mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-09 04:21:49 +08:00
ebba838619
=================================================================== RCS file: /cvs/src/src/gdb/ChangeLog,v retrieving revision 1.3144 diff -u -r1.3144 ChangeLog --- ChangeLog 23 Aug 2002 23:05:38 -0000 1.3144 +++ ChangeLog 23 Aug 2002 23:14:45 -0000 @@ -1,3 +1,53 @@ 2002-08-23 Andrew Cagney <cagney@redhat.com> * gdbarch.sh (STORE_RETURN_VALUE): Add regcache parameter. (DEPRECATED_STORE_RETURN_VALUE): New method. (EXTRACT_RETURN_VALUE): Make buffer parameter a void pointer. * gdbarch.h, gdbarch.c: Re-generate. * values.c (set_return_value): Pass current_regcache to STORE_RETURN_VALUE. * arch-utils.h (legacy_store_return_value): Declare. * arch-utils.c (legacy_store_return_value): New function. (legacy_extract_return_value): Update parameters. * config/pa/tm-hppa.h (DEPRECATED_STORE_RETURN_VALUE): Rename STORE_RETURN_VALUE. * config/pa/tm-hppa64.h (DEPRECATED_STORE_RETURN_VALUE): Ditto. * config/sparc/tm-sparc.h (DEPRECATED_STORE_RETURN_VALUE): Ditto. * config/z8k/tm-z8k.h (DEPRECATED_STORE_RETURN_VALUE): Ditto. * config/sparc/tm-sparclet.h (DEPRECATED_STORE_RETURN_VALUE): Ditto. * config/mn10200/tm-mn10200.h (DEPRECATED_STORE_RETURN_VALUE): Ditto. * config/m68k/tm-linux.h (DEPRECATED_STORE_RETURN_VALUE): Ditto. * config/m68k/tm-delta68.h (DEPRECATED_STORE_RETURN_VALUE): Ditto. * config/m32r/tm-m32r.h (DEPRECATED_STORE_RETURN_VALUE): Ditto. * config/h8500/tm-h8500.h (DEPRECATED_STORE_RETURN_VALUE): Ditto. * config/h8300/tm-h8300.h (DEPRECATED_STORE_RETURN_VALUE): Ditto. * m68hc11-tdep.c (m68hc11_gdbarch_init): Update. * i386-tdep.c (i386_extract_return_value): Update. * arch-utils.c (legacy_extract_return_value): Update. * frv-tdep.c (frv_gdbarch_init): Update. * cris-tdep.c (cris_gdbarch_init): Update. * d10v-tdep.c (d10v_gdbarch_init): Update. * rs6000-tdep.c (rs6000_gdbarch_init): Update. * m68k-tdep.c (m68k_gdbarch_init): Update. * mcore-tdep.c (mcore_gdbarch_init): Update. * mn10300-tdep.c (mn10300_gdbarch_init): Update. * s390-tdep.c (s390_gdbarch_init): Update. * sparc-tdep.c (sparc_gdbarch_init): Update. * sh-tdep.c (sh_gdbarch_init): Update. * x86-64-tdep.c (x86_64_gdbarch_init): Update. * v850-tdep.c (v850_gdbarch_init): Update. * avr-tdep.c (avr_gdbarch_init): Update. * ia64-tdep.c (ia64_gdbarch_init): Update. * ns32k-tdep.c (ns32k_gdbarch_init): Update. * vax-tdep.c (vax_gdbarch_init): Update. * alpha-tdep.c (alpha_gdbarch_init): Update. * arm-tdep.c (arm_gdbarch_init): Update. * mips-tdep.c (mips_gdbarch_init): Update. * i386-tdep.c (i386_gdbarch_init): Update. Index: doc/ChangeLog 2002-08-21 Andrew Cagney <cagney@redhat.com> * gdbint.texinfo (Target Architecture Definition): Update STORE_RETURN_VALUE, mention regcache.
767 lines
29 KiB
C
767 lines
29 KiB
C
/* Parameters for execution on any Hewlett-Packard PA-RISC machine.
|
||
Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
|
||
1998, 1999, 2000 Free Software Foundation, Inc.
|
||
|
||
Contributed by the Center for Software Science at the
|
||
University of Utah (pa-gdb-bugs@cs.utah.edu).
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#include "regcache.h"
|
||
|
||
/* Forward declarations of some types we use in prototypes */
|
||
|
||
struct frame_info;
|
||
struct frame_saved_regs;
|
||
struct value;
|
||
struct type;
|
||
struct inferior_status;
|
||
|
||
/* By default assume we don't have to worry about software floating point. */
|
||
#ifndef SOFT_FLOAT
|
||
#define SOFT_FLOAT 0
|
||
#endif
|
||
|
||
/* Get at various relevent fields of an instruction word. */
|
||
|
||
#define MASK_5 0x1f
|
||
#define MASK_11 0x7ff
|
||
#define MASK_14 0x3fff
|
||
#define MASK_21 0x1fffff
|
||
|
||
/* This macro gets bit fields using HP's numbering (MSB = 0) */
|
||
#ifndef GET_FIELD
|
||
#define GET_FIELD(X, FROM, TO) \
|
||
((X) >> (31 - (TO)) & ((1 << ((TO) - (FROM) + 1)) - 1))
|
||
#endif
|
||
|
||
/* On the PA, any pass-by-value structure > 8 bytes is actually
|
||
passed via a pointer regardless of its type or the compiler
|
||
used. */
|
||
|
||
#define REG_STRUCT_HAS_ADDR(gcc_p,type) \
|
||
(TYPE_LENGTH (type) > 8)
|
||
|
||
/* Offset from address of function to start of its code.
