mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-09 04:21:49 +08:00
33ae45434d
This commit enables the early initialization commands (92e4e97a9f
) to modify the number of threads used by gdb's thread pool. The motivation here is to prevent gdb from spawning a detrimental number of threads on many-core systems under environments with restrictive ulimits. With gdb before this commit, the thread pool takes the following sizes: 1. Thread pool size is initialized to 0. 2. After the maintenance commands are defined, the thread pool size is set to the number of system cores (if it has not already been set). 3. Using early initialization commands, the thread pool size can be changed using "maint set worker-threads". 4. After the first prompt, the thread pool size can be changed as in the previous step. Therefore after step 2. gdb has potentially launched hundreds of threads on a many-core system. After this change, step 2 and 3 are reversed so there is an opportunity to set the required number of threads without needing to default to the number of system cores first. There does exist a configure option (added in261b07488b
) to disable multithreading, but this does not allow for an already deployed gdb to be configured. Additionally, the default number of worker threads is clamped at eight to control the number of worker threads spawned on many-core systems. This value was chosen as testing recorded on bugzilla issue 29959 indicates that parallel efficiency drops past this point. GDB built with GCC 13. No test suite regressions detected. Compilers: GCC, ACfL, Intel, Intel LLVM, NVHPC; Platforms: x86_64, aarch64. The scenario that interests me the most involves preventing GDB from spawning any worker threads at all. This was tested by counting the number of clones observed by strace: strace -e clone,clone3 gdb/gdb -q \ --early-init-eval-command="maint set worker-threads 0" \ -ex q ./gdb/gdb |& grep --count clone The new test relies on "gdb: install CLI uiout while processing early init files" developed by Andrew Burgess. This patch will need pushing prior to this change. The clamping was tested on machines with both 16 cores and a single core. "maint show worker-threads" correctly reported eight and one respectively. Approved-By: Tom Tromey <tom@tromey.com>
253 lines
6.5 KiB
C++
253 lines
6.5 KiB
C++
/* Thread pool
|
|
|
|
Copyright (C) 2019-2023 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "common-defs.h"
|
|
#include "gdbsupport/thread-pool.h"
|
|
|
|
#if CXX_STD_THREAD
|
|
|
|
#include "gdbsupport/alt-stack.h"
|
|
#include "gdbsupport/block-signals.h"
|
|
#include <algorithm>
|
|
#include <system_error>
|
|
|
|
/* On the off chance that we have the pthread library on a Windows
|
|
host, but std::thread is not using it, avoid calling
|
|
pthread_setname_np on Windows. */
|
|
#ifndef _WIN32
|
|
#ifdef HAVE_PTHREAD_SETNAME_NP
|
|
#define USE_PTHREAD_SETNAME_NP
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef USE_PTHREAD_SETNAME_NP
|
|
|
|
#include <pthread.h>
|
|
|
|
/* Handle platform discrepancies in pthread_setname_np: macOS uses a
|
|
single-argument form, while Linux uses a two-argument form. NetBSD
|
|
takes a printf-style format and an argument. This wrapper handles the
|
|
difference. */
|
|
|
|
ATTRIBUTE_UNUSED static void
|
|
do_set_thread_name (int (*set_name) (pthread_t, const char *, void *),
|
|
const char *name)
|
|
{
|
|
set_name (pthread_self (), "%s", const_cast<char *> (name));
|
|
}
|
|
|
|
ATTRIBUTE_UNUSED static void
|
|
do_set_thread_name (int (*set_name) (pthread_t, const char *),
|
|
const char *name)
|
|
{
|
|
set_name (pthread_self (), name);
|
|
}
|
|
|
|
/* The macOS man page says that pthread_setname_np returns "void", but
|
|
the headers actually declare it returning "int". */
|
|
ATTRIBUTE_UNUSED static void
|
|
do_set_thread_name (int (*set_name) (const char *), const char *name)
|
|
{
|
|
set_name (name);
|
|
}
|
|
|
|
static void
|
|
set_thread_name (const char *name)
|
|
{
|
|
do_set_thread_name (pthread_setname_np, name);
|
|
}
|
|
|
|
#elif defined (USE_WIN32API)
|
|
|
|
#include <windows.h>
|
|
|
|
typedef HRESULT WINAPI (SetThreadDescription_ftype) (HANDLE, PCWSTR);
|
|
static SetThreadDescription_ftype *dyn_SetThreadDescription;
|
|
static bool initialized;
|
|
|
|
static void
|
|
init_windows ()
|
|
{
|
|
initialized = true;
|
|
|
|
HMODULE hm = LoadLibrary (TEXT ("kernel32.dll"));
|
|
if (hm)
|
|
dyn_SetThreadDescription
|
|
= (SetThreadDescription_ftype *) GetProcAddress (hm,
|
|
"SetThreadDescription");
|
|
|
|
/* On some versions of Windows, this function is only available in
|
|
KernelBase.dll, not kernel32.dll. */
|
|
if (dyn_SetThreadDescription == nullptr)
|
|
{
|
|
hm = LoadLibrary (TEXT ("KernelBase.dll"));
|
|
if (hm)
|
|
dyn_SetThreadDescription
|
|
= (SetThreadDescription_ftype *) GetProcAddress (hm,
|
|
"SetThreadDescription");
|
|
}
|
|
}
|
|
|
|
static void
|
|
do_set_thread_name (const wchar_t *name)
|
|
{
|
|
if (!initialized)
|
|
init_windows ();
|
|
|
|
if (dyn_SetThreadDescription != nullptr)
|
|
dyn_SetThreadDescription (GetCurrentThread (), name);
|
|
}
|
|
|
|
#define set_thread_name(NAME) do_set_thread_name (L ## NAME)
|
|
|
|
#else /* USE_WIN32API */
|
|
|
|
static void
|
|
set_thread_name (const char *name)
|
|
{
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif /* CXX_STD_THREAD */
|
|
|
|
namespace gdb
|
|
{
|
|
|
|
/* The thread pool detach()s its threads, so that the threads will not
|
|
prevent the process from exiting. However, it was discovered that
|
|
if any detached threads were still waiting on a condition variable,
|
|
then the condition variable's destructor would wait for the threads
|
|
to exit -- defeating the purpose.
