mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-12 12:16:04 +08:00
9704b8b4bc
It is not necessary to call get_compiler_info before calling test_compiler_info, and, after recent commits that removed setting up the gcc_compiled, true, and false globals from get_compiler_info, there is now no longer any need for any test script to call get_compiler_info directly. As a result every call to get_compiler_info outside of lib/gdb.exp is redundant, and this commit removes them all. There should be no change in what is tested after this commit.
364 lines
12 KiB
Plaintext
364 lines
12 KiB
Plaintext
# Copyright 2008-2022 Free Software Foundation, Inc.
|
|
|
|
# This program is free software; you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation; either version 3 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
load_lib mi-support.exp
|
|
set MIFLAGS "-i=mi"
|
|
|
|
standard_testfile .c inline-markers.c
|
|
|
|
if {[prepare_for_testing "failed to prepare" $testfile \
|
|
[list $srcfile $srcfile2] {debug additional_flags=-Winline}]} {
|
|
return -1
|
|
}
|
|
|
|
gdb_test_no_output "set listsize 1"
|
|
|
|
runto_main
|
|
|
|
get_debug_format
|
|
if { [skip_inline_frame_tests] } {
|
|
untested "skipping inline frame tests"
|
|
return
|
|
}
|
|
|
|
# First, check that the things we expected to be inlined really were,
|
|
# and those that shouldn't be weren't.
|
|
set line1 [gdb_get_line_number "set breakpoint 1 here" ${srcfile2}]
|
|
gdb_breakpoint $srcfile2:$line1
|
|
set line2 [gdb_get_line_number "set breakpoint 2 here" ${srcfile2}]
|
|
gdb_breakpoint $srcfile2:$line2
|
|
|
|
gdb_test "continue" ".*set breakpoint 1 here.*" "continue to bar (1)"
|
|
gdb_test "backtrace" "#0 bar.*#1 .*func1.*#2 .*main.*" \
|
|
"backtrace from bar (1)"
|
|
gdb_test "up" "#1 .*func1.*" "up from bar (1)"
|
|
gdb_test "info frame" ".*inlined into frame.*" "func1 inlined (1)"
|
|
|
|
gdb_test "continue" ".*set breakpoint 1 here.*" "continue to bar (2)"
|
|
gdb_test "backtrace" "#0 bar.*#1 .*func1.*#2 .*func2.*#3 .*main.*" \
|
|
"backtrace from bar (2)"
|
|
gdb_test "up" "#1 .*func1.*" "up from bar (2)"
|
|
gdb_test "info frame" ".*inlined into frame.*" "func1 inlined (2)"
|
|
gdb_test "up" "#2 .*func2.*" "up from func1 (2)"
|
|
gdb_test "info frame" ".*inlined into frame.*" "func2 inlined (2)"
|
|
|
|
gdb_test "continue" ".*set breakpoint 2 here.*" "continue to marker"
|
|
gdb_test "backtrace" "#0 marker.*#1 .*main.*" "backtrace from marker"
|
|
gdb_test "info frame" ".*called by frame.*" "marker not inlined"
|
|
|
|
# Next, check that we can next over inlined functions. We should not end up
|
|
# inside any of them.
|
|
delete_breakpoints
|
|
runto_main
|
|
|
|
# The lines before the first inlined call.
|
|
set first "x = 7|y = 8"
|
|
|
|
# Some extra lines that end up in our stepping due to code motion.
|
|
set opt "start of main|result = 0"
|
|
|
|
# We start this test with a "list" instead of a "next", in case the
|
|
# first non-prologue instruction in main comes from the inlined function.
|
|
set msg "next over inlined functions"
|
|
gdb_test_multiple "list" $msg {
|
|
-re "($first|result = func1|result = func2|$opt).*$gdb_prompt $" {
|
|
send_gdb "next\r"
