mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-06 12:09:26 +08:00
51d481464e
This PR is about an assertion failure in GDB that can be triggered by setting "backtrace limit" to a value that causes GDB to stop unwinding after an inline frame. In this case, an assertion in inline_frame_this_id will trigger: /* We need a valid frame ID, so we need to be based on a valid frame. (...). */ gdb_assert (frame_id_p (*this_id)); Looking at the function: static void inline_frame_this_id (struct frame_info *this_frame, void **this_cache, struct frame_id *this_id) { struct symbol *func; /* In order to have a stable frame ID for a given inline function, we must get the stack / special addresses from the underlying real frame's this_id method. So we must call get_prev_frame. Because we are inlined into some function, there must be previous frames, so this is safe - as long as we're careful not to create any cycles. */ *this_id = get_frame_id (get_prev_frame (this_frame)); we see we're computing the frame id for the inline frame. If this is an inline frame, which is a virtual frame constructed based on debug info, on top of a real stack frame, we should _always_ be able to find where the frame was inlined into, as that ultimately just means peeling off the virtual frames on top of the real stack frame. If there ultimately was no prev (real) stack frame, then we wouldn't have been able to construct the inline frame either, by design. That's what the assertion catches. So we have an inline frame, we should _always_ be able to compute its ID, even if that means bypassing the user backtrace limits to get at the real stack frame's info. The problem is that inline_frame_id calls get_prev_frame, and that takes user backtrace limits into account. Code that wants to bypass the limits calls get_prev_frame_1 instead. Note how get_prev_frame_1 already skips all checks for inline frames: /* If we are unwinding from an inline frame, all of the below tests were already performed when we unwound from the next non-inline frame. We must skip them, since we can not get THIS_FRAME's ID until we have unwound all the way down to the previous non-inline frame. */ if (get_frame_type (this_frame) == INLINE_FRAME) return get_prev_frame_if_no_cycle (this_frame); And note how the related frame_unwind_caller_id function also uses get_prev_frame_1: struct frame_id frame_unwind_caller_id (struct frame_info *next_frame) { struct frame_info *this_frame; /* Use get_prev_frame_1, and not get_prev_frame. The latter will truncate the frame chain, leading to this function unintentionally returning a null_frame_id (e.g., when a caller requests the frame ID of "main()"s caller. */ next_frame = skip_artificial_frames (next_frame); this_frame = get_prev_frame_1 (next_frame); if (this_frame) return get_frame_id (skip_artificial_frames (this_frame)); else return null_frame_id; } get_prev_frame_1 is currently static in frame.c. As a _1 suffix is not a good name for an extern function, I've renamed it. Tested on x86-64 Fedora 17. gdb/ 2014-04-18 Pedro alves <palves@redhat.com> Tom Tromey <tromey@redhat.com> PR backtrace/15558 * frame.c (get_prev_frame_1): Rename to ... (get_prev_frame_always): ... this, and make extern. Adjust. (skip_artificial_frames): Use get_prev_frame_always. (frame_unwind_caller_id, frame_pop, get_prev_frame) (get_frame_unwind_stop_reason): Adjust to rename. * frame.h (get_prev_frame_always): Declare. * inline-frame.c: Include frame.h. (inline_frame_this_id): Use get_prev_frame_always. gdb/testsuite/ 2014-04-18 Tom Tromey <palves@redhat.com> Pedro alves <tromey@redhat.com> PR backtrace/15558 * gdb.opt/inline-bt.exp: Test backtracing from an inline function with a backtrace limit. * gdb.python/py-frame-inline.exp: Test running to an inline function with a backtrace limit, and printing the newest frame. * gdb.python/py-frame-inline.c (main): Call f.
413 lines
12 KiB
C
413 lines
12 KiB
C
/* Inline frame unwinder for GDB.
