binutils-gdb/bfd/libbfd.c
Jozef Lawrynowicz 7d81bc937c MSP430: Support relocations for subtract expressions in .uleb128 directives
Link-time relaxations of branches are common for MSP430, given that GCC
can generate pessimal branch instructions, and the
-mcode-region=either/-mdata-region=either options to shuffle sections
can further change the type of branch instruction required.

These relaxations can result in invalid code when .uleb128
directives, used in the .gcc_except_table section, are used to calculate
the distance between two labels. A value for the .uleb128 directive is
calculated at assembly-time, and can't be updated at link-time, even if
relaxation causes the distance between the labels to change.

This patch adds relocations for subtract expressions in .uleb128
directives, to allow the linker to re-calculate the value of these
expressions after relaxation has been performed.

bfd/ChangeLog:
	* bfd-in2.h (bfd_reloc_code_real): Add
	BFD_RELOC_MSP430_{SET,SUB}_ULEB128.
	* elf32-msp430.c (msp430_elf_ignore_reloc): New.
	(elf_msp430_howto_table): Add R_MSP430{,X}_GNU_{SET,SUB}_ULEB128.
	(msp430_reloc_map): Add R_MSP430_GNU_{SET,SUB}_ULEB128.
	(msp430x_reloc_map): Add R_MSP430X_GNU_{SET,SUB}_ULEB128.
	(write_uleb128): New.
	(msp430_final_link_relocate): Handle R_MSP430{,X}_GNU_{SET,SUB}_ULEB128.
	* libbfd.c (_bfd_write_unsigned_leb128): New.
	* libbfd.h (_bfd_write_unsigned_leb128): New prototype.
	Add BFD_RELOC_MSP430_{SET,SUB}_ULEB128.
	* reloc.c: Document BFD_RELOC_MSP430_{SET,SUB}_ULEB128.

binutils/ChangeLog:
	* readelf.c (target_specific_reloc_handling): Handle
	R_MSP430{,X}_GNU_{SET,SUB}_ULEB128.

gas/ChangeLog:
	* config/tc-msp430.c (msp430_insert_uleb128_fixes): New.
	(msp430_md_end): Call msp430_insert_uleb128_fixes.

include/ChangeLog:
	* elf/msp430.h (elf_msp430_reloc_type): Add
	R_MSP430_GNU_{SET,SUB}_ULEB128.
	(elf_msp430x_reloc_type): Add R_MSP430X_GNU_{SET,SUB}_ULEB128.

ld/ChangeLog:
	* testsuite/ld-msp430-elf/msp430-elf.exp: Run new tests.
	* testsuite/ld-msp430-elf/uleb128.s: New test.
	* testsuite/ld-msp430-elf/uleb128_430.d: New test.
	* testsuite/ld-msp430-elf/uleb128_430x.d: New test.
2020-09-08 16:18:38 +01:00

1187 lines
27 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Assorted BFD support routines, only used internally.
Copyright (C) 1990-2020 Free Software Foundation, Inc.
Written by Cygnus Support.
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
MA 02110-1301, USA. */
#include "sysdep.h"
#include "bfd.h"
#include "libbfd.h"
#ifndef HAVE_GETPAGESIZE
#define getpagesize() 2048
#endif
/*
SECTION
Implementation details
SUBSECTION
Internal functions
DESCRIPTION
These routines are used within BFD.
They are not intended for export, but are documented here for
completeness.
