binutils-gdb/libctf/ctf-util.c

316 lines
7.6 KiB
C

/* Miscellaneous utilities.
Copyright (C) 2019-2021 Free Software Foundation, Inc.
This file is part of libctf.
libctf is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not see
<http://www.gnu.org/licenses/>. */
#include <ctf-impl.h>
#include <string.h>
#include "ctf-endian.h"
/* Simple doubly-linked list append routine. This implementation assumes that
each list element contains an embedded ctf_list_t as the first member.
An additional ctf_list_t is used to store the head (l_next) and tail
(l_prev) pointers. The current head and tail list elements have their
previous and next pointers set to NULL, respectively. */
void
ctf_list_append (ctf_list_t *lp, void *newp)
{
ctf_list_t *p = lp->l_prev; /* p = tail list element. */
ctf_list_t *q = newp; /* q = new list element. */
lp->l_prev = q;
q->l_prev = p;
q->l_next = NULL;
if (p != NULL)
p->l_next = q;
else
lp->l_next = q;
}
/* Prepend the specified existing element to the given ctf_list_t. The
existing pointer should be pointing at a struct with embedded ctf_list_t. */
void
ctf_list_prepend (ctf_list_t * lp, void *newp)
{
ctf_list_t *p = newp; /* p = new list element. */
ctf_list_t *q = lp->l_next; /* q = head list element. */
lp->l_next = p;
p->l_prev = NULL;
p->l_next = q;
if (q != NULL)
q->l_prev = p;
else
lp->l_prev = p;
}
/* Delete the specified existing element from the given ctf_list_t. The
existing pointer should be pointing at a struct with embedded ctf_list_t. */
void
ctf_list_delete (ctf_list_t *lp, void *existing)
{
ctf_list_t *p = existing;
if (p->l_prev != NULL)
p->l_prev->l_next = p->l_next;
else
lp->l_next = p->l_next;
if (p->l_next != NULL)
p->l_next->l_prev = p->l_prev;
else
lp->l_prev = p->l_prev;
}
/* Return 1 if the list is empty. */
int
ctf_list_empty_p (ctf_list_t *lp)
{
return (lp->l_next == NULL && lp->l_prev == NULL);
}
/* Splice one entire list onto the end of another one. The existing list is
emptied. */
void
ctf_list_splice (ctf_list_t *lp, ctf_list_t *append)
{
if (ctf_list_empty_p (append))
return;
if (lp->l_prev != NULL)
lp->l_prev->l_next = append->l_next;
else
lp->l_next = append->l_next;
append->l_next->l_prev = lp->l_prev;
lp->l_prev = append->l_prev;
append->l_next = NULL;
append->l_prev = NULL;
}
/* Convert a 32-bit ELF symbol to a ctf_link_sym_t. */
ctf_link_sym_t *
ctf_elf32_to_link_sym (ctf_dict_t *fp, ctf_link_sym_t *dst, const Elf32_Sym *src,
uint32_t symidx)
{
Elf32_Sym tmp;
int needs_flipping = 0;
#ifdef WORDS_BIGENDIAN
if (fp->ctf_symsect_little_endian)
needs_flipping = 1;
#else
if (!fp->ctf_symsect_little_endian)
needs_flipping = 1;
#endif
memcpy (&tmp, src, sizeof (Elf32_Sym));
if (needs_flipping)
{
swap_thing (tmp.st_name);
swap_thing (tmp.st_size);
swap_thing (tmp.st_shndx);
swap_thing (tmp.st_value);
}
/* The name must be in the external string table. */
if (tmp.st_name < fp->ctf_str[CTF_STRTAB_1].cts_len)
dst->st_name = (const char *) fp->ctf_str[CTF_STRTAB_1].cts_strs + tmp.st_name;
else
dst->st_name = _CTF_NULLSTR;
dst->st_nameidx_set = 0;
dst->st_symidx = symidx;
dst->st_shndx = tmp.st_shndx;
dst->st_type = ELF32_ST_TYPE (tmp.st_info);
dst->st_value = tmp.st_value;
return dst;
}
/* Convert a 64-bit ELF symbol to a ctf_link_sym_t. */
ctf_link_sym_t *
ctf_elf64_to_link_sym (ctf_dict_t *fp, ctf_link_sym_t *dst, const Elf64_Sym *src,