|
|
|
|
Copyright (C) 2008-2014 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "defs.h"
|
|
#include "inline-frame.h"
|
|
#include "addrmap.h"
|
|
#include "block.h"
|
|
#include "frame-unwind.h"
|
|
#include "inferior.h"
|
|
#include "regcache.h"
|
|
#include "symtab.h"
|
|
#include "vec.h"
|
|
#include "frame.h"
|
|
|
|
#include "gdb_assert.h"
|
|
|
|
/* We need to save a few variables for every thread stopped at the
|
|
virtual call site of an inlined function. If there was always a
|
|
"struct thread_info", we could hang it off that; in the mean time,
|
|
keep our own list. */
|
|
struct inline_state
|
|
{
|
|
/* The thread this data relates to. It should be a currently
|
|
stopped thread; we assume thread IDs never change while the
|
|
thread is stopped. */
|
|
ptid_t ptid;
|
|
|
|
/* The number of inlined functions we are skipping. Each of these
|
|
functions can be stepped in to. */
|
|
int skipped_frames;
|
|
|
|
/* Only valid if SKIPPED_FRAMES is non-zero. This is the PC used
|
|
when calculating SKIPPED_FRAMES; used to check whether we have
|
|
moved to a new location by user request. If so, we invalidate
|
|
any skipped frames. */
|
|
CORE_ADDR saved_pc;
|
|
|
|
/* Only valid if SKIPPED_FRAMES is non-zero. This is the symbol
|
|
of the outermost skipped inline function. It's used to find the
|
|
call site of the current frame. */
|
|
struct symbol *skipped_symbol;
|
|
};
|
|
|
|
typedef struct inline_state inline_state_s;
|
|
DEF_VEC_O(inline_state_s);
|
|
|
|
static VEC(inline_state_s) *inline_states;
|
|
|
|
/* Locate saved inlined frame state for PTID, if it exists
|
|
and is valid. */
|
|
|
|
static struct inline_state *
|
|
find_inline_frame_state (ptid_t ptid)
|
|
{
|
|
struct inline_state *state;
|
|
int ix;
|
|
|
|
for (ix = 0; VEC_iterate (inline_state_s, inline_states, ix, state); ix++)
|
|
{
|
|
if (ptid_equal (state->ptid, ptid))
|
|
{
|
|
struct regcache *regcache = get_thread_regcache (ptid);
|
|
CORE_ADDR current_pc = regcache_read_pc (regcache);
|
|
|
|
if (current_pc != state->saved_pc)
|
|
{
|
|
/* PC has changed - this context is invalid. Use the
|
|
default behavior. */
|
|
VEC_unordered_remove (inline_state_s, inline_states, ix);
|
|
return NULL;
|
|
}
|
|
else
|
|
return state;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Allocate saved inlined frame state for PTID. */
|
|
|
|
static struct inline_state *
|
|
allocate_inline_frame_state (ptid_t ptid)
|
|
{
|
|
struct inline_state *state;
|
|
|
|
state = VEC_safe_push (inline_state_s, inline_states, NULL);
|
|
memset (state, 0, sizeof (*state));
|
|
state->ptid = ptid;
|
|
|
|
return state;
|
|
}
|
|
|
|
/* Forget about any hidden inlined functions in PTID, which is new or
|
|
about to be resumed. PTID may be minus_one_ptid (all processes)
|
|
or a PID (all threads in this process). */
|
|
|
|
void
|
|
clear_inline_frame_state (ptid_t ptid)
|
|
{
|
|
struct inline_state *state;
|
|
int ix;
|
|
|
|
if (ptid_equal (ptid, minus_one_ptid))
|
|
{
|
|
VEC_free (inline_state_s, inline_states);
|
|
return;
|
|
}
|
|
|
|
if (ptid_is_pid (ptid))
|
|
{
|
|
VEC (inline_state_s) *new_states = NULL;
|
|
int pid = ptid_get_pid (ptid);
|
|
|
|
for (ix = 0;
|
|
VEC_iterate (inline_state_s, inline_states, ix, state);
|
|
ix++)
|
|
if (pid != ptid_get_pid (state->ptid))
|
|
VEC_safe_push (inline_state_s, new_states, state);
|
|
VEC_free (inline_state_s, inline_states);
|
|
inline_states = new_states;
|
|
return;
|
|
}
|
|
|
|
for (ix = 0; VEC_iterate (inline_state_s, inline_states, ix, state); ix++)
|
|
if (ptid_equal (state->ptid, ptid))
|
|
{
|
|
VEC_unordered_remove (inline_state_s, inline_states, ix);
|
|
return;
|
|
}
|
|
}
|
|
|
|
static void
|
|
inline_frame_this_id (struct frame_info *this_frame,
|
|
void **this_cache,
|
|
struct frame_id *this_id)
|
|
{
|
|
struct symbol *func;
|
|
|
|
/* In order to have a stable frame ID for a given inline function,
|
|
we must get the stack / special addresses from the underlying
|
|
real frame's this_id method. So we must call
|
|
get_prev_frame_always. Because we are inlined into some
|
|
function, there must be previous frames, so this is safe - as
|
|
long as we're careful not to create any cycles. */
|
|
*this_id = get_frame_id (get_prev_frame_always (this_frame));
|
|
|
|
/* We need a valid frame ID, so we need to be based on a valid
|
|
frame. FSF submission NOTE: this would be a good assertion to
|
|
apply to all frames, all the time. That would fix the ambiguity
|
|
of null_frame_id (between "no/any frame" and "the outermost
|
|
frame"). This will take work. */
|
|
gdb_assert (frame_id_p (*this_id));
|
|
|
|
/* For now, require we don't match outer_frame_id either (see
|
|
comment above). */
|
|
gdb_assert (!frame_id_eq (*this_id, outer_frame_id));
|
|
|
|
/* Future work NOTE: Alexandre Oliva applied a patch to GCC 4.3
|
|
which generates DW_AT_entry_pc for inlined functions when
|
|
possible. If this attribute is available, we should use it
|
|
in the frame ID (and eventually, to set breakpoints). */
|
|
func = get_frame_function (this_frame);
|
|
gdb_assert (func != NULL);
|
|
(*this_id).code_addr = BLOCK_START (SYMBOL_BLOCK_VALUE (func));
|
|
(*this_id).artificial_depth++;
|
|
}
|
|
|
|
static struct value *
|
|
inline_frame_prev_register (struct frame_info *this_frame, void **this_cache,
|
|
int regnum)
|
|
{
|
|
/* Use get_frame_register_value instead of
|
|
frame_unwind_got_register, to avoid requiring this frame's ID.