|
||
Zero on most machines. */
|
||
|
||
#define FUNCTION_START_OFFSET 0
|
||
|
||
/* Advance PC across any function entry prologue instructions
|
||
to reach some "real" code. */
|
||
|
||
extern CORE_ADDR hppa_skip_prologue (CORE_ADDR);
|
||
#define SKIP_PROLOGUE(pc) (hppa_skip_prologue (pc))
|
||
|
||
/* If PC is in some function-call trampoline code, return the PC
|
||
where the function itself actually starts. If not, return NULL. */
|
||
|
||
#define SKIP_TRAMPOLINE_CODE(pc) skip_trampoline_code (pc, NULL)
|
||
extern CORE_ADDR skip_trampoline_code (CORE_ADDR, char *);
|
||
|
||
/* Return non-zero if we are in an appropriate trampoline. */
|
||
|
||
#define IN_SOLIB_CALL_TRAMPOLINE(pc, name) \
|
||
in_solib_call_trampoline (pc, name)
|
||
extern int in_solib_call_trampoline (CORE_ADDR, char *);
|
||
|
||
#define IN_SOLIB_RETURN_TRAMPOLINE(pc, name) \
|
||
in_solib_return_trampoline (pc, name)
|
||
extern int in_solib_return_trampoline (CORE_ADDR, char *);
|
||
|
||
/* Immediately after a function call, return the saved pc.
|
||
Can't go through the frames for this because on some machines
|
||
the new frame is not set up until the new function executes
|
||
some instructions. */
|
||
|
||
#undef SAVED_PC_AFTER_CALL
|
||
#define SAVED_PC_AFTER_CALL(frame) saved_pc_after_call (frame)
|
||
extern CORE_ADDR saved_pc_after_call (struct frame_info *);
|
||
|
||
/* Stack grows upward */
|
||
#define INNER_THAN(lhs,rhs) ((lhs) > (rhs))
|
||
|
||
/* elz: adjust the quantity to the next highest value which is 64-bit aligned.
|
||
This is used in valops.c, when the sp is adjusted.
|
||
On hppa the sp must always be kept 64-bit aligned */
|
||
|
||
#define STACK_ALIGN(arg) ( ((arg)%8) ? (((arg)+7)&-8) : (arg))
|
||
#define EXTRA_STACK_ALIGNMENT_NEEDED 0
|
||
|
||
/* Sequence of bytes for breakpoint instruction. */
|
||
|
||
#define BREAKPOINT {0x00, 0x01, 0x00, 0x04}
|
||
#define BREAKPOINT32 0x10004
|
||
|
||
/* Amount PC must be decremented by after a breakpoint.
|
||
This is often the number of bytes in BREAKPOINT
|
||
but not always.
|
||
|
||
Not on the PA-RISC */
|
||
|
||
#define DECR_PC_AFTER_BREAK 0
|
||
|
||
/* Sometimes we may pluck out a minimal symbol that has a negative
|
||
address.
|
||
|
||
An example of this occurs when an a.out is linked against a foo.sl.
|
||
The foo.sl defines a global bar(), and the a.out declares a signature
|
||
for bar(). However, the a.out doesn't directly call bar(), but passes
|
||
its address in another call.
|
||
|
||
If you have this scenario and attempt to "break bar" before running,
|
||
gdb will find a minimal symbol for bar() in the a.out. But that
|
||
symbol's address will be negative. What this appears to denote is
|
||
an index backwards from the base of the procedure linkage table (PLT)
|
||
into the data linkage table (DLT), the end of which is contiguous
|
||
with the start of the PLT. This is clearly not a valid address for
|
||
us to set a breakpoint on.
|
||
|
||
Note that one must be careful in how one checks for a negative address.
|
||
0xc0000000 is a legitimate address of something in a shared text
|
||
segment, for example. Since I don't know what the possible range
|
||
is of these "really, truly negative" addresses that come from the
|
||
minimal symbols, I'm resorting to the gross hack of checking the
|
||
top byte of the address for all 1's. Sigh.
|
||
*/
|
||
#define PC_REQUIRES_RUN_BEFORE_USE(pc) \
|
||
(! target_has_stack && (pc & 0xFF000000))
|
||
|
||
/* return instruction is bv r0(rp) or bv,n r0(rp) */
|
||
|
||
#define ABOUT_TO_RETURN(pc) ((read_memory_integer (pc, 4) | 0x2) == 0xE840C002)
|
||
|
||
/* Say how long (ordinary) registers are. This is a piece of bogosity
|
||
used in push_word and a few other places; REGISTER_RAW_SIZE is the
|
||
real way to know how big a register is. */
|
||
|
||
#define REGISTER_SIZE 4
|
||
|
||
/* Number of machine registers */
|
||
|
||
#define NUM_REGS 128
|
||
|
||
/* Initializer for an array of names of registers.
|
||
There should be NUM_REGS strings in this initializer.