*/
bfd_boolean
_bfd_bool_bfd_false (bfd *abfd ATTRIBUTE_UNUSED)
{
return FALSE;
}
bfd_boolean
_bfd_bool_bfd_asymbol_false (bfd *abfd ATTRIBUTE_UNUSED,
asymbol *sym ATTRIBUTE_UNUSED)
{
return FALSE;
}
/* A routine which is used in target vectors for unsupported
operations. */
bfd_boolean
_bfd_bool_bfd_false_error (bfd *ignore ATTRIBUTE_UNUSED)
{
bfd_set_error (bfd_error_invalid_operation);
return FALSE;
}
bfd_boolean
_bfd_bool_bfd_link_false_error (bfd *abfd,
struct bfd_link_info *info ATTRIBUTE_UNUSED)
{
return _bfd_bool_bfd_false_error (abfd);
}
/* A routine which is used in target vectors for supported operations
which do not actually do anything. */
bfd_boolean
_bfd_bool_bfd_true (bfd *ignore ATTRIBUTE_UNUSED)
{
return TRUE;
}
bfd_boolean
_bfd_bool_bfd_link_true (bfd *abfd ATTRIBUTE_UNUSED,
struct bfd_link_info *info ATTRIBUTE_UNUSED)
{
return TRUE;
}
bfd_boolean
_bfd_bool_bfd_bfd_true (bfd *ibfd ATTRIBUTE_UNUSED,
bfd *obfd ATTRIBUTE_UNUSED)
{
return TRUE;
}
bfd_boolean
_bfd_bool_bfd_uint_true (bfd *abfd ATTRIBUTE_UNUSED,
unsigned int flags ATTRIBUTE_UNUSED)
{
return TRUE;
}
bfd_boolean
_bfd_bool_bfd_asection_bfd_asection_true (bfd *ibfd ATTRIBUTE_UNUSED,
asection *isec ATTRIBUTE_UNUSED,
bfd *obfd ATTRIBUTE_UNUSED,
asection *osec ATTRIBUTE_UNUSED)
{
return TRUE;
}
bfd_boolean
_bfd_bool_bfd_asymbol_bfd_asymbol_true (bfd *ibfd ATTRIBUTE_UNUSED,
asymbol *isym ATTRIBUTE_UNUSED,
bfd *obfd ATTRIBUTE_UNUSED,
asymbol *osym ATTRIBUTE_UNUSED)
{
return TRUE;
}
bfd_boolean
_bfd_bool_bfd_ptr_true (bfd *abfd ATTRIBUTE_UNUSED,
void *ptr ATTRIBUTE_UNUSED)
{
return TRUE;
}
/* A routine which is used in target vectors for unsupported
operations which return a pointer value. */
void *
_bfd_ptr_bfd_null_error (bfd *ignore ATTRIBUTE_UNUSED)
{
bfd_set_error (bfd_error_invalid_operation);
return NULL;
}
int
_bfd_int_bfd_0 (bfd *ignore ATTRIBUTE_UNUSED)
{
return 0;
}
unsigned int
_bfd_uint_bfd_0 (bfd *ignore ATTRIBUTE_UNUSED)
{
return 0;
}
long
_bfd_long_bfd_0 (bfd *ignore ATTRIBUTE_UNUSED)
{
return 0;
}
/* A routine which is used in target vectors for unsupported
operations which return -1 on error. */
long
_bfd_long_bfd_n1_error (bfd *ignore_abfd ATTRIBUTE_UNUSED)
{
bfd_set_error (bfd_error_invalid_operation);
return -1;
}
void
_bfd_void_bfd (bfd *ignore ATTRIBUTE_UNUSED)
{
}
void
_bfd_void_bfd_link (bfd *abfd ATTRIBUTE_UNUSED,
struct bfd_link_info *info ATTRIBUTE_UNUSED)
{
}
void
_bfd_void_bfd_asection (bfd *abfd ATTRIBUTE_UNUSED,
asection *sec ATTRIBUTE_UNUSED)
{
}
long
_bfd_norelocs_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
asection *sec ATTRIBUTE_UNUSED)
{
return sizeof (arelent *);
}
long
_bfd_norelocs_canonicalize_reloc (bfd *abfd ATTRIBUTE_UNUSED,
asection *sec ATTRIBUTE_UNUSED,
arelent **relptr,
asymbol **symbols ATTRIBUTE_UNUSED)
{
*relptr = NULL;
return 0;
}
void
_bfd_norelocs_set_reloc (bfd *abfd ATTRIBUTE_UNUSED,
asection *sec ATTRIBUTE_UNUSED,
arelent **relptr ATTRIBUTE_UNUSED,
unsigned int count ATTRIBUTE_UNUSED)
{
/* Do nothing. */
}
bfd_boolean
_bfd_nocore_core_file_matches_executable_p
(bfd *ignore_core_bfd ATTRIBUTE_UNUSED,
bfd *ignore_exec_bfd ATTRIBUTE_UNUSED)
{
bfd_set_error (bfd_error_invalid_operation);
return FALSE;
}
/* Routine to handle core_file_failing_command entry point for targets
without core file support. */
char *
_bfd_nocore_core_file_failing_command (bfd *ignore_abfd ATTRIBUTE_UNUSED)
{
bfd_set_error (bfd_error_invalid_operation);
return NULL;
}
/* Routine to handle core_file_failing_signal entry point for targets
without core file support. */
int
_bfd_nocore_core_file_failing_signal (bfd *ignore_abfd ATTRIBUTE_UNUSED)
{
bfd_set_error (bfd_error_invalid_operation);
return 0;
}
/* Routine to handle the core_file_pid entry point for targets without
core file support. */
int
_bfd_nocore_core_file_pid (bfd *ignore_abfd ATTRIBUTE_UNUSED)
{
bfd_set_error (bfd_error_invalid_operation);
return 0;
}
bfd_cleanup
_bfd_dummy_target (bfd *ignore_abfd ATTRIBUTE_UNUSED)
{
bfd_set_error (bfd_error_wrong_format);
return 0;
}
/* Allocate memory using malloc. */
#ifndef SSIZE_MAX
#define SSIZE_MAX ((size_t) -1 >> 1)
#endif
void *
bfd_malloc (bfd_size_type size)
{
void *ptr;
size_t sz = (size_t) size;
if (size != sz
/* This is to pacify memory checkers like valgrind. */
|| sz > SSIZE_MAX)
{
bfd_set_error (bfd_error_no_memory);
return NULL;
}
ptr = malloc (sz);
if (ptr == NULL && sz != 0)
bfd_set_error (bfd_error_no_memory);
return ptr;
}
void *
bfd_realloc (void *ptr, bfd_size_type size)
{
void *ret;
size_t sz = (size_t) size;
if (ptr == NULL)
return bfd_malloc (size);
if (size != sz
/* This is to pacify memory checkers like valgrind. */
|| sz > SSIZE_MAX)
{
bfd_set_error (bfd_error_no_memory);
return NULL;
}
ret = realloc (ptr, sz);
if (ret == NULL && sz != 0)
bfd_set_error (bfd_error_no_memory);
return ret;
}
/* Reallocate memory using realloc.