|
|
This frame's ID depends on the previous frame's ID (unusual), and
|
|
the previous frame's ID depends on this frame's unwound
|
|
registers. If unwinding registers from this frame called
|
|
get_frame_id, there would be a loop.
|
|
|
|
Do not copy this code into any other unwinder! Inlined functions
|
|
are special; other unwinders must not have a dependency on the
|
|
previous frame's ID, and therefore can and should use
|
|
frame_unwind_got_register instead. */
|
|
return get_frame_register_value (this_frame, regnum);
|
|
}
|
|
|
|
/* Check whether we are at an inlining site that does not already
|
|
have an associated frame. */
|
|
|
|
static int
|
|
inline_frame_sniffer (const struct frame_unwind *self,
|
|
struct frame_info *this_frame,
|
|
void **this_cache)
|
|
{
|
|
CORE_ADDR this_pc;
|
|
struct block *frame_block, *cur_block;
|
|
int depth;
|
|
struct frame_info *next_frame;
|
|
struct inline_state *state = find_inline_frame_state (inferior_ptid);
|
|
|
|
this_pc = get_frame_address_in_block (this_frame);
|
|
frame_block = block_for_pc (this_pc);
|
|
if (frame_block == NULL)
|
|
return 0;
|
|
|
|
/* Calculate DEPTH, the number of inlined functions at this
|
|
location. */
|
|
depth = 0;
|
|
cur_block = frame_block;
|
|
while (BLOCK_SUPERBLOCK (cur_block))
|
|
{
|
|
if (block_inlined_p (cur_block))
|
|
depth++;
|
|
|
|
cur_block = BLOCK_SUPERBLOCK (cur_block);
|
|
}
|
|
|
|
/* Check how many inlined functions already have frames. */
|
|
for (next_frame = get_next_frame (this_frame);
|
|
next_frame && get_frame_type (next_frame) == INLINE_FRAME;
|
|
next_frame = get_next_frame (next_frame))
|
|
{
|
|
gdb_assert (depth > 0);
|
|
depth--;
|
|
}
|
|
|
|
/* If this is the topmost frame, or all frames above us are inlined,
|
|
then check whether we were requested to skip some frames (so they
|
|
can be stepped into later). */
|
|
if (state != NULL && state->skipped_frames > 0 && next_frame == NULL)
|
|
{
|
|
gdb_assert (depth >= state->skipped_frames);
|
|
depth -= state->skipped_frames;
|
|
}
|
|
|
|
/* If all the inlined functions here already have frames, then pass
|
|
to the normal unwinder for this PC. */
|
|
if (depth == 0)
|
|
return 0;
|
|
|
|
/* If the next frame is an inlined function, but not the outermost, then
|
|
we are the next outer. If it is not an inlined function, then we
|
|
are the innermost inlined function of a different real frame. */
|
|
return 1;
|
|
}
|
|
|
|
const struct frame_unwind inline_frame_unwind = {
|
|
INLINE_FRAME,
|
|
default_frame_unwind_stop_reason,
|
|
inline_frame_this_id,
|
|
inline_frame_prev_register,
|
|
NULL,
|
|
inline_frame_sniffer
|
|
};
|
|
|
|
/* Return non-zero if BLOCK, an inlined function block containing PC,
|
|
has a group of contiguous instructions starting at PC (but not
|
|
before it). */
|
|
|
|
static int
|
|
block_starting_point_at (CORE_ADDR pc, struct block *block)
|
|
{
|
|
struct blockvector *bv;
|
|
struct block *new_block;
|
|
|
|
bv = blockvector_for_pc (pc, NULL);
|
|
if (BLOCKVECTOR_MAP (bv) == NULL)
|
|
return 0;
|
|
|
|
new_block = addrmap_find (BLOCKVECTOR_MAP (bv), pc - 1);
|
|
if (new_block == NULL)
|
|
return 1;
|
|
|
|
if (new_block == block || contained_in (new_block, block))
|
|
return 0;
|
|
|
|
/* The immediately preceding address belongs to a different block,
|
|
which is not a child of this one. Treat this as an entrance into
|
|
BLOCK. */
|
|
return 1;
|
|
}
|
|
|
|
/* Skip all inlined functions whose call sites are at the current PC.
