, int step,
|
|
enum gdb_signal siggnal)
|
|
{
|
|
/* If we see a wildcard resume, we simply pass that on. Otherwise,
|
|
arrange to resume the base ptid. */
|
|
inferior_ptid = m_base_ptid;
|
|
if (ptid.is_pid ())
|
|
{
|
|
/* We only have one process, so resume all threads of it. */
|
|
ptid = minus_one_ptid;
|
|
}
|
|
else if (ptid != minus_one_ptid)
|
|
ptid = m_base_ptid;
|
|
beneath ()->resume (ptid, step, siggnal);
|
|
}
|
|
|
|
ptid_t
|
|
ravenscar_thread_target::wait (ptid_t ptid,
|
|
struct target_waitstatus *status,
|
|
target_wait_flags options)
|
|
{
|
|
process_stratum_target *beneath
|
|
= as_process_stratum_target (this->beneath ());
|
|
ptid_t event_ptid;
|
|
|
|
if (ptid != minus_one_ptid)
|
|
ptid = m_base_ptid;
|
|
event_ptid = beneath->wait (ptid, status, 0);
|
|
/* Find any new threads that might have been created, and return the
|
|
active thread.
|
|
|
|
Only do it if the program is still alive, though. Otherwise,
|
|
this causes problems when debugging through the remote protocol,
|
|
because we might try switching threads (and thus sending packets)
|
|
after the remote has disconnected. */
|
|
if (status->kind () != TARGET_WAITKIND_EXITED
|
|
&& status->kind () != TARGET_WAITKIND_SIGNALLED
|
|
&& runtime_initialized ())
|
|
{
|
|
m_base_ptid = event_ptid;
|
|
this->update_thread_list ();
|
|
return this->add_active_thread ()->ptid;
|
|
}
|
|
return event_ptid;
|
|
}
|
|
|
|
/* Add the thread associated to the given TASK to the thread list
|
|
(if the thread has already been added, this is a no-op). */
|
|
|
|
void
|
|
ravenscar_thread_target::add_thread (struct ada_task_info *task)
|
|
{
|
|
if (find_thread_ptid (current_inferior (), task->ptid) == NULL)
|
|
{
|
|
::add_thread (current_inferior ()->process_target (), task->ptid);
|
|
m_cpu_map[task->ptid.tid ()] = task->base_cpu;
|
|
}
|
|
}
|
|
|
|
void
|
|
ravenscar_thread_target::update_thread_list ()
|
|
{
|
|
/* iterate_over_live_ada_tasks requires that inferior_ptid be set,
|
|
but this isn't always the case in target methods. So, we ensure
|
|
it here. */
|
|
scoped_restore save_ptid = make_scoped_restore (&inferior_ptid,
|
|
m_base_ptid);
|
|
|
|
/* Do not clear the thread list before adding the Ada task, to keep
|
|
the thread that the process stratum has included into it
|
|
(m_base_ptid) and the running thread, that may not have been included
|
|
to system.tasking.debug's list yet. */
|
|
|
|
iterate_over_live_ada_tasks ([=] (struct ada_task_info *task)
|
|
{
|
|
this->add_thread (task);
|
|
});
|
|
}
|
|
|
|
ptid_t
|
|
ravenscar_thread_target::active_task (int cpu)
|
|
{
|
|
CORE_ADDR tid = get_running_thread_id (cpu);
|
|
|
|
if (tid == 0)
|
|
return null_ptid;
|
|
else
|
|
return ptid_t (m_base_ptid.pid (), 0, tid);
|
|
}
|
|
|
|
bool
|
|
ravenscar_thread_target::thread_alive (ptid_t ptid)
|
|
{
|
|
/* Ravenscar tasks are non-terminating. */
|
|
return true;
|
|
}
|
|
|
|
std::string
|
|
ravenscar_thread_target::pid_to_str (ptid_t ptid)
|
|
{
|
|
if (!is_ravenscar_task (ptid))
|
|
return beneath ()->pid_to_str (ptid);
|
|
|
|
return string_printf ("Ravenscar Thread 0x%s",
|
|
phex_nz (ptid.tid (), sizeof (ULONGEST)));
|
|
}
|
|
|
|
CORE_ADDR
|
|
ravenscar_arch_ops::get_stack_base (struct regcache *regcache) const
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
const int sp_regnum = gdbarch_sp_regnum (gdbarch);
