mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-12 12:16:04 +08:00
7ce16bd4c4
This patch enables use of DWARF unwinders for the SPU target. In addition to appending the DWARF unwinders, we also need to install a spu_dwarf_reg_to_regnum that maps the raw stack pointer register to the cooked version (to avoid mismatches with gdbarch_sp_regnum). This also causes confusion with the AX collect handling, so we also install ax_pseudo_register routines to handle the cooked SP. gdb/ 2014-04-17 Ulrich Weigand <uweigand@de.ibm.com> * spu-tdep.c: Include "dwarf2-frame.h" and "ax.h". (spu_ax_pseudo_register_collect): New function. (spu_ax_pseudo_register_push_stack): Likewise. (spu_dwarf_reg_to_regnum): Likewise. (spu_gdbarch_init): Install them. Append DWARF unwinders.
2887 lines
84 KiB
C
2887 lines
84 KiB
C
/* SPU target-dependent code for GDB, the GNU debugger.
|
|
Copyright (C) 2006-2014 Free Software Foundation, Inc.
|
|
|
|
Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
|
|
Based on a port by Sid Manning <sid@us.ibm.com>.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "defs.h"
|
|
#include "arch-utils.h"
|
|
#include "gdbtypes.h"
|
|
#include "gdbcmd.h"
|
|
#include "gdbcore.h"
|
|
#include <string.h>
|
|
#include "gdb_assert.h"
|
|
#include "frame.h"
|
|
#include "frame-unwind.h"
|
|
#include "frame-base.h"
|
|
#include "trad-frame.h"
|
|
#include "symtab.h"
|
|
#include "symfile.h"
|
|
#include "value.h"
|
|
#include "inferior.h"
|
|
#include "dis-asm.h"
|
|
#include "objfiles.h"
|
|
#include "language.h"
|
|
#include "regcache.h"
|
|
#include "reggroups.h"
|
|
#include "floatformat.h"
|
|
#include "block.h"
|
|
#include "observer.h"
|
|
#include "infcall.h"
|
|
#include "dwarf2.h"
|
|
#include "dwarf2-frame.h"
|
|
#include "ax.h"
|
|
#include "exceptions.h"
|
|
#include "spu-tdep.h"
|
|
|
|
|
|
/* The list of available "set spu " and "show spu " commands. */
|
|
static struct cmd_list_element *setspucmdlist = NULL;
|
|
static struct cmd_list_element *showspucmdlist = NULL;
|
|
|
|
/* Whether to stop for new SPE contexts. */
|
|
static int spu_stop_on_load_p = 0;
|
|
/* Whether to automatically flush the SW-managed cache. */
|
|
static int spu_auto_flush_cache_p = 1;
|
|
|
|
|
|
/* The tdep structure. */
|
|
struct gdbarch_tdep
|
|
{
|
|
/* The spufs ID identifying our address space. */
|
|
int id;
|
|
|
|
/* SPU-specific vector type. */
|
|
struct type *spu_builtin_type_vec128;
|
|
};
|
|
|
|
|
|
/* SPU-specific vector type. */
|
|
static struct type *
|
|
spu_builtin_type_vec128 (struct gdbarch *gdbarch)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
|
|
if (!tdep->spu_builtin_type_vec128)
|
|
{
|
|
const struct builtin_type *bt = builtin_type (gdbarch);
|
|
struct type *t;
|
|
|
|
t = arch_composite_type (gdbarch,
|
|
"__spu_builtin_type_vec128", TYPE_CODE_UNION);
|
|
append_composite_type_field (t, "uint128", bt->builtin_int128);
|
|
append_composite_type_field (t, "v2_int64",
|
|
init_vector_type (bt->builtin_int64, 2));
|
|
append_composite_type_field (t, "v4_int32",
|
|
init_vector_type (bt->builtin_int32, 4));
|
|
append_composite_type_field (t, "v8_int16",
|
|
init_vector_type (bt->builtin_int16, 8));
|
|
append_composite_type_field (t, "v16_int8",
|
|
init_vector_type (bt->builtin_int8, 16));
|
|
append_composite_type_field (t, "v2_double",
|
|
init_vector_type (bt->builtin_double, 2));
|
|
append_composite_type_field (t, "v4_float",
|
|
init_vector_type (bt->builtin_float, 4));
|
|
|
|
TYPE_VECTOR (t) = 1;
|
|
TYPE_NAME (t) = "spu_builtin_type_vec128";
|
|
|
|
tdep->spu_builtin_type_vec128 = t;
|
|
}
|
|
|
|
return tdep->spu_builtin_type_vec128;
|
|
}
|
|
|
|
|
|
/* The list of available "info spu " commands. */
|
|
static struct cmd_list_element *infospucmdlist = NULL;
|
|
|
|
/* Registers. */
|
|
|
|
static const char *
|
|
spu_register_name (struct gdbarch *gdbarch, int reg_nr)