If this fails the pointer is freed before returning. */
void *
bfd_realloc_or_free (void *ptr, bfd_size_type size)
{
void *ret = bfd_realloc (ptr, size);
if (ret == NULL)
free (ptr);
return ret;
}
/* Allocate memory using malloc and clear it. */
void *
bfd_zmalloc (bfd_size_type size)
{
void *ptr = bfd_malloc (size);
if (ptr != NULL && size > 0)
memset (ptr, 0, (size_t) size);
return ptr;
}
/*
INTERNAL_FUNCTION
bfd_write_bigendian_4byte_int
SYNOPSIS
bfd_boolean bfd_write_bigendian_4byte_int (bfd *, unsigned int);
DESCRIPTION
Write a 4 byte integer @var{i} to the output BFD @var{abfd}, in big
endian order regardless of what else is going on. This is useful in
archives.
*/
bfd_boolean
bfd_write_bigendian_4byte_int (bfd *abfd, unsigned int i)
{
bfd_byte buffer[4];
bfd_putb32 ((bfd_vma) i, buffer);
return bfd_bwrite (buffer, (bfd_size_type) 4, abfd) == 4;
}
/** The do-it-yourself (byte) sex-change kit */
/* The middle letter e.g. get<b>short indicates Big or Little endian
target machine. It doesn't matter what the byte order of the host
machine is; these routines work for either. */
/* FIXME: Should these take a count argument?
Answer (gnu@cygnus.com): No, but perhaps they should be inline
functions in swap.h #ifdef __GNUC__.
Gprof them later and find out. */
/*
FUNCTION
bfd_put_size
FUNCTION
bfd_get_size
DESCRIPTION
These macros as used for reading and writing raw data in
sections; each access (except for bytes) is vectored through
the target format of the BFD and mangled accordingly. The
mangling performs any necessary endian translations and
removes alignment restrictions. Note that types accepted and
returned by these macros are identical so they can be swapped
around in macros---for example, @file{libaout.h} defines <<GET_WORD>>
to either <<bfd_get_32>> or <<bfd_get_64>>.
In the put routines, @var{val} must be a <<bfd_vma>>. If we are on a
system without prototypes, the caller is responsible for making
sure that is true, with a cast if necessary. We don't cast
them in the macro definitions because that would prevent <<lint>>
or <<gcc -Wall>> from detecting sins such as passing a pointer.
To detect calling these with less than a <<bfd_vma>>, use
<<gcc -Wconversion>> on a host with 64 bit <<bfd_vma>>'s.
.
.{* Byte swapping macros for user section data. *}
.
.#define bfd_put_8(abfd, val, ptr) \
. ((void) (*((unsigned char *) (ptr)) = (val) & 0xff))
.#define bfd_put_signed_8 \
. bfd_put_8
.#define bfd_get_8(abfd, ptr) \
. ((bfd_vma) *(const unsigned char *) (ptr) & 0xff)
.#define bfd_get_signed_8(abfd, ptr) \
. ((((bfd_signed_vma) *(const unsigned char *) (ptr) & 0xff) ^ 0x80) - 0x80)
.
.#define bfd_put_16(abfd, val, ptr) \
. BFD_SEND (abfd, bfd_putx16, ((val),(ptr)))
.#define bfd_put_signed_16 \
. bfd_put_16
.#define bfd_get_16(abfd, ptr) \
. BFD_SEND (abfd, bfd_getx16, (ptr))
.#define bfd_get_signed_16(abfd, ptr) \
. BFD_SEND (abfd, bfd_getx_signed_16, (ptr))
.
.#define bfd_put_24(abfd, val, ptr) \
. do \
. if (bfd_big_endian (abfd)) \
. bfd_putb24 ((val), (ptr)); \
. else \
. bfd_putl24 ((val), (ptr)); \
. while (0)
.
