mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-18 12:24:38 +08:00
4c681116af
ENABLE_OBS, and THREAD_DB_OBS. These are consolidated into LIBS and CONFIG_OBS. * configure configure.in: Clean up test cases around thread support. start-sanitize-v850 * configure.tgt (v850-*-*): Include v850ice.o and v850.lib if host is Windows. end-sanitize-v850 * c-valprint.c ch-valprint.c cp-valprint.c eval.c expprint.c printcmd.c valops.c value.h values.c: Add bfd_section arg to value_at and value_at_lazy. * coffread.c dbxread.c elfread.c mdebugread.c minsyms.c symtab.h: Add bfd_section arg to prim_record_minimal_symbol_and_info. * corefile.c gdbcore.h printcmd.c valops.c: Use read_memory_section instead of read_memory. It takes a bfd_section arg. * coffread.c dbxread.c elfread.c gdb-stabs.h objfiles.h: Remove unnecessary cast for assignment of struct dbx_symfile_info. Struct objfile now uses a real pointer instead of PTR for this element. * dbxread.c (dbx_symfile_init): Stash bfd section pointers for text, data and bss into dbx_symfile_info. * exec.c (xfer_memory): Handle transfers for user-specified sections. * findvar.c (read_var_value locate_var_value): Copy bfd section from the symbol to the value. * gdb-stabs.h: Add section pointers for text, data and bss sections. * maint.c (translate address command): Add test code for overlay address translation. * printcmd.c (do_examine do_one_display): Now takes a bfd section arg. * (print_formatted x_command): Record current section along with current address for repeated commands. * sparc-nat.c (fetch_inferior_registers): Change target_xfer_memory to target_{read write}_memory to allow changes to target_xfer_memory interface for section info. * symmisc.c (dump_msymbols print_symbol): Print section assocaited with symbol. * symtab.c (fixup_symbol_section): New routine to add section info to symbols returned by lookup_symbol. * symtab.h (struct general_symbol_info): Add bfd section to symbols. * target.c target.h (target_xfer_memory): Add bfd section to args. * (target_read_memory_section): New routine to read data from a specific section. * (target_memory_bfd_section): New global variable to pass bfd section in to targets. * valarith.c (value_add value_addr value_array): Preserve bfd section when computing new value. * value.h (struct value): Add bfd section to values. * values.c (allocate_value value_copy): Initialize/preserve bfd section. * (unpack_double): Clean up _MSC_VER conditionals to remove duplicate code. start-sanitize-v850 * v850ice.c: New module to support communication with NEC's PC-based ICE. * config/v850/tm-v850.h (REGISTER_NAMES): Replace sp, gp, fp, and ep names with rxx names. sp and fp are renamed via a different mechanism. end-sanitize-v850
325 lines
10 KiB
C
325 lines
10 KiB
C
/* Functions specific to running gdb native on a SPARC running SunOS4.
|
||
Copyright 1989, 1992, 1993, 1994, 1996 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "inferior.h"
|
||
#include "target.h"
|
||
#include "gdbcore.h"
|
||
|
||
#include <signal.h>
|
||
#include <sys/ptrace.h>
|
||
#include <sys/wait.h>
|
||
#include <machine/reg.h>
|
||
#include <sys/user.h>
|
||
|
||
/* We don't store all registers immediately when requested, since they
|
||
get sent over in large chunks anyway. Instead, we accumulate most
|
||
of the changes and send them over once. "deferred_stores" keeps
|
||
track of which sets of registers we have locally-changed copies of,
|
||
so we only need send the groups that have changed. */
|
||
|
||
#define INT_REGS 1
|
||
#define STACK_REGS 2
|
||
#define FP_REGS 4
|
||
|
||
static void
|
||
fetch_core_registers PARAMS ((char *, unsigned int, int, CORE_ADDR));
|
||
|
||