|
|
ULONGEST stack_address;
|
|
regcache_cooked_read_unsigned (regcache, sp_regnum, &stack_address);
|
|
return (CORE_ADDR) stack_address;
|
|
}
|
|
|
|
void
|
|
ravenscar_arch_ops::supply_one_register (struct regcache *regcache,
|
|
int regnum,
|
|
CORE_ADDR descriptor,
|
|
CORE_ADDR stack_base) const
|
|
{
|
|
CORE_ADDR addr;
|
|
if (regnum >= first_stack_register && regnum <= last_stack_register)
|
|
addr = stack_base;
|
|
else
|
|
addr = descriptor;
|
|
addr += offsets[regnum];
|
|
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
int size = register_size (gdbarch, regnum);
|
|
gdb_byte *buf = (gdb_byte *) alloca (size);
|
|
read_memory (addr, buf, size);
|
|
regcache->raw_supply (regnum, buf);
|
|
}
|
|
|
|
void
|
|
ravenscar_arch_ops::fetch_register (struct regcache *regcache,
|
|
int regnum) const
|
|
{
|
|
gdb_assert (regnum != -1);
|
|
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
/* The tid is the thread_id field, which is a pointer to the thread. */
|
|
CORE_ADDR thread_descriptor_address
|
|
= (CORE_ADDR) regcache->ptid ().tid ();
|
|
|
|
int sp_regno = -1;
|
|
CORE_ADDR stack_address = 0;
|
|
if (regnum >= first_stack_register && regnum <= last_stack_register)
|
|
{
|
|
/* We must supply SP for get_stack_base, so recurse. */
|
|
sp_regno = gdbarch_sp_regnum (gdbarch);
|
|
gdb_assert (!(sp_regno >= first_stack_register
|
|
&& sp_regno <= last_stack_register));
|
|
fetch_register (regcache, sp_regno);
|
|
stack_address = get_stack_base (regcache);
|
|
}
|
|
|
|
if (regnum < offsets.size () && offsets[regnum] != -1)
|
|
supply_one_register (regcache, regnum, thread_descriptor_address,
|
|
stack_address);
|
|
}
|
|
|
|
void
|
|
ravenscar_arch_ops::store_one_register (struct regcache *regcache, int regnum,
|
|
CORE_ADDR descriptor,
|
|
CORE_ADDR stack_base) const
|
|
{
|
|
CORE_ADDR addr;
|
|
if (regnum >= first_stack_register && regnum <= last_stack_register)
|
|
addr = stack_base;
|
|
else
|
|
addr = descriptor;
|
|
addr += offsets[regnum];
|
|
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
int size = register_size (gdbarch, regnum);
|
|
gdb_byte *buf = (gdb_byte *) alloca (size);
|
|
regcache->raw_collect (regnum, buf);
|
|
write_memory (addr, buf, size);
|
|
}
|
|
|
|
void
|
|
ravenscar_arch_ops::store_register (struct regcache *regcache,
|
|
int regnum) const
|
|
{
|
|
gdb_assert (regnum != -1);
|
|
|
|
/* The tid is the thread_id field, which is a pointer to the thread. */
|
|
CORE_ADDR thread_descriptor_address
|
|
= (CORE_ADDR) regcache->ptid ().tid ();
|
|
|
|
CORE_ADDR stack_address = 0;
|
|
if (regnum >= first_stack_register && regnum <= last_stack_register)
|
|
stack_address = get_stack_base (regcache);
|
|
|
|
if (regnum < offsets.size () && offsets[regnum] != -1)
|
|
store_one_register (regcache, regnum, thread_descriptor_address,
|
|
stack_address);
|
|
}
|
|
|
|
/* Temporarily set the ptid of a regcache to some other value. When
|
|
this object is destroyed, the regcache's original ptid is
|
|
restored. */
|
|
|
|
class temporarily_change_regcache_ptid
|
|
{
|
|
public:
|
|
|
|
temporarily_change_regcache_ptid (struct regcache *regcache, ptid_t new_ptid)
|
|
: m_regcache (regcache),
|
|
m_save_ptid (regcache->ptid ())
|
|
{
|
|
m_regcache->set_ptid (new_ptid);
|
|
}
|
|
|
|
~temporarily_change_regcache_ptid ()
|
|
{
|
|
m_regcache->set_ptid (m_save_ptid);