.bfd_vma bfd_getb24 (const void *p);
.bfd_vma bfd_getl24 (const void *p);
.
.#define bfd_get_24(abfd, ptr) \
. (bfd_big_endian (abfd) ? bfd_getb24 (ptr) : bfd_getl24 (ptr))
.
.#define bfd_put_32(abfd, val, ptr) \
. BFD_SEND (abfd, bfd_putx32, ((val),(ptr)))
.#define bfd_put_signed_32 \
. bfd_put_32
.#define bfd_get_32(abfd, ptr) \
. BFD_SEND (abfd, bfd_getx32, (ptr))
.#define bfd_get_signed_32(abfd, ptr) \
. BFD_SEND (abfd, bfd_getx_signed_32, (ptr))
.
.#define bfd_put_64(abfd, val, ptr) \
. BFD_SEND (abfd, bfd_putx64, ((val), (ptr)))
.#define bfd_put_signed_64 \
. bfd_put_64
.#define bfd_get_64(abfd, ptr) \
. BFD_SEND (abfd, bfd_getx64, (ptr))
.#define bfd_get_signed_64(abfd, ptr) \
. BFD_SEND (abfd, bfd_getx_signed_64, (ptr))
.
.#define bfd_get(bits, abfd, ptr) \
. ((bits) == 8 ? bfd_get_8 (abfd, ptr) \
. : (bits) == 16 ? bfd_get_16 (abfd, ptr) \
. : (bits) == 32 ? bfd_get_32 (abfd, ptr) \
. : (bits) == 64 ? bfd_get_64 (abfd, ptr) \
. : (abort (), (bfd_vma) - 1))
.
.#define bfd_put(bits, abfd, val, ptr) \
. ((bits) == 8 ? bfd_put_8 (abfd, val, ptr) \
. : (bits) == 16 ? bfd_put_16 (abfd, val, ptr) \
. : (bits) == 32 ? bfd_put_32 (abfd, val, ptr) \
. : (bits) == 64 ? bfd_put_64 (abfd, val, ptr) \
. : (abort (), (void) 0))
.
*/
/*
FUNCTION
bfd_h_put_size
bfd_h_get_size
DESCRIPTION
These macros have the same function as their <<bfd_get_x>>
brethren, except that they are used for removing information
for the header records of object files. Believe it or not,
some object files keep their header records in big endian
order and their data in little endian order.
.
.{* Byte swapping macros for file header data. *}
.
.#define bfd_h_put_8(abfd, val, ptr) \
. bfd_put_8 (abfd, val, ptr)
.#define bfd_h_put_signed_8(abfd, val, ptr) \
. bfd_put_8 (abfd, val, ptr)
.#define bfd_h_get_8(abfd, ptr) \
. bfd_get_8 (abfd, ptr)
.#define bfd_h_get_signed_8(abfd, ptr) \
. bfd_get_signed_8 (abfd, ptr)
.
.#define bfd_h_put_16(abfd, val, ptr) \
. BFD_SEND (abfd, bfd_h_putx16, (val, ptr))
.#define bfd_h_put_signed_16 \
. bfd_h_put_16
.#define bfd_h_get_16(abfd, ptr) \
. BFD_SEND (abfd, bfd_h_getx16, (ptr))
.#define bfd_h_get_signed_16(abfd, ptr) \
. BFD_SEND (abfd, bfd_h_getx_signed_16, (ptr))
.
.#define bfd_h_put_32(abfd, val, ptr) \
. BFD_SEND (abfd, bfd_h_putx32, (val, ptr))
.#define bfd_h_put_signed_32 \
. bfd_h_put_32
.#define bfd_h_get_32(abfd, ptr) \
. BFD_SEND (abfd, bfd_h_getx32, (ptr))
.#define bfd_h_get_signed_32(abfd, ptr) \
. BFD_SEND (abfd, bfd_h_getx_signed_32, (ptr))
.
.#define bfd_h_put_64(abfd, val, ptr) \
. BFD_SEND (abfd, bfd_h_putx64, (val, ptr))
.#define bfd_h_put_signed_64 \
. bfd_h_put_64
.#define bfd_h_get_64(abfd, ptr) \
. BFD_SEND (abfd, bfd_h_getx64, (ptr))
.#define bfd_h_get_signed_64(abfd, ptr) \
. BFD_SEND (abfd, bfd_h_getx_signed_64, (ptr))
.
.{* Aliases for the above, which should eventually go away. *}
.