|
||
They are in rows of eight entries */
|
||
|
||
#define REGISTER_NAMES \
|
||
{"flags", "r1", "rp", "r3", "r4", "r5", "r6", "r7", \
|
||
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
|
||
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
|
||
"r24", "r25", "r26", "dp", "ret0", "ret1", "sp", "r31", \
|
||
"sar", "pcoqh", "pcsqh", "pcoqt", "pcsqt", "eiem", "iir", "isr", \
|
||
"ior", "ipsw", "goto", "sr4", "sr0", "sr1", "sr2", "sr3", \
|
||
"sr5", "sr6", "sr7", "cr0", "cr8", "cr9", "ccr", "cr12", \
|
||
"cr13", "cr24", "cr25", "cr26", "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",\
|
||
"fpsr", "fpe1", "fpe2", "fpe3", "fpe4", "fpe5", "fpe6", "fpe7", \
|
||
"fr4", "fr4R", "fr5", "fr5R", "fr6", "fr6R", "fr7", "fr7R", \
|
||
"fr8", "fr8R", "fr9", "fr9R", "fr10", "fr10R", "fr11", "fr11R", \
|
||
"fr12", "fr12R", "fr13", "fr13R", "fr14", "fr14R", "fr15", "fr15R", \
|
||
"fr16", "fr16R", "fr17", "fr17R", "fr18", "fr18R", "fr19", "fr19R", \
|
||
"fr20", "fr20R", "fr21", "fr21R", "fr22", "fr22R", "fr23", "fr23R", \
|
||
"fr24", "fr24R", "fr25", "fr25R", "fr26", "fr26R", "fr27", "fr27R", \
|
||
"fr28", "fr28R", "fr29", "fr29R", "fr30", "fr30R", "fr31", "fr31R"}
|
||
|
||
/* Register numbers of various important registers.
|
||
Note that some of these values are "real" register numbers,
|
||
and correspond to the general registers of the machine,
|
||
and some are "phony" register numbers which are too large
|
||
to be actual register numbers as far as the user is concerned
|
||
but do serve to get the desired values when passed to read_register. */
|
||
|
||
#define R0_REGNUM 0 /* Doesn't actually exist, used as base for
|
||
other r registers. */
|
||
#define FLAGS_REGNUM 0 /* Various status flags */
|
||
#define RP_REGNUM 2 /* return pointer */
|
||
#define FP_REGNUM 3 /* Contains address of executing stack */
|
||
/* frame */
|
||
#define SP_REGNUM 30 /* Contains address of top of stack */
|
||
#define SAR_REGNUM 32 /* Shift Amount Register */
|
||
#define IPSW_REGNUM 41 /* Interrupt Processor Status Word */
|
||
#define PCOQ_HEAD_REGNUM 33 /* instruction offset queue head */
|
||
#define PCSQ_HEAD_REGNUM 34 /* instruction space queue head */
|
||
#define PCOQ_TAIL_REGNUM 35 /* instruction offset queue tail */
|
||
#define PCSQ_TAIL_REGNUM 36 /* instruction space queue tail */
|
||
#define EIEM_REGNUM 37 /* External Interrupt Enable Mask */
|
||
#define IIR_REGNUM 38 /* Interrupt Instruction Register */
|
||
#define IOR_REGNUM 40 /* Interrupt Offset Register */
|
||
#define SR4_REGNUM 43 /* space register 4 */
|
||
#define RCR_REGNUM 51 /* Recover Counter (also known as cr0) */
|
||
#define CCR_REGNUM 54 /* Coprocessor Configuration Register */
|
||
#define TR0_REGNUM 57 /* Temporary Registers (cr24 -> cr31) */
|
||
#define CR27_REGNUM 60 /* Base register for thread-local storage, cr27 */
|
||
#define FP0_REGNUM 64 /* floating point reg. 0 (fspr) */
|
||
#define FP4_REGNUM 72
|
||
|
||
#define ARG0_REGNUM 26 /* The first argument of a callee. */
|
||
#define ARG1_REGNUM 25 /* The second argument of a callee. */
|
||
#define ARG2_REGNUM 24 /* The third argument of a callee. */
|
||
#define ARG3_REGNUM 23 /* The fourth argument of a callee. */
|
||
|
||
/* compatibility with the rest of gdb. */
|
||
#define PC_REGNUM PCOQ_HEAD_REGNUM
|
||
#define NPC_REGNUM PCOQ_TAIL_REGNUM
|
||
|
||
/*
|
||
* Processor Status Word Masks
|
||
*/
|
||
|
||
#define PSW_T 0x01000000 /* Taken Branch Trap Enable */
|
||
#define PSW_H 0x00800000 /* Higher-Privilege Transfer Trap Enable */
|
||
#define PSW_L 0x00400000 /* Lower-Privilege Transfer Trap Enable */
|
||
#define PSW_N 0x00200000 /* PC Queue Front Instruction Nullified */
|
||
#define PSW_X 0x00100000 /* Data Memory Break Disable */
|
||
#define PSW_B 0x00080000 /* Taken Branch in Previous Cycle */
|
||
#define PSW_C 0x00040000 /* Code Address Translation Enable */
|
||
#define PSW_V 0x00020000 /* Divide Step Correction */
|
||
#define PSW_M 0x00010000 /* High-Priority Machine Check Disable */
|
||
#define PSW_CB 0x0000ff00 /* Carry/Borrow Bits */
|
||
#define PSW_R 0x00000010 /* Recovery Counter Enable */
|
||
#define PSW_Q 0x00000008 /* Interruption State Collection Enable */
|
||
#define PSW_P 0x00000004 /* Protection ID Validation Enable */
|
||
#define PSW_D 0x00000002 /* Data Address Translation Enable */
|
||
#define PSW_I 0x00000001 /* External, Power Failure, Low-Priority */