uint32_t symidx)
{
Elf64_Sym tmp;
int needs_flipping = 0;
#ifdef WORDS_BIGENDIAN
if (fp->ctf_symsect_little_endian)
needs_flipping = 1;
#else
if (!fp->ctf_symsect_little_endian)
needs_flipping = 1;
#endif
memcpy (&tmp, src, sizeof (Elf64_Sym));
if (needs_flipping)
{
swap_thing (tmp.st_name);
swap_thing (tmp.st_size);
swap_thing (tmp.st_shndx);
swap_thing (tmp.st_value);
}
/* The name must be in the external string table. */
if (tmp.st_name < fp->ctf_str[CTF_STRTAB_1].cts_len)
dst->st_name = (const char *) fp->ctf_str[CTF_STRTAB_1].cts_strs + tmp.st_name;
else
dst->st_name = _CTF_NULLSTR;
dst->st_nameidx_set = 0;
dst->st_symidx = symidx;
dst->st_shndx = tmp.st_shndx;
dst->st_type = ELF32_ST_TYPE (tmp.st_info);
/* We only care if the value is zero, so avoid nonzeroes turning into
zeroes. */
if (_libctf_unlikely_ (tmp.st_value != 0 && ((uint32_t) tmp.st_value == 0)))
dst->st_value = 1;
else
dst->st_value = (uint32_t) tmp.st_value;
return dst;
}
/* A string appender working on dynamic strings. Returns NULL on OOM. */
char *
ctf_str_append (char *s, const char *append)
{
size_t s_len = 0;
if (append == NULL)
return s;
if (s != NULL)
s_len = strlen (s);
size_t append_len = strlen (append);
if ((s = realloc (s, s_len + append_len + 1)) == NULL)
return NULL;
memcpy (s + s_len, append, append_len);
s[s_len + append_len] = '\0';
return s;
}
/* A version of ctf_str_append that returns the old string on OOM. */
char *
ctf_str_append_noerr (char *s, const char *append)
{
char *new_s;
new_s = ctf_str_append (s, append);
if (!new_s)
return s;
return new_s;
}
/* A realloc() that fails noisily if called with any ctf_str_num_users. */
void *
ctf_realloc (ctf_dict_t *fp, void *ptr, size_t size)
{
if (fp->ctf_str_num_refs > 0)
{
ctf_dprintf ("%p: attempt to realloc() string table with %lu active refs\n",
(void *) fp, (unsigned long) fp->ctf_str_num_refs);
return NULL;
}
return realloc (ptr, size);
}
/* Store the specified error code into errp if it is non-NULL, and then
return NULL for the benefit of the caller. */
void *
ctf_set_open_errno (int *errp, int error)
{
if (errp != NULL)
*errp = error;
return NULL;
}
/* Store the specified error code into the CTF dict, and then return CTF_ERR /
-1 for the benefit of the caller. */
unsigned long
ctf_set_errno (ctf_dict_t *fp, int err)
{
fp->ctf_errno = err;
return CTF_ERR;
}
/* Create a ctf_next_t. */
ctf_next_t *
ctf_next_create (void)
{
return calloc (1, sizeof (struct ctf_next));
}
/* Destroy a ctf_next_t, for early exit from iterators. */
void
ctf_next_destroy (ctf_next_t *i)
{
if (i == NULL)
return;
if (i->ctn_iter_fun == (void (*) (void)) ctf_dynhash_next_sorted)
free (i->u.ctn_sorted_hkv);
if (i->ctn_iter_fun == (void (*) (void)) ctf_symbol_next
&& i->cu.ctn_fp->ctf_flags & LCTF_RDWR)
ctf_next_destroy (i->u.ctn_next);
free (i);
}
/* Copy a ctf_next_t. */
ctf_next_t *
ctf_next_copy (ctf_next_t *i)
{
ctf_next_t *i2;
if ((i2 = ctf_next_create()) == NULL)
return NULL;
memcpy (i2, i, sizeof (struct ctf_next));
if (i2->ctn_iter_fun == (void (*) (void)) ctf_dynhash_next_sorted)
{
size_t els = ctf_dynhash_elements ((ctf_dynhash_t *) i->cu.ctn_h);
if ((i2->u.ctn_sorted_hkv = calloc (els, sizeof (ctf_next_hkv_t))) == NULL)
{
free (i2);
return NULL;
}
memcpy (i2->u.ctn_sorted_hkv, i->u.ctn_sorted_hkv,
els * sizeof (ctf_next_hkv_t));
}
return i2;
}