.#define H_PUT_64 bfd_h_put_64
.#define H_PUT_32 bfd_h_put_32
.#define H_PUT_16 bfd_h_put_16
.#define H_PUT_8 bfd_h_put_8
.#define H_PUT_S64 bfd_h_put_signed_64
.#define H_PUT_S32 bfd_h_put_signed_32
.#define H_PUT_S16 bfd_h_put_signed_16
.#define H_PUT_S8 bfd_h_put_signed_8
.#define H_GET_64 bfd_h_get_64
.#define H_GET_32 bfd_h_get_32
.#define H_GET_16 bfd_h_get_16
.#define H_GET_8 bfd_h_get_8
.#define H_GET_S64 bfd_h_get_signed_64
.#define H_GET_S32 bfd_h_get_signed_32
.#define H_GET_S16 bfd_h_get_signed_16
.#define H_GET_S8 bfd_h_get_signed_8
.
.*/
/* Sign extension to bfd_signed_vma. */
#define COERCE16(x) (((bfd_vma) (x) ^ 0x8000) - 0x8000)
#define COERCE32(x) (((bfd_vma) (x) ^ 0x80000000) - 0x80000000)
#define COERCE64(x) \
(((bfd_uint64_t) (x) ^ ((bfd_uint64_t) 1 << 63)) - ((bfd_uint64_t) 1 << 63))
bfd_vma
bfd_getb16 (const void *p)
{
const bfd_byte *addr = (const bfd_byte *) p;
return (addr[0] << 8) | addr[1];
}
bfd_vma
bfd_getl16 (const void *p)
{
const bfd_byte *addr = (const bfd_byte *) p;
return (addr[1] << 8) | addr[0];
}
bfd_signed_vma
bfd_getb_signed_16 (const void *p)
{
const bfd_byte *addr = (const bfd_byte *) p;
return COERCE16 ((addr[0] << 8) | addr[1]);
}
bfd_signed_vma
bfd_getl_signed_16 (const void *p)
{
const bfd_byte *addr = (const bfd_byte *) p;
return COERCE16 ((addr[1] << 8) | addr[0]);
}
void
bfd_putb16 (bfd_vma data, void *p)
{
bfd_byte *addr = (bfd_byte *) p;
addr[0] = (data >> 8) & 0xff;
addr[1] = data & 0xff;
}
void
bfd_putl16 (bfd_vma data, void *p)
{
bfd_byte *addr = (bfd_byte *) p;
addr[0] = data & 0xff;
addr[1] = (data >> 8) & 0xff;
}
void
bfd_putb24 (bfd_vma data, void *p)
{
bfd_byte *addr = (bfd_byte *) p;
addr[0] = (data >> 16) & 0xff;
addr[1] = (data >> 8) & 0xff;
addr[2] = data & 0xff;
}
void
bfd_putl24 (bfd_vma data, void *p)
{
bfd_byte *addr = (bfd_byte *) p;
addr[0] = data & 0xff;
addr[1] = (data >> 8) & 0xff;
addr[2] = (data >> 16) & 0xff;
}
bfd_vma
bfd_getb24 (const void *p)
{
const bfd_byte *addr = (const bfd_byte *) p;
unsigned long v;
v = (unsigned long) addr[0] << 16;
v |= (unsigned long) addr[1] << 8;
v |= (unsigned long) addr[2];
return v;
}
bfd_vma
bfd_getl24 (const void *p)
{
const bfd_byte *addr = (const bfd_byte *) p;
unsigned long v;
v = (unsigned long) addr[0];
v |= (unsigned long) addr[1] << 8;
v |= (unsigned long) addr[2] << 16;
return v;
}
bfd_vma
bfd_getb32 (const void *p)
{
const bfd_byte *addr = (const bfd_byte *) p;
unsigned long v;
v = (unsigned long) addr[0] << 24;
v |= (unsigned long) addr[1] << 16;
v |= (unsigned long) addr[2] << 8;
v |= (unsigned long) addr[3];
return v;
}
bfd_vma
bfd_getl32 (const void *p)
{
const bfd_byte *addr = (const bfd_byte *) p;
unsigned long v;
v = (unsigned long) addr[0];
v |= (unsigned long) addr[1] << 8;
v |= (unsigned long) addr[2] << 16;
v |= (unsigned long) addr[3] << 24;
return v;
}
bfd_signed_vma
bfd_getb_signed_32 (const void *p)
{
const bfd_byte *addr = (const bfd_byte *) p;
unsigned long v;
v = (unsigned long) addr[0] << 24;
v |= (unsigned long) addr[1] << 16;
v |= (unsigned long) addr[2] << 8;
v |= (unsigned long) addr[3];
return COERCE32 (v);
}
bfd_signed_vma
bfd_getl_signed_32 (const void *p)
{
const bfd_byte *addr = (const bfd_byte *) p;
unsigned long v;
v = (unsigned long) addr[0];
v |= (unsigned long) addr[1] << 8;
v |= (unsigned long) addr[2] << 16;
v |= (unsigned long) addr[3] << 24;
return COERCE32 (v);
}
bfd_uint64_t