|
||
/* Machine Check Interruption Enable */
|
||
|
||
/* When fetching register values from an inferior or a core file,
|
||
clean them up using this macro. BUF is a char pointer to
|
||
the raw value of the register in the registers[] array. */
|
||
|
||
#define DEPRECATED_CLEAN_UP_REGISTER_VALUE(regno, buf) \
|
||
do { \
|
||
if ((regno) == PCOQ_HEAD_REGNUM || (regno) == PCOQ_TAIL_REGNUM) \
|
||
(buf)[sizeof(CORE_ADDR) -1] &= ~0x3; \
|
||
} while (0)
|
||
|
||
/* Define DO_REGISTERS_INFO() to do machine-specific formatting
|
||
of register dumps. */
|
||
|
||
#define DO_REGISTERS_INFO(_regnum, fp) pa_do_registers_info (_regnum, fp)
|
||
extern void pa_do_registers_info (int, int);
|
||
|
||
#if 0
|
||
#define STRCAT_REGISTER(regnum, fpregs, stream, precision) pa_do_strcat_registers_info (regnum, fpregs, stream, precision)
|
||
extern void pa_do_strcat_registers_info (int, int, struct ui_file *, enum precision_type);
|
||
#endif
|
||
|
||
/* PA specific macro to see if the current instruction is nullified. */
|
||
#ifndef INSTRUCTION_NULLIFIED
|
||
#define INSTRUCTION_NULLIFIED \
|
||
(((int)read_register (IPSW_REGNUM) & 0x00200000) && \
|
||
!((int)read_register (FLAGS_REGNUM) & 0x2))
|
||
#endif
|
||
|
||
/* Number of bytes of storage in the actual machine representation
|
||
for register N. On the PA-RISC, all regs are 4 bytes, including
|
||
the FP registers (they're accessed as two 4 byte halves). */
|
||
|
||
#define REGISTER_RAW_SIZE(N) 4
|
||
|
||
/* Total amount of space needed to store our copies of the machine's
|
||
register state, the array `registers'. */
|
||
#define REGISTER_BYTES (NUM_REGS * 4)
|
||
|
||
/* Index within `registers' of the first byte of the space for
|
||
register N. */
|
||
|
||
#define REGISTER_BYTE(N) (N) * 4
|
||
|
||
/* Number of bytes of storage in the program's representation
|
||
for register N. */
|
||
|
||
#define REGISTER_VIRTUAL_SIZE(N) REGISTER_RAW_SIZE(N)
|
||
|
||
/* Largest value REGISTER_RAW_SIZE can have. */
|
||
|
||
#define MAX_REGISTER_RAW_SIZE 4
|
||
|
||
/* Largest value REGISTER_VIRTUAL_SIZE can have. */
|
||
|
||
#define MAX_REGISTER_VIRTUAL_SIZE 8
|
||
|
||
/* Return the GDB type object for the "standard" data type
|
||
of data in register N. */
|
||
|
||
#define REGISTER_VIRTUAL_TYPE(N) \
|
||
((N) < FP4_REGNUM ? builtin_type_int : builtin_type_float)
|
||
|
||
/* Store the address of the place in which to copy the structure the
|
||
subroutine will return. This is called from call_function. */
|
||
|
||
#define STORE_STRUCT_RETURN(ADDR, SP) {write_register (28, (ADDR)); }
|
||
|
||
/* Extract from an array REGBUF containing the (raw) register state
|
||
a function return value of type TYPE, and copy that, in virtual format,
|
||
into VALBUF. */
|
||
|
||
void hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf);
|
||
#define DEPRECATED_EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
|
||
hppa_extract_return_value (TYPE, REGBUF, VALBUF);
|
||
|
||
/* elz: decide whether the function returning a value of type type
|
||
will put it on the stack or in the registers.
|
||
The pa calling convention says that:
|
||
register 28 (called ret0 by gdb) contains any ASCII char,
|
||
and any non_floating point value up to 32-bits.
|
||
reg 28 and 29 contain non-floating point up tp 64 bits and larger
|
||
than 32 bits. (higer order word in reg 28).
|
||
fr4: floating point up to 64 bits
|
||
sr1: space identifier (32-bit)
|
||
stack: any lager than 64-bit, with the address in r28
|
||
*/
|
||
extern use_struct_convention_fn hppa_use_struct_convention;
|
||
#define USE_STRUCT_CONVENTION(gcc_p,type) hppa_use_struct_convention (gcc_p,type)
|
||
|
||
/* Write into appropriate registers a function return value
|
||
of type TYPE, given in virtual format. */
|
||
|
||
|
||
extern void hppa_store_return_value (struct type *type, char *valbuf);
|
||
#define DEPRECATED_STORE_RETURN_VALUE(TYPE,VALBUF) \
|
||
hppa_store_return_value (TYPE, VALBUF);
|
||
|
||
/* Extract from an array REGBUF containing the (raw) register state
|
||
the address in which a function should return its structure value,
|
||
as a CORE_ADDR (or an expression that can be used as one). */
|
||
|
||
#define DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) \
|
||
(*(int *)((REGBUF) + REGISTER_BYTE (28)))
|
||
|
||
/* elz: Return a large value, which is stored on the stack at addr.