|
|
}
|
|
|
|
private:
|
|
|
|
/* The regcache. */
|
|
struct regcache *m_regcache;
|
|
/* The saved ptid. */
|
|
ptid_t m_save_ptid;
|
|
};
|
|
|
|
ravenscar_thread_target::fpu_state
|
|
ravenscar_thread_target::get_fpu_state (struct regcache *regcache,
|
|
const ravenscar_arch_ops *arch_ops)
|
|
{
|
|
/* We want to return true if the special FP register handling is
|
|
needed. If this target doesn't have lazy FP, then no special
|
|
treatment is ever needed. */
|
|
if (!arch_ops->on_demand_fp ())
|
|
return NOTHING_SPECIAL;
|
|
|
|
bound_minimal_symbol fpu_context
|
|
= lookup_minimal_symbol ("system__bb__cpu_primitives__current_fpu_context",
|
|
nullptr, nullptr);
|
|
/* If the symbol can't be found, just fall back. */
|
|
if (fpu_context.minsym == nullptr)
|
|
return NO_FP_REGISTERS;
|
|
|
|
struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
|
|
ptr_type = lookup_pointer_type (ptr_type);
|
|
value *val = value_from_pointer (ptr_type, fpu_context.value_address ());
|
|
|
|
int cpu = get_thread_base_cpu (regcache->ptid ());
|
|
/* The array index type has a lower bound of 1 -- it is Ada code --
|
|
so subtract 1 here. */
|
|
val = value_ptradd (val, cpu - 1);
|
|
|
|
val = value_ind (val);
|
|
CORE_ADDR fpu_task = value_as_long (val);
|
|
|
|
/* The tid is the thread_id field, which is a pointer to the thread. */
|
|
CORE_ADDR thread_descriptor_address
|
|
= (CORE_ADDR) regcache->ptid ().tid ();
|
|
if (fpu_task == (thread_descriptor_address
|
|
+ arch_ops->get_fpu_context_offset ()))
|
|
return LIVE_FP_REGISTERS;
|
|
|
|
int v_init_offset = arch_ops->get_v_init_offset ();
|
|
gdb_byte init = 0;
|
|
read_memory (thread_descriptor_address + v_init_offset, &init, 1);
|
|
return init ? NOTHING_SPECIAL : NO_FP_REGISTERS;
|
|
}
|
|
|
|
void
|
|
ravenscar_thread_target::fetch_registers (struct regcache *regcache,
|
|
int regnum)
|
|
{
|
|
ptid_t ptid = regcache->ptid ();
|
|
|
|
if (runtime_initialized () && is_ravenscar_task (ptid))
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
bool is_active = task_is_currently_active (ptid);
|
|
struct ravenscar_arch_ops *arch_ops = gdbarch_ravenscar_ops (gdbarch);
|
|
gdb::optional<fpu_state> fp_state;
|
|
|
|
int low_reg = regnum == -1 ? 0 : regnum;
|
|
int high_reg = regnum == -1 ? gdbarch_num_regs (gdbarch) : regnum + 1;
|
|
|
|
ptid_t base = get_base_thread_from_ravenscar_task (ptid);
|
|
for (int i = low_reg; i < high_reg; ++i)
|
|
{
|
|
bool use_beneath = false;
|
|
if (arch_ops->is_fp_register (i))
|
|
{
|
|
if (!fp_state.has_value ())
|
|
fp_state = get_fpu_state (regcache, arch_ops);
|
|
if (*fp_state == NO_FP_REGISTERS)
|
|
continue;
|
|
if (*fp_state == LIVE_FP_REGISTERS
|
|
|| (is_active && *fp_state == NOTHING_SPECIAL))
|
|
use_beneath = true;
|
|
}
|
|
else
|
|
use_beneath = is_active;
|
|
|
|
if (use_beneath)
|
|
{
|
|
temporarily_change_regcache_ptid changer (regcache, base);
|
|
beneath ()->fetch_registers (regcache, i);
|
|
}
|
|
else
|
|
arch_ops->fetch_register (regcache, i);
|
|
}
|
|
}
|
|
else
|
|
beneath ()->fetch_registers (regcache, regnum);
|
|
}
|
|
|
|
void
|
|
ravenscar_thread_target::store_registers (struct regcache *regcache,
|
|
int regnum)
|
|
{
|
|
ptid_t ptid = regcache->ptid ();
|
|
|
|
if (runtime_initialized () && is_ravenscar_task (ptid))
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