bfd_getb64 (const void *p ATTRIBUTE_UNUSED)
{
#ifdef BFD_HOST_64_BIT
const bfd_byte *addr = (const bfd_byte *) p;
bfd_uint64_t v;
v = addr[0]; v <<= 8;
v |= addr[1]; v <<= 8;
v |= addr[2]; v <<= 8;
v |= addr[3]; v <<= 8;
v |= addr[4]; v <<= 8;
v |= addr[5]; v <<= 8;
v |= addr[6]; v <<= 8;
v |= addr[7];
return v;
#else
BFD_FAIL();
return 0;
#endif
}
bfd_uint64_t
bfd_getl64 (const void *p ATTRIBUTE_UNUSED)
{
#ifdef BFD_HOST_64_BIT
const bfd_byte *addr = (const bfd_byte *) p;
bfd_uint64_t v;
v = addr[7]; v <<= 8;
v |= addr[6]; v <<= 8;
v |= addr[5]; v <<= 8;
v |= addr[4]; v <<= 8;
v |= addr[3]; v <<= 8;
v |= addr[2]; v <<= 8;
v |= addr[1]; v <<= 8;
v |= addr[0];
return v;
#else
BFD_FAIL();
return 0;
#endif
}
bfd_int64_t
bfd_getb_signed_64 (const void *p ATTRIBUTE_UNUSED)
{
#ifdef BFD_HOST_64_BIT
const bfd_byte *addr = (const bfd_byte *) p;
bfd_uint64_t v;
v = addr[0]; v <<= 8;
v |= addr[1]; v <<= 8;
v |= addr[2]; v <<= 8;
v |= addr[3]; v <<= 8;
v |= addr[4]; v <<= 8;
v |= addr[5]; v <<= 8;
v |= addr[6]; v <<= 8;
v |= addr[7];
return COERCE64 (v);
#else
BFD_FAIL();
return 0;
#endif
}
bfd_int64_t
bfd_getl_signed_64 (const void *p ATTRIBUTE_UNUSED)
{
#ifdef BFD_HOST_64_BIT
const bfd_byte *addr = (const bfd_byte *) p;
bfd_uint64_t v;
v = addr[7]; v <<= 8;
v |= addr[6]; v <<= 8;
v |= addr[5]; v <<= 8;
v |= addr[4]; v <<= 8;
v |= addr[3]; v <<= 8;
v |= addr[2]; v <<= 8;
v |= addr[1]; v <<= 8;
v |= addr[0];
return COERCE64 (v);
#else
BFD_FAIL();
return 0;
#endif
}
void
bfd_putb32 (bfd_vma data, void *p)
{
bfd_byte *addr = (bfd_byte *) p;
addr[0] = (data >> 24) & 0xff;
addr[1] = (data >> 16) & 0xff;
addr[2] = (data >> 8) & 0xff;
addr[3] = data & 0xff;
}
void
bfd_putl32 (bfd_vma data, void *p)
{
bfd_byte *addr = (bfd_byte *) p;
addr[0] = data & 0xff;
addr[1] = (data >> 8) & 0xff;
addr[2] = (data >> 16) & 0xff;
addr[3] = (data >> 24) & 0xff;
}
void
bfd_putb64 (bfd_uint64_t data ATTRIBUTE_UNUSED, void *p ATTRIBUTE_UNUSED)
{
#ifdef BFD_HOST_64_BIT
bfd_byte *addr = (bfd_byte *) p;
addr[0] = (data >> (7*8)) & 0xff;
addr[1] = (data >> (6*8)) & 0xff;
addr[2] = (data >> (5*8)) & 0xff;
addr[3] = (data >> (4*8)) & 0xff;
addr[4] = (data >> (3*8)) & 0xff;
addr[5] = (data >> (2*8)) & 0xff;
addr[6] = (data >> (1*8)) & 0xff;
addr[7] = (data >> (0*8)) & 0xff;
#else
BFD_FAIL();
#endif
}
void
bfd_putl64 (bfd_uint64_t data ATTRIBUTE_UNUSED, void *p ATTRIBUTE_UNUSED)
{
#ifdef BFD_HOST_64_BIT
bfd_byte *addr = (bfd_byte *) p;
addr[7] = (data >> (7*8)) & 0xff;
addr[6] = (data >> (6*8)) & 0xff;
addr[5] = (data >> (5*8)) & 0xff;
addr[4] = (data >> (4*8)) & 0xff;
addr[3] = (data >> (3*8)) & 0xff;
addr[2] = (data >> (2*8)) & 0xff;
addr[1] = (data >> (1*8)) & 0xff;
addr[0] = (data >> (0*8)) & 0xff;
#else
BFD_FAIL();
#endif
}
void
bfd_put_bits (bfd_uint64_t data, void *p, int bits, bfd_boolean big_p)
{
bfd_byte *addr = (bfd_byte *) p;
int i;
int bytes;
if (bits % 8 != 0)
abort ();
bytes = bits / 8;
for (i = 0; i < bytes; i++)
{
int addr_index = big_p ? bytes - i - 1 : i;
addr[addr_index] = data & 0xff;
data >>= 8;
}
}
bfd_uint64_t
bfd_get_bits (const void *p, int bits, bfd_boolean big_p)
{
const bfd_byte *addr = (const bfd_byte *) p;
bfd_uint64_t data;
int i;
int bytes;
if (bits % 8 != 0)
abort ();
data = 0;
bytes = bits / 8;
for (i = 0; i < bytes; i++)
{
int addr_index = big_p ? i : bytes - i - 1;
data = (data << 8) | addr[addr_index];
}
return data;
}
/* Default implementation */
bfd_boolean