|
||
This is defined only for the hppa, at this moment. The above macro
|
||
DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS is not called anymore,
|
||
because it assumes that on exit from a called function which
|
||
returns a large structure on the stack, the address of the ret
|
||
structure is still in register 28. Unfortunately this register is
|
||
usually overwritten by the called function itself, on hppa. This is
|
||
specified in the calling convention doc. As far as I know, the only
|
||
way to get the return value is to have the caller tell us where it
|
||
told the callee to put it, rather than have the callee tell us. */
|
||
struct value *hppa_value_returned_from_stack (register struct type *valtype,
|
||
CORE_ADDR addr);
|
||
#define VALUE_RETURNED_FROM_STACK(valtype,addr) \
|
||
hppa_value_returned_from_stack (valtype, addr)
|
||
|
||
/*
|
||
* This macro defines the register numbers (from REGISTER_NAMES) that
|
||
* are effectively unavailable to the user through ptrace(). It allows
|
||
* us to include the whole register set in REGISTER_NAMES (inorder to
|
||
* better support remote debugging). If it is used in
|
||
* fetch/store_inferior_registers() gdb will not complain about I/O errors
|
||
* on fetching these registers. If all registers in REGISTER_NAMES
|
||
* are available, then return false (0).
|
||
*/
|
||
|
||
#define CANNOT_STORE_REGISTER(regno) \
|
||
((regno) == 0) || \
|
||
((regno) == PCSQ_HEAD_REGNUM) || \
|
||
((regno) >= PCSQ_TAIL_REGNUM && (regno) < IPSW_REGNUM) || \
|
||
((regno) > IPSW_REGNUM && (regno) < FP4_REGNUM)
|
||
|
||
#define INIT_EXTRA_FRAME_INFO(fromleaf, frame) init_extra_frame_info (fromleaf, frame)
|
||
extern void init_extra_frame_info (int, struct frame_info *);
|
||
|
||
/* Describe the pointer in each stack frame to the previous stack frame
|
||
(its caller). */
|
||
|
||
/* FRAME_CHAIN takes a frame's nominal address and produces the
|
||
frame's chain-pointer. */
|
||
|
||
/* In the case of the PA-RISC, the frame's nominal address
|
||
is the address of a 4-byte word containing the calling frame's
|
||
address (previous FP). */
|
||
|
||
#define FRAME_CHAIN(thisframe) frame_chain (thisframe)
|
||
extern CORE_ADDR frame_chain (struct frame_info *);
|
||
|
||
extern int hppa_frame_chain_valid (CORE_ADDR, struct frame_info *);
|
||
#define FRAME_CHAIN_VALID(chain, thisframe) hppa_frame_chain_valid (chain, thisframe)
|
||
|
||
/* Define other aspects of the stack frame. */
|
||
|
||
/* A macro that tells us whether the function invocation represented
|
||
by FI does not have a frame on the stack associated with it. If it
|
||
does not, FRAMELESS is set to 1, else 0. */
|
||
#define FRAMELESS_FUNCTION_INVOCATION(FI) \
|
||
(frameless_function_invocation (FI))
|
||
extern int frameless_function_invocation (struct frame_info *);
|
||
|
||
extern CORE_ADDR hppa_frame_saved_pc (struct frame_info *frame);
|
||
#define FRAME_SAVED_PC(FRAME) hppa_frame_saved_pc (FRAME)
|
||
|
||
#define FRAME_ARGS_ADDRESS(fi) ((fi)->frame)
|
||
|
||
#define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
|
||
/* Set VAL to the number of args passed to frame described by FI.
|
||
Can set VAL to -1, meaning no way to tell. */
|
||
|
||
/* We can't tell how many args there are
|
||
now that the C compiler delays popping them. */
|
||
#define FRAME_NUM_ARGS(fi) (-1)
|
||
|
||
/* Return number of bytes at start of arglist that are not really args. */
|
||
|
||
#define FRAME_ARGS_SKIP 0
|
||
|
||
#define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
|
||
hppa_frame_find_saved_regs (frame_info, &frame_saved_regs)
|
||
extern void
|
||
hppa_frame_find_saved_regs (struct frame_info *, struct frame_saved_regs *);
|
||
|
||
|
||
/* Things needed for making the inferior call functions. */
|
||
|
||
/* Push an empty stack frame, to record the current PC, etc. */
|
||
|
||
#define PUSH_DUMMY_FRAME push_dummy_frame (inf_status)
|
||
extern void push_dummy_frame (struct inferior_status *);
|
||
|
||
/* Discard from the stack the innermost frame,
|
||
restoring all saved registers. */
|
||
#define POP_FRAME hppa_pop_frame ()
|
||
extern void hppa_pop_frame (void);
|
||
|
||
#define INSTRUCTION_SIZE 4
|
||
|
||
#ifndef PA_LEVEL_0
|
||
|
||
/* Non-level zero PA's have space registers (but they don't always have
|
||
floating-point, do they???? */
|
||
|
||
/* This sequence of words is the instructions
|
||
|
||
; Call stack frame has already been built by gdb. Since we could be calling
|
||
; a varargs function, and we do not have the benefit of a stub to put things in
|
||
; the right place, we load the first 4 word of arguments into both the general
|
||
; and fp registers.