|
|
exp_continue
|
|
}
|
|
-re "marker \\\(\\\);\r\n$gdb_prompt $" {
|
|
pass $msg
|
|
}
|
|
}
|
|
|
|
# Check that when next shows the call of func1, it has not happened yet.
|
|
runto_main
|
|
|
|
# Like the return value of gdb_test: -1 something is wrong, 0 passed, 1 failed.
|
|
set bt_test -1
|
|
set x_test -1
|
|
set func1_step -1
|
|
|
|
set last_was_func1_call 0
|
|
set msg "next past inlined func1"
|
|
gdb_test_multiple "list" $msg {
|
|
-re "($first|$opt).*$gdb_prompt $" {
|
|
set last_was_func1_call 0
|
|
send_gdb "next\r"
|
|
exp_continue
|
|
}
|
|
-re "result = func1 \\\(\\\);\r\n$gdb_prompt $" {
|
|
# Check whether x has been set. If 0, we may be doing something
|
|
# else associated with this line besides the inlined call - e.g.
|
|
# loading the address of result. If 7, we may be at the call site.
|
|
# If 15, though, we might be past the call and back at the store to
|
|
# result - that's OK, as long as we weren't just here (see
|
|
# func1_step above).
|
|
set x_val -1
|
|
gdb_test_multiple "print x" "" {
|
|
-re "\\\$$decimal = (\[0-9\]*)\r\n$gdb_prompt $" {
|
|
set x_val $expect_out(1,string)
|
|
}
|
|
-re "$gdb_prompt $" { }
|
|
}
|
|
if { $x_val == 0 || $x_val == 7 } {
|
|
if { $x_test != 1 } {
|
|
set x_test 0
|
|
}
|
|
} elseif { $x_val == 15 } {
|
|
if { $func1_step == -1 } {
|
|
# We passed func1 without stopping at the call site.
|
|
set x_test 1
|
|
}
|
|
} else {
|
|
set x_test 1
|
|
}
|
|
|
|
# func1 should not show up on backtraces if we are at its call
|
|
# site.
|
|
if { $bt_test != 1 } {
|
|
set bt_test [gdb_test "backtrace" "#0 \[^#]*main.*" ""]
|
|
}
|
|
|
|
# When we next over func1, we should not return to the same
|
|
# line. But we might go past the line, according to source
|
|
# code order, and then come back. A valid but odd layout is
|
|
# body of func1, load result's address into a register using
|
|
# the source location of "result = 0" several lines down, and
|
|
# then return to this line for the store. GCC 4.3 does that
|
|
# on ARM.
|
|
if { $last_was_func1_call } {
|
|
set func1_step 1
|
|
} elseif { $func1_step == -1 } {
|
|
set func1_step 0
|
|
}
|
|
set last_was_func1_call 1
|
|
|
|
send_gdb "next\r"
|
|
exp_continue
|
|
}
|
|
|
|
-re "result = func2 \\\(\\\);\r\n$gdb_prompt $" {
|
|
pass $msg
|
|
}
|
|
}
|
|
|
|
if { $x_test == 0 } {
|
|
pass "print x before func1"
|
|
} else {
|
|
fail "print x before func1"
|
|
}
|
|
|
|
if { $bt_test == 0 } {
|
|
pass "backtrace does not include func1"
|
|
} else {
|
|
fail "backtrace does not include func1"
|
|
}
|
|
|
|
if { $bt_test == 0 } {
|
|
pass "stepped over call to func1"
|
|
} else {
|
|
fail "stepped over call to func1"
|
|
}
|
|
|
|
# Next, check that we can single step into inlined functions. We should always
|
|
# "stop" at the call sites before entering them.
|
|
runto_main
|
|
|
|
set msg "step into func1"
|
|
set saw_call_site 0
|
|
gdb_test_multiple "list" $msg {
|
|
-re "($first|$opt).*$gdb_prompt $" {
|
|
send_gdb "step\r"
|
|
exp_continue
|
|
}
|
|
-re "result = func1.*$gdb_prompt $" {
|
|
set saw_call_site 1
|
|
send_gdb "step\r"
|
|
exp_continue
|
|
}
|
|
-re "func1 \\\(\\\) at .*\r\n$decimal.*bar \\\(\\\);\r\n$gdb_prompt $" {
|
|
if { $saw_call_site } {
|
|
pass $msg
|
|
} else {
|
|
fail $msg
|
|
}
|
|
}
|
|
}
|
|
|
|
# Check finish out of an inlined function.
|
|
set msg "finish from func1"