/* Fetch one or more registers from the inferior. REGNO == -1 to get
|
||
them all. We actually fetch more than requested, when convenient,
|
||
marking them as valid so we won't fetch them again. */
|
||
|
||
void
|
||
fetch_inferior_registers (regno)
|
||
int regno;
|
||
{
|
||
struct regs inferior_registers;
|
||
struct fp_status inferior_fp_registers;
|
||
int i;
|
||
|
||
/* We should never be called with deferred stores, because a prerequisite
|
||
for writing regs is to have fetched them all (PREPARE_TO_STORE), sigh. */
|
||
if (deferred_stores) abort();
|
||
|
||
DO_DEFERRED_STORES;
|
||
|
||
/* Global and Out regs are fetched directly, as well as the control
|
||
registers. If we're getting one of the in or local regs,
|
||
and the stack pointer has not yet been fetched,
|
||
we have to do that first, since they're found in memory relative
|
||
to the stack pointer. */
|
||
if (regno < O7_REGNUM /* including -1 */
|
||
|| regno >= Y_REGNUM
|
||
|| (!register_valid[SP_REGNUM] && regno < I7_REGNUM))
|
||
{
|
||
if (0 != ptrace (PTRACE_GETREGS, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) &inferior_registers, 0))
|
||
perror("ptrace_getregs");
|
||
|
||
registers[REGISTER_BYTE (0)] = 0;
|
||
memcpy (®isters[REGISTER_BYTE (1)], &inferior_registers.r_g1,
|
||
15 * REGISTER_RAW_SIZE (G0_REGNUM));
|
||
*(int *)®isters[REGISTER_BYTE (PS_REGNUM)] = inferior_registers.r_ps;
|
||
*(int *)®isters[REGISTER_BYTE (PC_REGNUM)] = inferior_registers.r_pc;
|
||
*(int *)®isters[REGISTER_BYTE (NPC_REGNUM)] = inferior_registers.r_npc;
|
||
*(int *)®isters[REGISTER_BYTE (Y_REGNUM)] = inferior_registers.r_y;
|
||
|
||
for (i = G0_REGNUM; i <= O7_REGNUM; i++)
|
||
register_valid[i] = 1;
|
||
register_valid[Y_REGNUM] = 1;
|
||
register_valid[PS_REGNUM] = 1;
|
||
register_valid[PC_REGNUM] = 1;
|
||
register_valid[NPC_REGNUM] = 1;
|
||
/* If we don't set these valid, read_register_bytes() rereads
|
||
all the regs every time it is called! FIXME. */
|
||
register_valid[WIM_REGNUM] = 1; /* Not true yet, FIXME */
|
||
register_valid[TBR_REGNUM] = 1; /* Not true yet, FIXME */
|
||
register_valid[CPS_REGNUM] = 1; /* Not true yet, FIXME */
|
||
}
|
||
|
||
/* Floating point registers */
|
||
if (regno == -1 ||
|
||
regno == FPS_REGNUM ||
|
||
(regno >= FP0_REGNUM && regno <= FP0_REGNUM + 31))
|
||
{
|
||
if (0 != ptrace (PTRACE_GETFPREGS, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) &inferior_fp_registers,
|
||
0))
|
||
perror("ptrace_getfpregs");
|
||
memcpy (®isters[REGISTER_BYTE (FP0_REGNUM)], &inferior_fp_registers,
|
||
sizeof inferior_fp_registers.fpu_fr);
|
||
memcpy (®isters[REGISTER_BYTE (FPS_REGNUM)],
|
||
&inferior_fp_registers.Fpu_fsr,
|
||
sizeof (FPU_FSR_TYPE));
|
||
for (i = FP0_REGNUM; i <= FP0_REGNUM+31; i++)
|
||
register_valid[i] = 1;
|
||
register_valid[FPS_REGNUM] = 1;
|
||
}
|
||
|
||
/* These regs are saved on the stack by the kernel. Only read them
|
||
all (16 ptrace calls!) if we really need them. */
|
||
if (regno == -1)
|
||
{
|
||
target_read_memory (*(CORE_ADDR*)®isters[REGISTER_BYTE (SP_REGNUM)],
|
||
®isters[REGISTER_BYTE (L0_REGNUM)],
|
||
16*REGISTER_RAW_SIZE (L0_REGNUM));
|
||
for (i = L0_REGNUM; i <= I7_REGNUM; i++)
|
||
register_valid[i] = 1;
|
||
}
|
||
else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
|
||
{
|
||
CORE_ADDR sp = *(CORE_ADDR*)®isters[REGISTER_BYTE (SP_REGNUM)];
|
||
i = REGISTER_BYTE (regno);
|
||
if (register_valid[regno])
|
||
printf_unfiltered("register %d valid and read\n", regno);
|
||
target_read_memory (sp + i - REGISTER_BYTE (L0_REGNUM),
|
||
®isters[i], REGISTER_RAW_SIZE (regno));
|
||
register_valid[regno] = 1;
|
||
}
|
||
}
|
||
|
||
/* Store our register values back into the inferior.