|
||
call_dummy
|
||
ldw -36(sp), arg0
|
||
ldw -40(sp), arg1
|
||
ldw -44(sp), arg2
|
||
ldw -48(sp), arg3
|
||
ldo -36(sp), r1
|
||
fldws 0(0, r1), fr4
|
||
fldds -4(0, r1), fr5
|
||
fldws -8(0, r1), fr6
|
||
fldds -12(0, r1), fr7
|
||
ldil 0, r22 ; FUNC_LDIL_OFFSET must point here
|
||
ldo 0(r22), r22 ; FUNC_LDO_OFFSET must point here
|
||
ldsid (0,r22), r4
|
||
ldil 0, r1 ; SR4EXPORT_LDIL_OFFSET must point here
|
||
ldo 0(r1), r1 ; SR4EXPORT_LDO_OFFSET must point here
|
||
ldsid (0,r1), r20
|
||
combt,=,n r4, r20, text_space ; If target is in data space, do a
|
||
ble 0(sr5, r22) ; "normal" procedure call
|
||
copy r31, r2
|
||
break 4, 8
|
||
mtsp r21, sr0
|
||
ble,n 0(sr0, r22)
|
||
text_space ; Otherwise, go through _sr4export,
|
||
ble (sr4, r1) ; which will return back here.
|
||
stw r31,-24(r30)
|
||
break 4, 8
|
||
mtsp r21, sr0
|
||
ble,n 0(sr0, r22)
|
||
nop ; To avoid kernel bugs
|
||
nop ; and keep the dummy 8 byte aligned
|
||
|
||
The dummy decides if the target is in text space or data space. If
|
||
it's in data space, there's no problem because the target can
|
||
return back to the dummy. However, if the target is in text space,
|
||
the dummy calls the secret, undocumented routine _sr4export, which
|
||
calls a function in text space and can return to any space. Instead
|
||
of including fake instructions to represent saved registers, we
|
||
know that the frame is associated with the call dummy and treat it
|
||
specially.
|
||
|
||
The trailing NOPs are needed to avoid a bug in HPUX, BSD and OSF1
|
||
kernels. If the memory at the location pointed to by the PC is
|
||
0xffffffff then a ptrace step call will fail (even if the instruction
|
||
is nullified).
|
||
|
||
The code to pop a dummy frame single steps three instructions
|
||
starting with the last mtsp. This includes the nullified "instruction"
|
||
following the ble (which is uninitialized junk). If the
|
||
"instruction" following the last BLE is 0xffffffff, then the ptrace
|
||
will fail and the dummy frame is not correctly popped.
|
||
|
||
By placing a NOP in the delay slot of the BLE instruction we can be
|
||
sure that we never try to execute a 0xffffffff instruction and
|
||
avoid the kernel bug. The second NOP is needed to keep the call
|
||
dummy 8 byte aligned. */
|
||
|
||
/* Define offsets into the call dummy for the target function address */
|
||
#define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 9)
|
||
#define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 10)
|
||
|
||
/* Define offsets into the call dummy for the _sr4export address */
|
||
#define SR4EXPORT_LDIL_OFFSET (INSTRUCTION_SIZE * 12)
|
||
#define SR4EXPORT_LDO_OFFSET (INSTRUCTION_SIZE * 13)
|
||
|
||
#define CALL_DUMMY {0x4BDA3FB9, 0x4BD93FB1, 0x4BD83FA9, 0x4BD73FA1,\
|
||
0x37C13FB9, 0x24201004, 0x2C391005, 0x24311006,\
|
||
0x2C291007, 0x22C00000, 0x36D60000, 0x02C010A4,\
|
||
0x20200000, 0x34210000, 0x002010b4, 0x82842022,\
|
||
0xe6c06000, 0x081f0242, 0x00010004, 0x00151820,\
|
||
0xe6c00002, 0xe4202000, 0x6bdf3fd1, 0x00010004,\
|
||
0x00151820, 0xe6c00002, 0x08000240, 0x08000240}
|
||
|
||
#define CALL_DUMMY_LENGTH (INSTRUCTION_SIZE * 28)
|
||
#define REG_PARM_STACK_SPACE 16
|
||
|
||
#else /* defined PA_LEVEL_0 */
|
||
|
||
/* This is the call dummy for a level 0 PA. Level 0's don't have space
|
||
registers (or floating point?), so we skip all that inter-space call stuff,
|
||
and avoid touching the fp regs.
|
||
|
||
call_dummy
|
||
|
||
ldw -36(%sp), %arg0
|
||
ldw -40(%sp), %arg1
|
||
ldw -44(%sp), %arg2
|
||
ldw -48(%sp), %arg3
|
||
ldil 0, %r31 ; FUNC_LDIL_OFFSET must point here
|
||
ldo 0(%r31), %r31 ; FUNC_LDO_OFFSET must point here
|
||
ble 0(%sr0, %r31)
|
||
copy %r31, %r2
|
||
break 4, 8
|
||
nop ; restore_pc_queue expects these
|
||
bv,n 0(%r22) ; instructions to be here...