|
|
Frames for the hidden functions will not appear in the backtrace until the
|
|
user steps into them. */
|
|
|
|
void
|
|
skip_inline_frames (ptid_t ptid)
|
|
{
|
|
CORE_ADDR this_pc;
|
|
struct block *frame_block, *cur_block;
|
|
struct symbol *last_sym = NULL;
|
|
int skip_count = 0;
|
|
struct inline_state *state;
|
|
|
|
/* This function is called right after reinitializing the frame
|
|
cache. We try not to do more unwinding than absolutely
|
|
necessary, for performance. */
|
|
this_pc = get_frame_pc (get_current_frame ());
|
|
frame_block = block_for_pc (this_pc);
|
|
|
|
if (frame_block != NULL)
|
|
{
|
|
cur_block = frame_block;
|
|
while (BLOCK_SUPERBLOCK (cur_block))
|
|
{
|
|
if (block_inlined_p (cur_block))
|
|
{
|
|
/* See comments in inline_frame_this_id about this use
|
|
of BLOCK_START. */
|
|
if (BLOCK_START (cur_block) == this_pc
|
|
|| block_starting_point_at (this_pc, cur_block))
|
|
{
|
|
skip_count++;
|
|
last_sym = BLOCK_FUNCTION (cur_block);
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
cur_block = BLOCK_SUPERBLOCK (cur_block);
|
|
}
|
|
}
|
|
|
|
gdb_assert (find_inline_frame_state (ptid) == NULL);
|
|
state = allocate_inline_frame_state (ptid);
|
|
state->skipped_frames = skip_count;
|
|
state->saved_pc = this_pc;
|
|
state->skipped_symbol = last_sym;
|
|
|
|
if (skip_count != 0)
|
|
reinit_frame_cache ();
|
|
}
|
|
|
|
/* Step into an inlined function by unhiding it. */
|
|
|
|
void
|
|
step_into_inline_frame (ptid_t ptid)
|
|
{
|
|
struct inline_state *state = find_inline_frame_state (ptid);
|
|
|
|
gdb_assert (state != NULL && state->skipped_frames > 0);
|
|
state->skipped_frames--;
|
|
reinit_frame_cache ();
|
|
}
|
|
|
|
/* Return the number of hidden functions inlined into the current
|
|
frame. */
|
|
|
|
int
|
|
inline_skipped_frames (ptid_t ptid)
|
|
{
|
|
struct inline_state *state = find_inline_frame_state (ptid);
|
|
|
|
if (state == NULL)
|
|
return 0;
|
|
else
|
|
return state->skipped_frames;
|
|
}
|
|
|
|
/* If one or more inlined functions are hidden, return the symbol for
|
|
the function inlined into the current frame. */
|
|
|
|
struct symbol *
|
|
inline_skipped_symbol (ptid_t ptid)
|
|
{
|
|
struct inline_state *state = find_inline_frame_state (ptid);
|
|
|
|
gdb_assert (state != NULL);
|
|
return state->skipped_symbol;
|
|
}
|
|
|
|
/* Return the number of functions inlined into THIS_FRAME. Some of
|
|
the callees may not have associated frames (see
|
|
skip_inline_frames). */
|
|
|
|
int
|
|
frame_inlined_callees (struct frame_info *this_frame)
|
|
{
|
|
struct frame_info *next_frame;
|
|
int inline_count = 0;
|
|
|
|
/* First count how many inlined functions at this PC have frames
|
|
above FRAME (are inlined into FRAME). */
|
|
for (next_frame = get_next_frame (this_frame);
|
|
next_frame && get_frame_type (next_frame) == INLINE_FRAME;
|
|
next_frame = get_next_frame (next_frame))
|
|
inline_count++;
|
|
|
|
/* Simulate some most-inner inlined frames which were suppressed, so
|
|
they can be stepped into later. If we are unwinding already
|
|
outer frames from some non-inlined frame this does not apply. */
|
|
if (next_frame == NULL)
|
|
inline_count += inline_skipped_frames (inferior_ptid);
|
|
|
|
return inline_count;
|
|
}
|