|
||
If REGNO is -1, do this for all registers.
|
||
Otherwise, REGNO specifies which register (so we can save time). */
|
||
|
||
void
|
||
store_inferior_registers (regno)
|
||
int regno;
|
||
{
|
||
struct regs inferior_registers;
|
||
struct fp_status inferior_fp_registers;
|
||
int wanna_store = INT_REGS + STACK_REGS + FP_REGS;
|
||
|
||
/* First decide which pieces of machine-state we need to modify.
|
||
Default for regno == -1 case is all pieces. */
|
||
if (regno >= 0)
|
||
if (FP0_REGNUM <= regno && regno < FP0_REGNUM + 32)
|
||
{
|
||
wanna_store = FP_REGS;
|
||
}
|
||
else
|
||
{
|
||
if (regno == SP_REGNUM)
|
||
wanna_store = INT_REGS + STACK_REGS;
|
||
else if (regno < L0_REGNUM || regno > I7_REGNUM)
|
||
wanna_store = INT_REGS;
|
||
else if (regno == FPS_REGNUM)
|
||
wanna_store = FP_REGS;
|
||
else
|
||
wanna_store = STACK_REGS;
|
||
}
|
||
|
||
/* See if we're forcing the stores to happen now, or deferring. */
|
||
if (regno == -2)
|
||
{
|
||
wanna_store = deferred_stores;
|
||
deferred_stores = 0;
|
||
}
|
||
else
|
||
{
|
||
if (wanna_store == STACK_REGS)
|
||
{
|
||
/* Fall through and just store one stack reg. If we deferred
|
||
it, we'd have to store them all, or remember more info. */
|
||
}
|
||
else
|
||
{
|
||
deferred_stores |= wanna_store;
|
||
return;
|
||
}
|
||
}
|
||
|
||
if (wanna_store & STACK_REGS)
|
||
{
|
||
CORE_ADDR sp = *(CORE_ADDR *)®isters[REGISTER_BYTE (SP_REGNUM)];
|
||
|
||
if (regno < 0 || regno == SP_REGNUM)
|
||
{
|
||
if (!register_valid[L0_REGNUM+5]) abort();
|
||
target_write_memory (sp,
|
||
®isters[REGISTER_BYTE (L0_REGNUM)],
|
||
16*REGISTER_RAW_SIZE (L0_REGNUM));
|
||
}
|
||
else
|
||
{
|
||
if (!register_valid[regno]) abort();
|
||
target_write_memory (sp + REGISTER_BYTE (regno) - REGISTER_BYTE (L0_REGNUM),
|
||
®isters[REGISTER_BYTE (regno)],
|
||
REGISTER_RAW_SIZE (regno));
|
||
}
|
||
|
||
}
|
||
|
||
if (wanna_store & INT_REGS)
|
||
{
|
||
if (!register_valid[G1_REGNUM]) abort();
|
||
|
||
memcpy (&inferior_registers.r_g1, ®isters[REGISTER_BYTE (G1_REGNUM)],
|
||
15 * REGISTER_RAW_SIZE (G1_REGNUM));
|
||
|
||
inferior_registers.r_ps =
|
||
*(int *)®isters[REGISTER_BYTE (PS_REGNUM)];
|
||
inferior_registers.r_pc =
|
||
*(int *)®isters[REGISTER_BYTE (PC_REGNUM)];
|
||
inferior_registers.r_npc =
|
||
*(int *)®isters[REGISTER_BYTE (NPC_REGNUM)];
|
||
inferior_registers.r_y =
|
||
*(int *)®isters[REGISTER_BYTE (Y_REGNUM)];
|
||
|
||
if (0 != ptrace (PTRACE_SETREGS, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) &inferior_registers, 0))
|
||
perror("ptrace_setregs");
|
||
}
|
||
|
||
if (wanna_store & FP_REGS)
|
||
{
|
||
if (!register_valid[FP0_REGNUM+9]) abort();
|
||
memcpy (&inferior_fp_registers, ®isters[REGISTER_BYTE (FP0_REGNUM)],
|
||
sizeof inferior_fp_registers.fpu_fr);