|
||
nop
|
||
*/
|
||
|
||
/* Define offsets into the call dummy for the target function address */
|
||
#define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 4)
|
||
#define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 5)
|
||
|
||
#define CALL_DUMMY {0x4bda3fb9, 0x4bd93fb1, 0x4bd83fa9, 0x4bd73fa1,\
|
||
0x23e00000, 0x37ff0000, 0xe7e00000, 0x081f0242,\
|
||
0x00010004, 0x08000240, 0xeac0c002, 0x08000240}
|
||
|
||
#define CALL_DUMMY_LENGTH (INSTRUCTION_SIZE * 12)
|
||
|
||
#endif
|
||
|
||
#define CALL_DUMMY_START_OFFSET 0
|
||
|
||
/* If we've reached a trap instruction within the call dummy, then
|
||
we'll consider that to mean that we've reached the call dummy's
|
||
end after its successful completion. */
|
||
#define CALL_DUMMY_HAS_COMPLETED(pc, sp, frame_address) \
|
||
(PC_IN_CALL_DUMMY((pc), (sp), (frame_address)) && \
|
||
(read_memory_integer((pc), 4) == BREAKPOINT32))
|
||
|
||
/*
|
||
* Insert the specified number of args and function address
|
||
* into a call sequence of the above form stored at DUMMYNAME.
|
||
*
|
||
* On the hppa we need to call the stack dummy through $$dyncall.
|
||
* Therefore our version of FIX_CALL_DUMMY takes an extra argument,
|
||
* real_pc, which is the location where gdb should start up the
|
||
* inferior to do the function call.
|
||
*/
|
||
|
||
#define FIX_CALL_DUMMY hppa_fix_call_dummy
|
||
|
||
extern CORE_ADDR
|
||
hppa_fix_call_dummy (char *, CORE_ADDR, CORE_ADDR, int,
|
||
struct value **, struct type *, int);
|
||
|
||
#define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
|
||
(hppa_push_arguments((nargs), (args), (sp), (struct_return), (struct_addr)))
|
||
extern CORE_ADDR
|
||
hppa_push_arguments (int, struct value **, CORE_ADDR, int, CORE_ADDR);
|
||
|
||
/* The low two bits of the PC on the PA contain the privilege level. Some
|
||
genius implementing a (non-GCC) compiler apparently decided this means
|
||
that "addresses" in a text section therefore include a privilege level,
|
||
and thus symbol tables should contain these bits. This seems like a
|
||
bonehead thing to do--anyway, it seems to work for our purposes to just
|
||
ignore those bits. */
|
||
#define SMASH_TEXT_ADDRESS(addr) ((addr) &= ~0x3)
|
||
|
||
#define GDB_TARGET_IS_HPPA
|
||
|
||
#define BELIEVE_PCC_PROMOTION 1
|
||
|
||
/*
|
||
* Unwind table and descriptor.
|
||
*/
|
||
|
||
struct unwind_table_entry
|
||
{
|
||
CORE_ADDR region_start;
|
||
CORE_ADDR region_end;
|
||
|
||
unsigned int Cannot_unwind:1; /* 0 */
|
||
unsigned int Millicode:1; /* 1 */
|
||
unsigned int Millicode_save_sr0:1; /* 2 */
|
||
unsigned int Region_description:2; /* 3..4 */
|
||
unsigned int reserved1:1; /* 5 */
|
||
unsigned int Entry_SR:1; /* 6 */
|
||
unsigned int Entry_FR:4; /* number saved *//* 7..10 */
|
||
unsigned int Entry_GR:5; /* number saved *//* 11..15 */
|
||
unsigned int Args_stored:1; /* 16 */
|
||
unsigned int Variable_Frame:1; /* 17 */
|
||
unsigned int Separate_Package_Body:1; /* 18 */
|
||
unsigned int Frame_Extension_Millicode:1; /* 19 */
|
||
unsigned int Stack_Overflow_Check:1; /* 20 */
|
||
unsigned int Two_Instruction_SP_Increment:1; /* 21 */
|
||
unsigned int Ada_Region:1; /* 22 */
|
||
unsigned int cxx_info:1; /* 23 */
|
||
unsigned int cxx_try_catch:1; /* 24 */
|
||
unsigned int sched_entry_seq:1; /* 25 */
|
||
unsigned int reserved2:1; /* 26 */
|
||
unsigned int Save_SP:1; /* 27 */
|
||
unsigned int Save_RP:1; /* 28 */
|
||
unsigned int Save_MRP_in_frame:1; /* 29 */
|
||
unsigned int extn_ptr_defined:1; /* 30 */
|
||
unsigned int Cleanup_defined:1; /* 31 */
|
||
|
||
unsigned int MPE_XL_interrupt_marker:1; /* 0 */
|
||
unsigned int HP_UX_interrupt_marker:1; /* 1 */
|
||
unsigned int Large_frame:1; /* 2 */
|
||
unsigned int Pseudo_SP_Set:1; /* 3 */
|
||
unsigned int reserved4:1; /* 4 */
|
||
unsigned int Total_frame_size:27; /* 5..31 */
|
||
|
||
/* This is *NOT* part of an actual unwind_descriptor in an object
|
||
file. It is *ONLY* part of the "internalized" descriptors that
|
||
we create from those in a file.