_bfd_generic_get_section_contents (bfd *abfd,
sec_ptr section,
void *location,
file_ptr offset,
bfd_size_type count)
{
bfd_size_type sz;
if (count == 0)
return TRUE;
if (section->compress_status != COMPRESS_SECTION_NONE)
{
_bfd_error_handler
/* xgettext:c-format */
(_("%pB: unable to get decompressed section %pA"),
abfd, section);
bfd_set_error (bfd_error_invalid_operation);
return FALSE;
}
/* We do allow reading of a section after bfd_final_link has
written the contents out to disk. In that situation, rawsize is
just a stale version of size, so ignore it. Otherwise we must be
reading an input section, where rawsize, if different to size,
is the on-disk size. */
if (abfd->direction != write_direction && section->rawsize != 0)
sz = section->rawsize;
else
sz = section->size;
if (offset + count < count
|| offset + count > sz
|| (abfd->my_archive != NULL
&& !bfd_is_thin_archive (abfd->my_archive)
&& ((ufile_ptr) section->filepos + offset + count
> arelt_size (abfd))))
{
bfd_set_error (bfd_error_invalid_operation);
return FALSE;
}
if (bfd_seek (abfd, section->filepos + offset, SEEK_SET) != 0
|| bfd_bread (location, count, abfd) != count)
return FALSE;
return TRUE;
}
bfd_boolean
_bfd_generic_get_section_contents_in_window
(bfd *abfd ATTRIBUTE_UNUSED,
sec_ptr section ATTRIBUTE_UNUSED,
bfd_window *w ATTRIBUTE_UNUSED,
file_ptr offset ATTRIBUTE_UNUSED,
bfd_size_type count ATTRIBUTE_UNUSED)
{
#ifdef USE_MMAP
bfd_size_type sz;
if (count == 0)
return TRUE;
if (abfd->xvec->_bfd_get_section_contents
!= _bfd_generic_get_section_contents)
{
/* We don't know what changes the bfd's get_section_contents
method may have to make. So punt trying to map the file
window, and let get_section_contents do its thing. */
/* @@ FIXME : If the internal window has a refcount of 1 and was
allocated with malloc instead of mmap, just reuse it. */
bfd_free_window (w);
w->i = bfd_zmalloc (sizeof (bfd_window_internal));
if (w->i == NULL)
return FALSE;
w->i->data = bfd_malloc (count);
if (w->i->data == NULL)
{
free (w->i);
w->i = NULL;
return FALSE;
}
w->i->mapped = 0;
w->i->refcount = 1;
w->size = w->i->size = count;
w->data = w->i->data;
return bfd_get_section_contents (abfd, section, w->data, offset, count);
}
if (abfd->direction != write_direction && section->rawsize != 0)
sz = section->rawsize;
else
sz = section->size;
if (offset + count < count
|| offset + count > sz
|| (abfd->my_archive != NULL
&& !bfd_is_thin_archive (abfd->my_archive)
&& ((ufile_ptr) section->filepos + offset + count
> arelt_size (abfd)))
|| ! bfd_get_file_window (abfd, section->filepos + offset, count, w,
TRUE))
return FALSE;
return TRUE;
#else
abort ();
#endif
}
/* This generic function can only be used in implementations where creating
NEW sections is disallowed. It is useful in patching existing sections
in read-write files, though. See other set_section_contents functions
to see why it doesn't work for new sections. */
bfd_boolean
_bfd_generic_set_section_contents (bfd *abfd,
sec_ptr section,
const void *location,
file_ptr offset,
bfd_size_type count)
{
if (count == 0)
return TRUE;
if (bfd_seek (abfd, section->filepos + offset, SEEK_SET) != 0
|| bfd_bwrite (location, count, abfd) != count)
return FALSE;
return TRUE;
}
/*
INTERNAL_FUNCTION
bfd_log2
SYNOPSIS
unsigned int bfd_log2 (bfd_vma x);
DESCRIPTION
Return the log base 2 of the value supplied, rounded up. E.g., an
@var{x} of 1025 returns 11. A @var{x} of 0 returns 0.