|
|
{
|
|
static char *register_names[] =
|
|
{
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
|
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
|
|
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
|
|
"r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
|
|
"r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
|
|
"r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
|
|
"r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
|
|
"r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
|
|
"r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
|
|
"r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
|
|
"r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
|
|
"r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
|
|
"r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
|
|
"r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
|
|
"r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
|
|
"id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
|
|
};
|
|
|
|
if (reg_nr < 0)
|
|
return NULL;
|
|
if (reg_nr >= sizeof register_names / sizeof *register_names)
|
|
return NULL;
|
|
|
|
return register_names[reg_nr];
|
|
}
|
|
|
|
static struct type *
|
|
spu_register_type (struct gdbarch *gdbarch, int reg_nr)
|
|
{
|
|
if (reg_nr < SPU_NUM_GPRS)
|
|
return spu_builtin_type_vec128 (gdbarch);
|
|
|
|
switch (reg_nr)
|
|
{
|
|
case SPU_ID_REGNUM:
|
|
return builtin_type (gdbarch)->builtin_uint32;
|
|
|
|
case SPU_PC_REGNUM:
|
|
return builtin_type (gdbarch)->builtin_func_ptr;
|
|
|
|
case SPU_SP_REGNUM:
|
|
return builtin_type (gdbarch)->builtin_data_ptr;
|
|
|
|
case SPU_FPSCR_REGNUM:
|
|
return builtin_type (gdbarch)->builtin_uint128;
|
|
|
|
case SPU_SRR0_REGNUM:
|
|
return builtin_type (gdbarch)->builtin_uint32;
|
|
|
|
case SPU_LSLR_REGNUM:
|
|
return builtin_type (gdbarch)->builtin_uint32;
|
|
|
|
case SPU_DECR_REGNUM:
|
|
return builtin_type (gdbarch)->builtin_uint32;
|
|
|
|
case SPU_DECR_STATUS_REGNUM:
|
|
return builtin_type (gdbarch)->builtin_uint32;
|
|
|
|
default:
|
|
internal_error (__FILE__, __LINE__, _("invalid regnum"));
|
|
}
|
|
}
|
|
|
|
/* Pseudo registers for preferred slots - stack pointer. */
|
|
|
|
static enum register_status
|
|
spu_pseudo_register_read_spu (struct regcache *regcache, const char *regname,
|
|
gdb_byte *buf)
|
|
{
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
enum register_status status;
|
|
gdb_byte reg[32];
|
|
char annex[32];
|
|
ULONGEST id;
|
|
ULONGEST ul;
|
|
|
|
status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
|
|
if (status != REG_VALID)
|
|
return status;
|
|
xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
|
|
memset (reg, 0, sizeof reg);
|
|
target_read (¤t_target, TARGET_OBJECT_SPU, annex,
|
|
reg, 0, sizeof reg);
|
|
|
|
ul = strtoulst ((char *) reg, NULL, 16);
|
|
store_unsigned_integer (buf, 4, byte_order, ul);
|
|
return REG_VALID;
|
|
}
|
|
|
|
static enum register_status
|
|
spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
|
|
int regnum, gdb_byte *buf)
|
|
{
|
|
gdb_byte reg[16];
|
|
char annex[32];
|
|
ULONGEST id;
|
|
enum register_status status;
|
|
|
|
switch (regnum)
|
|
{
|
|
case SPU_SP_REGNUM:
|
|
status = regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
|
|
if (status != REG_VALID)
|
|
return status;
|
|
memcpy (buf, reg, 4);
|
|
return status;
|
|
|
|
case SPU_FPSCR_REGNUM:
|
|
status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
|
|
if (status != REG_VALID)
|
|
return status;
|
|
xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
|
|
target_read (¤t_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
|
|
return status;
|
|
|
|
case SPU_SRR0_REGNUM:
|
|
return spu_pseudo_register_read_spu (regcache, "srr0", buf);
|
|
|
|
case SPU_LSLR_REGNUM:
|
|
return spu_pseudo_register_read_spu (regcache, "lslr", buf);
|
|
|
|
case SPU_DECR_REGNUM:
|
|