|
||
*/
|
||
struct
|
||
{
|
||
unsigned int stub_type:4; /* 0..3 */
|
||
unsigned int padding:28; /* 4..31 */
|
||
}
|
||
stub_unwind;
|
||
};
|
||
|
||
/* HP linkers also generate unwinds for various linker-generated stubs.
|
||
GDB reads in the stubs from the $UNWIND_END$ subspace, then
|
||
"converts" them into normal unwind entries using some of the reserved
|
||
fields to store the stub type. */
|
||
|
||
struct stub_unwind_entry
|
||
{
|
||
/* The offset within the executable for the associated stub. */
|
||
unsigned stub_offset;
|
||
|
||
/* The type of stub this unwind entry describes. */
|
||
char type;
|
||
|
||
/* Unknown. Not needed by GDB at this time. */
|
||
char prs_info;
|
||
|
||
/* Length (in instructions) of the associated stub. */
|
||
short stub_length;
|
||
};
|
||
|
||
/* Sizes (in bytes) of the native unwind entries. */
|
||
#define UNWIND_ENTRY_SIZE 16
|
||
#define STUB_UNWIND_ENTRY_SIZE 8
|
||
|
||
/* The gaps represent linker stubs used in MPE and space for future
|
||
expansion. */
|
||
enum unwind_stub_types
|
||
{
|
||
LONG_BRANCH = 1,
|
||
PARAMETER_RELOCATION = 2,
|
||
EXPORT = 10,
|
||
IMPORT = 11,
|
||
IMPORT_SHLIB = 12,
|
||
};
|
||
|
||
/* We use the objfile->obj_private pointer for two things:
|
||
|
||
* 1. An unwind table;
|
||
*
|
||
* 2. A pointer to any associated shared library object.
|
||
*
|
||
* #defines are used to help refer to these objects.
|
||
*/
|
||
|
||
/* Info about the unwind table associated with an object file.
|
||
|
||
* This is hung off of the "objfile->obj_private" pointer, and
|
||
* is allocated in the objfile's psymbol obstack. This allows
|
||
* us to have unique unwind info for each executable and shared
|
||
* library that we are debugging.
|
||
*/
|
||
struct obj_unwind_info
|
||
{
|
||
struct unwind_table_entry *table; /* Pointer to unwind info */
|
||
struct unwind_table_entry *cache; /* Pointer to last entry we found */
|
||
int last; /* Index of last entry */
|
||
};
|
||
|
||
typedef struct obj_private_struct
|
||
{
|
||
struct obj_unwind_info *unwind_info; /* a pointer */
|
||
struct so_list *so_info; /* a pointer */
|
||
CORE_ADDR dp;
|
||
}
|
||
obj_private_data_t;
|
||
|
||
#if 0
|
||
extern void target_write_pc (CORE_ADDR, int);
|
||
extern CORE_ADDR target_read_pc (int);
|
||
extern CORE_ADDR skip_trampoline_code (CORE_ADDR, char *);
|
||
#endif
|
||
|
||
#define TARGET_READ_PC(pid) target_read_pc (pid)
|
||
extern CORE_ADDR target_read_pc (ptid_t);
|
||
|
||
#define TARGET_WRITE_PC(v,pid) target_write_pc (v,pid)
|
||
extern void target_write_pc (CORE_ADDR, ptid_t);
|
||
|
||
#define TARGET_READ_FP() target_read_fp (PIDGET (inferior_ptid))
|
||
extern CORE_ADDR target_read_fp (int);
|
||
|
||
/* For a number of horrible reasons we may have to adjust the location
|
||
of variables on the stack. Ugh. */
|
||
#define HPREAD_ADJUST_STACK_ADDRESS(ADDR) hpread_adjust_stack_address(ADDR)
|
||
|
||
extern int hpread_adjust_stack_address (CORE_ADDR);
|
||
|
||
/* If the current gcc for for this target does not produce correct debugging
|
||
information for float parameters, both prototyped and unprototyped, then
|
||
define this macro. This forces gdb to always assume that floats are
|
||
passed as doubles and then converted in the callee.
|
||
|
||
For the pa, it appears that the debug info marks the parameters as
|
||
floats regardless of whether the function is prototyped, but the actual
|
||
values are passed as doubles for the non-prototyped case and floats for
|
||
the prototyped case. Thus we choose to make the non-prototyped case work
|
||
for C and break the prototyped case, since the non-prototyped case is
|
||
probably much more common. (FIXME). */
|
||
|
||
#define COERCE_FLOAT_TO_DOUBLE(formal, actual) (current_language -> la_language == language_c)
|
||
|
||
/* Here's how to step off a permanent breakpoint. */
|
||
#define SKIP_PERMANENT_BREAKPOINT (hppa_skip_permanent_breakpoint)
|
||
extern void hppa_skip_permanent_breakpoint (void);
|
||
|
||
/* On HP-UX, certain system routines (millicode) have names beginning
|
||
with $ or $$, e.g. $$dyncall, which handles inter-space procedure
|
||
calls on PA-RISC. Tell the expression parser to check for those
|
||
when parsing tokens that begin with "$". */
|
||
#define SYMBOLS_CAN_START_WITH_DOLLAR (1)
|