bool is_active = task_is_currently_active (ptid);
|
|
struct ravenscar_arch_ops *arch_ops = gdbarch_ravenscar_ops (gdbarch);
|
|
gdb::optional<fpu_state> fp_state;
|
|
|
|
int low_reg = regnum == -1 ? 0 : regnum;
|
|
int high_reg = regnum == -1 ? gdbarch_num_regs (gdbarch) : regnum + 1;
|
|
|
|
ptid_t base = get_base_thread_from_ravenscar_task (ptid);
|
|
for (int i = low_reg; i < high_reg; ++i)
|
|
{
|
|
bool use_beneath = false;
|
|
if (arch_ops->is_fp_register (i))
|
|
{
|
|
if (!fp_state.has_value ())
|
|
fp_state = get_fpu_state (regcache, arch_ops);
|
|
if (*fp_state == NO_FP_REGISTERS)
|
|
continue;
|
|
if (*fp_state == LIVE_FP_REGISTERS
|
|
|| (is_active && *fp_state == NOTHING_SPECIAL))
|
|
use_beneath = true;
|
|
}
|
|
else
|
|
use_beneath = is_active;
|
|
|
|
if (use_beneath)
|
|
{
|
|
temporarily_change_regcache_ptid changer (regcache, base);
|
|
beneath ()->store_registers (regcache, i);
|
|
}
|
|
else
|
|
arch_ops->store_register (regcache, i);
|
|
}
|
|
}
|
|
else
|
|
beneath ()->store_registers (regcache, regnum);
|
|
}
|
|
|
|
void
|
|
ravenscar_thread_target::prepare_to_store (struct regcache *regcache)
|
|
{
|
|
ptid_t ptid = regcache->ptid ();
|
|
|
|
if (runtime_initialized () && is_ravenscar_task (ptid))
|
|
{
|
|
if (task_is_currently_active (ptid))
|
|
{
|
|
ptid_t base = get_base_thread_from_ravenscar_task (ptid);
|
|
temporarily_change_regcache_ptid changer (regcache, base);
|
|
beneath ()->prepare_to_store (regcache);
|
|
}
|
|
else
|
|
{
|
|
/* Nothing. */
|
|
}
|
|
}
|
|
else
|
|
beneath ()->prepare_to_store (regcache);
|
|
}
|
|
|
|
/* Implement the to_stopped_by_sw_breakpoint target_ops "method". */
|
|
|
|
bool
|
|
ravenscar_thread_target::stopped_by_sw_breakpoint ()
|
|
{
|
|
scoped_restore_current_thread saver;
|
|
set_base_thread_from_ravenscar_task (inferior_ptid);
|
|
return beneath ()->stopped_by_sw_breakpoint ();
|
|
}
|
|
|
|
/* Implement the to_stopped_by_hw_breakpoint target_ops "method". */
|
|
|
|
bool
|
|
ravenscar_thread_target::stopped_by_hw_breakpoint ()
|
|
{
|
|
scoped_restore_current_thread saver;
|
|
set_base_thread_from_ravenscar_task (inferior_ptid);
|
|
return beneath ()->stopped_by_hw_breakpoint ();
|
|
}
|
|
|
|
/* Implement the to_stopped_by_watchpoint target_ops "method". */
|
|
|
|
bool
|
|
ravenscar_thread_target::stopped_by_watchpoint ()
|
|
{
|
|
scoped_restore_current_thread saver;
|
|
set_base_thread_from_ravenscar_task (inferior_ptid);
|
|
return beneath ()->stopped_by_watchpoint ();
|
|
}
|
|
|
|
/* Implement the to_stopped_data_address target_ops "method". */
|
|
|
|
bool
|
|
ravenscar_thread_target::stopped_data_address (CORE_ADDR *addr_p)
|
|
{
|
|
scoped_restore_current_thread saver;
|
|
set_base_thread_from_ravenscar_task (inferior_ptid);
|
|
return beneath ()->stopped_data_address (addr_p);
|
|
}
|
|
|
|
void
|
|
ravenscar_thread_target::mourn_inferior ()
|
|
{
|
|
m_base_ptid = null_ptid;
|
|
target_ops *beneath = this->beneath ();
|
|
current_inferior ()->unpush_target (this);
|
|
beneath->mourn_inferior ();
|
|
}
|
|
|
|
/* Implement the to_core_of_thread target_ops "method". */
|
|
|
|
int
|
|
ravenscar_thread_target::core_of_thread (ptid_t ptid)
|
|
{
|
|
scoped_restore_current_thread saver;
|
|
set_base_thread_from_ravenscar_task (inferior_ptid);
|
|
return beneath ()->core_of_thread (inferior_ptid);
|
|
}
|
|
|
|