|
|
gdb_test_multiple "finish" $msg {
|
|
-re "result = func1 \\\(\\\);\r\n$gdb_prompt $" {
|
|
pass $msg
|
|
}
|
|
-re "($first|$opt).*$gdb_prompt $" {
|
|
# Whoops. We finished, but ended up back at an earlier line. Keep
|
|
# trying.
|
|
send_gdb "step\r"
|
|
exp_continue
|
|
}
|
|
-re "func1 \\\(\\\) at .*\r\n$decimal.*bar \\\(\\\);\r\n$gdb_prompt $" {
|
|
send_gdb "finish\r"
|
|
exp_continue
|
|
}
|
|
}
|
|
|
|
# Test some corner cases involving consecutive inlined functions.
|
|
set line3 [gdb_get_line_number "set breakpoint 3 here"]
|
|
gdb_breakpoint $line3
|
|
gdb_continue_to_breakpoint "consecutive func1"
|
|
|
|
gdb_test "next" ".*func1 .*first call.*" "next to first func1"
|
|
gdb_test "next" ".*func1 .*second call.*" "next to second func1"
|
|
|
|
# It is easier when the two inlined functions are not on the same line.
|
|
set line4 [gdb_get_line_number "set breakpoint 4 here"]
|
|
gdb_breakpoint $line4
|
|
gdb_continue_to_breakpoint "func1 then func3"
|
|
|
|
gdb_test "next" ".*func1 \\\(\\\);" "next to func1 before func3"
|
|
gdb_test "next" ".*func3 \\\(\\\);" "next to func3"
|
|
|
|
# Test finishing out of one thing and into another.
|
|
set line5 [gdb_get_line_number "set breakpoint 5 here"]
|
|
gdb_breakpoint $line5
|
|
gdb_continue_to_breakpoint "finish into func1"
|
|
|
|
gdb_test "next" ".*marker \\\(\\\);" "next to finish marker"
|
|
gdb_test "step" ".*set breakpoint 2 here.*" "step into finish marker"
|
|
|
|
# Some architectures will have one or more instructions after
|
|
# the call instruction which still are part of the call sequence,
|
|
# so it should be expected to return to the caller line after issue
|
|
# a 'finish' command.
|
|
gdb_test_multiple "finish" "finish from marker" {
|
|
-re "func1 \\\(\\\);.*\r\n$gdb_prompt $" {
|
|
pass "finish from marker to func1"
|
|
}
|
|
-re "marker \\\(\\\);.*\r\n$gdb_prompt $" {
|
|
pass "finish from marker"
|
|
gdb_test "step" "func1 \\\(\\\);.*" "step after marker to reach func1"
|
|
}
|
|
}
|
|
|
|
gdb_test "step" "bar \\\(\\\);" "step into func1 for finish"
|
|
gdb_test "finish" "func3 \\\(\\\);" "finish from func1 to func3"
|
|
|
|
# Test a deeper call stack.
|
|
set line6 [gdb_get_line_number "set breakpoint 6 here"]
|
|
gdb_breakpoint $line6
|
|
gdb_continue_to_breakpoint "before the outer_inline call"
|
|
gdb_test "step" "marker \\\(\\\) at .*" "reach 1 the outer_inline call"
|
|
gdb_test_multiple "finish" "finish from marker" {
|
|
-re "main \\\(\\\) at .*outer_inline2 \\\(\\\);.*\r\n$gdb_prompt $" {
|
|
pass "reach outer_inline2"
|
|
}
|
|
-re "main \\\(\\\) at .*marker \\\(\\\);.*\r\n$gdb_prompt $" {
|
|
pass "finish from marker"
|
|
gdb_test "step" "outer_inline2 \\\(\\\);.*" "step after marker to reach outer_inline2"
|
|
}
|
|
}
|
|
gdb_test "bt" "#0 main.*" "backtrace at main of outer_inline"
|
|
gdb_test "step" "outer_inline2 \\\(\\\) at .*" "enter outer_inline2"
|
|
gdb_test "bt" "#0 outer_inline2.*#1 main.*" "backtrace at outer_inline2"
|
|
gdb_test "step" "outer_inline1 \\\(\\\) at .*" "enter outer_inline1 from outer_inline2"
|
|
|
|
set msg "backtrace at outer_inline1"