*/
unsigned int
bfd_log2 (bfd_vma x)
{
unsigned int result = 0;
if (x <= 1)
return result;
--x;
do
++result;
while ((x >>= 1) != 0);
return result;
}
bfd_boolean
bfd_generic_is_local_label_name (bfd *abfd, const char *name)
{
char locals_prefix = (bfd_get_symbol_leading_char (abfd) == '_') ? 'L' : '.';
return name[0] == locals_prefix;
}
/* Give a warning at runtime if someone compiles code which calls
old routines. */
void
_bfd_warn_deprecated (const char *what,
const char *file,
int line,
const char *func)
{
/* Poor man's tracking of functions we've already warned about. */
static size_t mask = 0;
if (~(size_t) func & ~mask)
{
fflush (stdout);
/* Note: separate sentences in order to allow
for translation into other languages. */
if (func)
/* xgettext:c-format */
fprintf (stderr, _("Deprecated %s called at %s line %d in %s\n"),
what, file, line, func);
else
fprintf (stderr, _("Deprecated %s called\n"), what);
fflush (stderr);
mask |= ~(size_t) func;
}
}
/* Helper function for reading uleb128 encoded data. */
bfd_vma
_bfd_read_unsigned_leb128 (bfd *abfd ATTRIBUTE_UNUSED,
bfd_byte *buf,
unsigned int *bytes_read_ptr)
{
bfd_vma result;
unsigned int num_read;
unsigned int shift;
unsigned char byte;
result = 0;
shift = 0;
num_read = 0;
do
{
byte = bfd_get_8 (abfd, buf);
buf++;
num_read++;
result |= (((bfd_vma) byte & 0x7f) << shift);
shift += 7;
}
while (byte & 0x80);
*bytes_read_ptr = num_read;
return result;
}
/* Read in a LEB128 encoded value from ABFD starting at DATA.
If SIGN is true, return a signed LEB128 value.
If LENGTH_RETURN is not NULL, return in it the number of bytes read.
No bytes will be read at address END or beyond. */
bfd_vma
_bfd_safe_read_leb128 (bfd *abfd ATTRIBUTE_UNUSED,
bfd_byte *data,
unsigned int *length_return,
bfd_boolean sign,
const bfd_byte * const end)
{
bfd_vma result = 0;
unsigned int num_read = 0;
unsigned int shift = 0;
unsigned char byte = 0;
while (data < end)
{
byte = bfd_get_8 (abfd, data);
data++;
num_read++;
result |= ((bfd_vma) (byte & 0x7f)) << shift;
shift += 7;
if ((byte & 0x80) == 0)
break;
}
if (length_return != NULL)
*length_return = num_read;
if (sign && (shift < 8 * sizeof (result)) && (byte & 0x40))
result |= -((bfd_vma) 1 << shift);
return result;
}
/* Helper function for reading sleb128 encoded data. */
bfd_signed_vma
_bfd_read_signed_leb128 (bfd *abfd ATTRIBUTE_UNUSED,
bfd_byte *buf,
unsigned int *bytes_read_ptr)
{
bfd_vma result;
unsigned int shift;
unsigned int num_read;
unsigned char byte;
result = 0;
shift = 0;
num_read = 0;
do
{
byte = bfd_get_8 (abfd, buf);
buf ++;
num_read ++;
result |= (((bfd_vma) byte & 0x7f) << shift);
shift += 7;
}
while (byte & 0x80);
if (shift < 8 * sizeof (result) && (byte & 0x40))
result |= (((bfd_vma) -1) << shift);
*bytes_read_ptr = num_read;
return result;
}
/* Write VAL in uleb128 format to P.
END indicates the last byte of allocated space for the uleb128 value to fit
in.
Return a pointer to the byte following the last byte that was written, or
NULL if the uleb128 value does not fit in the allocated space between P and
END. */
bfd_byte *
_bfd_write_unsigned_leb128 (bfd_byte *p, bfd_byte *end, bfd_vma val)
{
bfd_byte c;
do
{
if (p > end)
return NULL;
c = val & 0x7f;
val >>= 7;
if (val)
c |= 0x80;
*(p++) = c;
}
while (val);
return p;
}
bfd_boolean
_bfd_generic_init_private_section_data (bfd *ibfd ATTRIBUTE_UNUSED,
asection *isec ATTRIBUTE_UNUSED,
bfd *obfd ATTRIBUTE_UNUSED,
asection *osec ATTRIBUTE_UNUSED,
struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
{
return TRUE;
}