|
||
memcpy (&inferior_fp_registers.Fpu_fsr,
|
||
®isters[REGISTER_BYTE (FPS_REGNUM)], sizeof (FPU_FSR_TYPE));
|
||
if (0 !=
|
||
ptrace (PTRACE_SETFPREGS, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) &inferior_fp_registers, 0))
|
||
perror("ptrace_setfpregs");
|
||
}
|
||
}
|
||
|
||
|
||
static void
|
||
fetch_core_registers (core_reg_sect, core_reg_size, which, ignore)
|
||
char *core_reg_sect;
|
||
unsigned core_reg_size;
|
||
int which;
|
||
CORE_ADDR ignore; /* reg addr, unused in this version */
|
||
{
|
||
|
||
if (which == 0) {
|
||
|
||
/* Integer registers */
|
||
|
||
#define gregs ((struct regs *)core_reg_sect)
|
||
/* G0 *always* holds 0. */
|
||
*(int *)®isters[REGISTER_BYTE (0)] = 0;
|
||
|
||
/* The globals and output registers. */
|
||
memcpy (®isters[REGISTER_BYTE (G1_REGNUM)], &gregs->r_g1,
|
||
15 * REGISTER_RAW_SIZE (G1_REGNUM));
|
||
*(int *)®isters[REGISTER_BYTE (PS_REGNUM)] = gregs->r_ps;
|
||
*(int *)®isters[REGISTER_BYTE (PC_REGNUM)] = gregs->r_pc;
|
||
*(int *)®isters[REGISTER_BYTE (NPC_REGNUM)] = gregs->r_npc;
|
||
*(int *)®isters[REGISTER_BYTE (Y_REGNUM)] = gregs->r_y;
|
||
|
||
/* My best guess at where to get the locals and input
|
||
registers is exactly where they usually are, right above
|
||
the stack pointer. If the core dump was caused by a bus error
|
||
from blowing away the stack pointer (as is possible) then this
|
||
won't work, but it's worth the try. */
|
||
{
|
||
int sp;
|
||
|
||
sp = *(int *)®isters[REGISTER_BYTE (SP_REGNUM)];
|
||
if (0 != target_read_memory (sp, ®isters[REGISTER_BYTE (L0_REGNUM)],
|
||
16 * REGISTER_RAW_SIZE (L0_REGNUM)))
|
||
{
|
||
/* fprintf_unfiltered so user can still use gdb */
|
||
fprintf_unfiltered (gdb_stderr,
|
||
"Couldn't read input and local registers from core file\n");
|
||
}
|
||
}
|
||
} else if (which == 2) {
|
||
|
||
/* Floating point registers */
|
||
|
||
#define fpuregs ((struct fpu *) core_reg_sect)
|
||
if (core_reg_size >= sizeof (struct fpu))
|
||
{
|
||
memcpy (®isters[REGISTER_BYTE (FP0_REGNUM)], fpuregs->fpu_regs,
|
||
sizeof (fpuregs->fpu_regs));
|
||
memcpy (®isters[REGISTER_BYTE (FPS_REGNUM)], &fpuregs->fpu_fsr,
|
||
sizeof (FPU_FSR_TYPE));
|
||
}
|
||
else
|
||
fprintf_unfiltered (gdb_stderr, "Couldn't read float regs from core file\n");
|
||
}
|
||
}
|
||
|
||
int
|
||
kernel_u_size ()
|
||
{
|
||
return (sizeof (struct user));
|
||
}
|
||
|
||
|
||
/* Register that we are able to handle sparc core file formats.
|
||
FIXME: is this really bfd_target_unknown_flavour? */
|
||
|
||
static struct core_fns sparc_core_fns =
|
||
{
|
||
bfd_target_unknown_flavour,
|
||
fetch_core_registers,
|
||
NULL
|
||
};
|
||
|
||
void
|
||
_initialize_core_sparc ()
|
||
{
|
||
add_core_fns (&sparc_core_fns);
|
||
}
|