|
|
gdb_test_multiple "bt" $msg {
|
|
-re "#0 outer_inline1.*#1 outer_inline2.*#2 main.*$gdb_prompt $" {
|
|
pass $msg
|
|
}
|
|
-re "#0 $hex in outer_inline1.*#1 outer_inline2.*#2 main.*$gdb_prompt $" {
|
|
# Binutils PR gas/6717. Gas moves .loc past .p2align and the
|
|
# leading nop of the inlined call appears to be on the same line
|
|
# as main's call to marker.
|
|
xfail $msg
|
|
gdb_test "step" "noinline \\\(\\\);" "step to call of noinline"
|
|
}
|
|
}
|
|
|
|
gdb_test "step" "noinline \\\(\\\) at .*" "enter noinline from outer_inline1"
|
|
gdb_test "bt" "#0 noinline.*#1 .*outer_inline1.*#2 .*outer_inline2.*#3 main.*" "backtrace at noinline from outer_inline1"
|
|
gdb_test "step" "inlined_fn \\\(\\\) at .*" "enter inlined_fn from noinline"
|
|
gdb_test "bt" "#0 inlined_fn.*#1 noinline.*#2 .*outer_inline1.*#3 .*outer_inline2.*#4 main.*" "backtrace at inlined_fn from noinline"
|
|
gdb_test "info frame" ".*inlined into frame.*" "inlined_fn from noinline inlined"
|
|
gdb_test "up" "#1 noinline.*" "up to noinline"
|
|
gdb_test "info frame" ".*\n called by frame.*" "noinline from outer_inline1 not inlined"
|
|
gdb_test "up" "#2 .*outer_inline1.*" "up to outer_inline1"
|
|
gdb_test "info frame" ".*inlined into frame.*" "outer_inline1 inlined"
|
|
gdb_test "up" "#3 .*outer_inline2.*" "up to outer_inline2"
|
|
gdb_test "info frame" ".*inlined into frame.*" "outer_inline2 inlined"
|
|
gdb_test "up" "#4 main.*" "up from outer_inline2"
|
|
gdb_test "info frame" ".*\n caller of frame.*" "main not inlined"
|
|
|
|
gdb_exit
|
|
|
|
# Send a CLI "step" command over MI. CLI_OUTPUT_RE is a regexp that
|
|
# matches the expected CLI output. MESSAGE is used as test message.
|
|
|
|
proc mi_cli_step {cli_output_re message} {
|
|
global mi_gdb_prompt
|
|
global srcfile
|
|
global decimal
|
|
|
|
send_gdb "interpreter-exec console \"step\"\n"
|
|
gdb_expect {
|
|
-re "\\^running\r\n\\*running,thread-id=\"all\"\r\n${mi_gdb_prompt}${cli_output_re}" {
|
|
pass $message
|
|
}
|
|
timeout {
|
|
fail "$message (timeout)"
|
|
}
|
|
eof {
|
|
fail "$message (eof)"
|
|
}
|
|
}
|
|
|
|
# mi_expect_stop handles "set mi-async on/off" differences.
|
|
mi_expect_stop "end-stepping-range" "\[^\r\n\]*" "" ".*$srcfile" "$decimal" \
|
|
"" "got *stopped for $message"
|
|
}
|
|
|
|
# Test that stepping into an inlined function with the CLI "step"
|
|
# command run while the top interpreter is MI results in the expected
|
|
# CLI output sent to MI's console.
|
|
with_test_prefix "mi" {
|
|
if [mi_gdb_start] {
|
|
return
|
|
}
|
|
mi_gdb_load ${binfile}
|
|
mi_runto_main
|
|
|
|
set line_number [gdb_get_line_number "set mi break here"]
|
|
mi_gdb_test "-break-insert ${srcfile}:${line_number}" \
|
|
{\^done,bkpt=.number="2",type="breakpoint".*\}} \
|
|
"set breakpoint"
|
|
|
|
mi_execute_to "exec-continue" "breakpoint-hit" "main" "" ".*" ".*" \
|
|
{ "" "disp=\"keep\"" } "breakpoint hit"
|
|
|
|
incr line_number 2
|
|
|
|
# Step to the line that does an inline call.
|
|
set re "~\"$line_number\\\\t result = func1 \\(\\);\\\\n\"\r\n"
|
|
mi_cli_step "${re}" "step to inline call"
|
|
|
|
# Step into the inlined function.
|
|
set re [multi_line \
|
|
"~\"func1 \\(\\) at .*$srcfile:$decimal\\\\n\"" \
|
|
"~\"$decimal\\\\t bar \\(\\);\\\\n\"\r\n"]
|
|
mi_cli_step "${re}" "step into inline call"
|
|
}
|