|
|
|
|
Allocating the thread pool on the heap and simply "leaking" it
|
|
avoids this problem.
|
|
*/
|
|
thread_pool *thread_pool::g_thread_pool = new thread_pool ();
|
|
|
|
thread_pool::~thread_pool ()
|
|
{
|
|
/* Because this is a singleton, we don't need to clean up. The
|
|
threads are detached so that they won't prevent process exit.
|
|
And, cleaning up here would be actively harmful in at least one
|
|
case -- see the comment by the definition of g_thread_pool. */
|
|
}
|
|
|
|
void
|
|
thread_pool::set_thread_count (size_t num_threads)
|
|
{
|
|
#if CXX_STD_THREAD
|
|
std::lock_guard<std::mutex> guard (m_tasks_mutex);
|
|
m_sized_at_least_once = true;
|
|
|
|
/* If the new size is larger, start some new threads. */
|
|
if (m_thread_count < num_threads)
|
|
{
|
|
/* Ensure that signals used by gdb are blocked in the new
|
|
threads. */
|
|
block_signals blocker;
|
|
for (size_t i = m_thread_count; i < num_threads; ++i)
|
|
{
|
|
try
|
|
{
|
|
std::thread thread (&thread_pool::thread_function, this);
|
|
thread.detach ();
|
|
}
|
|
catch (const std::system_error &)
|
|
{
|
|
/* libstdc++ may not implement std::thread, and will
|
|
throw an exception on use. It seems fine to ignore
|
|
this, and any other sort of startup failure here. */
|
|
num_threads = i;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
/* If the new size is smaller, terminate some existing threads. */
|
|
if (num_threads < m_thread_count)
|
|
{
|
|
for (size_t i = num_threads; i < m_thread_count; ++i)
|
|
m_tasks.emplace ();
|
|
m_tasks_cv.notify_all ();
|
|
}
|
|
|
|
m_thread_count = num_threads;
|
|
#else
|
|
/* No threads available, simply ignore the request. */
|
|
#endif /* CXX_STD_THREAD */
|
|
}
|
|
|
|
#if CXX_STD_THREAD
|
|
|
|
void
|
|
thread_pool::do_post_task (std::packaged_task<void ()> &&func)
|
|
{
|
|
/* This assert is here to check that no tasks are posted to the pool between
|
|
its initialization and sizing. */
|
|
gdb_assert (m_sized_at_least_once);
|
|
std::packaged_task<void ()> t (std::move (func));
|
|
|
|
if (m_thread_count != 0)
|
|
{
|
|
std::lock_guard<std::mutex> guard (m_tasks_mutex);
|
|
m_tasks.emplace (std::move (t));
|
|
m_tasks_cv.notify_one ();
|
|
}
|
|
else
|
|
{
|
|
/* Just execute it now. */
|
|
t ();
|
|
}
|
|
}
|
|
|
|
void
|
|
thread_pool::thread_function ()
|
|
{
|
|
/* This must be done here, because on macOS one can only set the
|
|
name of the current thread. */
|
|
set_thread_name ("gdb worker");
|
|
|
|
/* Ensure that SIGSEGV is delivered to an alternate signal
|
|
stack. */
|
|
gdb::alternate_signal_stack signal_stack;
|
|
|
|
while (true)
|
|
{
|
|
std::optional<task_t> t;
|
|
|
|
{
|
|
/* We want to hold the lock while examining the task list, but
|
|
not while invoking the task function. */
|
|
std::unique_lock<std::mutex> guard (m_tasks_mutex);
|
|
while (m_tasks.empty ())
|
|
m_tasks_cv.wait (guard);
|
|
t = std::move (m_tasks.front());
|
|
m_tasks.pop ();
|
|
}
|
|
|
|
if (!t.has_value ())
|
|
break;
|
|
(*t) ();
|
|
}
|
|
}
|
|
|
|
#endif /* CXX_STD_THREAD */
|
|
|
|
} /* namespace gdb */
|