/* Implement the target xfer_partial method. */
|
|
|
|
enum target_xfer_status
|
|
ravenscar_thread_target::xfer_partial (enum target_object object,
|
|
const char *annex,
|
|
gdb_byte *readbuf,
|
|
const gdb_byte *writebuf,
|
|
ULONGEST offset, ULONGEST len,
|
|
ULONGEST *xfered_len)
|
|
{
|
|
scoped_restore save_ptid = make_scoped_restore (&inferior_ptid);
|
|
/* Calling get_base_thread_from_ravenscar_task can read memory from
|
|
the inferior. However, that function is written to prefer our
|
|
internal map, so it should not result in recursive calls in
|
|
practice. */
|
|
inferior_ptid = get_base_thread_from_ravenscar_task (inferior_ptid);
|
|
return beneath ()->xfer_partial (object, annex, readbuf, writebuf,
|
|
offset, len, xfered_len);
|
|
}
|
|
|
|
/* Observer on inferior_created: push ravenscar thread stratum if needed. */
|
|
|
|
static void
|
|
ravenscar_inferior_created (inferior *inf)
|
|
{
|
|
const char *err_msg;
|
|
|
|
if (!ravenscar_task_support
|
|
|| gdbarch_ravenscar_ops (target_gdbarch ()) == NULL
|
|
|| !has_ravenscar_runtime ())
|
|
return;
|
|
|
|
err_msg = ada_get_tcb_types_info ();
|
|
if (err_msg != NULL)
|
|
{
|
|
warning (_("%s. Task/thread support disabled."), err_msg);
|
|
return;
|
|
}
|
|
|
|
ravenscar_thread_target *rtarget = new ravenscar_thread_target ();
|
|
inf->push_target (target_ops_up (rtarget));
|
|
thread_info *thr = rtarget->add_active_thread ();
|
|
if (thr != nullptr)
|
|
switch_to_thread (thr);
|
|
}
|
|
|
|
ptid_t
|
|
ravenscar_thread_target::get_ada_task_ptid (long lwp, ULONGEST thread)
|
|
{
|
|
return ptid_t (m_base_ptid.pid (), 0, thread);
|
|
}
|
|
|
|
/* Command-list for the "set/show ravenscar" prefix command. */
|
|
static struct cmd_list_element *set_ravenscar_list;
|
|
static struct cmd_list_element *show_ravenscar_list;
|
|
|
|
/* Implement the "show ravenscar task-switching" command. */
|
|
|
|
static void
|
|
show_ravenscar_task_switching_command (struct ui_file *file, int from_tty,
|
|
struct cmd_list_element *c,
|
|
const char *value)
|
|
{
|
|
if (ravenscar_task_support)
|
|
gdb_printf (file, _("\
|
|
Support for Ravenscar task/thread switching is enabled\n"));
|
|
else
|
|
gdb_printf (file, _("\
|
|
Support for Ravenscar task/thread switching is disabled\n"));
|
|
}
|
|
|
|
/* Module startup initialization function, automagically called by
|
|
init.c. */
|
|
|
|
void _initialize_ravenscar ();
|
|
void
|
|
_initialize_ravenscar ()
|
|
{
|
|
/* Notice when the inferior is created in order to push the
|
|
ravenscar ops if needed. */
|
|
gdb::observers::inferior_created.attach (ravenscar_inferior_created,
|
|
"ravenscar-thread");
|
|
|
|
add_setshow_prefix_cmd
|
|
("ravenscar", no_class,
|
|
_("Prefix command for changing Ravenscar-specific settings."),
|
|
_("Prefix command for showing Ravenscar-specific settings."),
|
|
&set_ravenscar_list, &show_ravenscar_list,
|
|
&setlist, &showlist);
|
|
|
|
add_setshow_boolean_cmd ("task-switching", class_obscure,
|
|
&ravenscar_task_support, _("\
|
|
Enable or disable support for GNAT Ravenscar tasks."), _("\
|
|
Show whether support for GNAT Ravenscar tasks is enabled."),
|
|
_("\
|
|
Enable or disable support for task/thread switching with the GNAT\n\
|
|
Ravenscar run-time library for bareboard configuration."),
|
|
NULL, show_ravenscar_task_switching_command,
|
|
&set_ravenscar_list, &show_ravenscar_list);
|
|
}
|