return spu_pseudo_register_read_spu (regcache, "decr", buf);
|
|
|
|
case SPU_DECR_STATUS_REGNUM:
|
|
return spu_pseudo_register_read_spu (regcache, "decr_status", buf);
|
|
|
|
default:
|
|
internal_error (__FILE__, __LINE__, _("invalid regnum"));
|
|
}
|
|
}
|
|
|
|
static void
|
|
spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
|
|
const gdb_byte *buf)
|
|
{
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
char reg[32];
|
|
char annex[32];
|
|
ULONGEST id;
|
|
|
|
regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
|
|
xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
|
|
xsnprintf (reg, sizeof reg, "0x%s",
|
|
phex_nz (extract_unsigned_integer (buf, 4, byte_order), 4));
|
|
target_write (¤t_target, TARGET_OBJECT_SPU, annex,
|
|
(gdb_byte *) reg, 0, strlen (reg));
|
|
}
|
|
|
|
static void
|
|
spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
|
|
int regnum, const gdb_byte *buf)
|
|
{
|
|
gdb_byte reg[16];
|
|
char annex[32];
|
|
ULONGEST id;
|
|
|
|
switch (regnum)
|
|
{
|
|
case SPU_SP_REGNUM:
|
|
regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
|
|
memcpy (reg, buf, 4);
|
|
regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
|
|
break;
|
|
|
|
case SPU_FPSCR_REGNUM:
|
|
regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
|
|
xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
|
|
target_write (¤t_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
|
|
break;
|
|
|
|
case SPU_SRR0_REGNUM:
|
|
spu_pseudo_register_write_spu (regcache, "srr0", buf);
|
|
break;
|
|
|
|
case SPU_LSLR_REGNUM:
|
|
spu_pseudo_register_write_spu (regcache, "lslr", buf);
|
|
break;
|
|
|
|
case SPU_DECR_REGNUM:
|
|
spu_pseudo_register_write_spu (regcache, "decr", buf);
|
|
break;
|
|
|
|
case SPU_DECR_STATUS_REGNUM:
|
|
spu_pseudo_register_write_spu (regcache, "decr_status", buf);
|
|
break;
|
|
|
|
default:
|
|
internal_error (__FILE__, __LINE__, _("invalid regnum"));
|
|
}
|
|
}
|
|
|
|
static int
|
|
spu_ax_pseudo_register_collect (struct gdbarch *gdbarch,
|
|
struct agent_expr *ax, int regnum)
|
|
{
|
|
switch (regnum)
|
|
{
|
|
case SPU_SP_REGNUM:
|
|
ax_reg_mask (ax, SPU_RAW_SP_REGNUM);
|
|
return 0;
|
|
|
|
case SPU_FPSCR_REGNUM:
|
|
case SPU_SRR0_REGNUM:
|
|
case SPU_LSLR_REGNUM:
|
|
case SPU_DECR_REGNUM:
|
|
case SPU_DECR_STATUS_REGNUM:
|
|
return -1;
|
|
|
|
default:
|
|
internal_error (__FILE__, __LINE__, _("invalid regnum"));
|
|
}
|
|
}
|
|
|
|
static int
|
|
spu_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
|
|
struct agent_expr *ax, int regnum)
|
|
{
|
|
switch (regnum)
|
|
{
|
|
case SPU_SP_REGNUM:
|
|
ax_reg (ax, SPU_RAW_SP_REGNUM);
|
|
return 0;
|
|
|
|
case SPU_FPSCR_REGNUM:
|
|
case SPU_SRR0_REGNUM:
|
|
case SPU_LSLR_REGNUM:
|
|
case SPU_DECR_REGNUM:
|
|
case SPU_DECR_STATUS_REGNUM:
|
|
return -1;
|
|
|
|
default:
|
|
internal_error (__FILE__, __LINE__, _("invalid regnum"));
|
|
}
|
|
}
|
|
|
|
|
|
/* Value conversion -- access scalar values at the preferred slot. */
|
|
|
|
static struct value *
|
|
spu_value_from_register (struct gdbarch *gdbarch, struct type *type,
|
|
int regnum, struct frame_id frame_id)
|
|
{
|
|
struct value *value = default_value_from_register (gdbarch, type,
|
|
regnum, frame_id);
|
|
int len = TYPE_LENGTH (type);
|
|
|
|
if (regnum < SPU_NUM_GPRS && len < 16)
|
|
{
|
|
int preferred_slot = len < 4 ? 4 - len : 0;
|
|
set_value_offset (value, preferred_slot);
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
/* Register groups. */
|
|
|
|
static int
|
|
spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
|
|
struct reggroup *group)
|
|
{
|
|
/* Registers displayed via 'info regs'. */
|
|
if (group == general_reggroup)
|
|
return 1;
|
|
|
|
/* Registers displayed via 'info float'. */
|
|
if (group == float_reggroup)
|
|
return 0;
|
|
|
|
/* Registers that need to be saved/restored in order to
|
|
push or pop frames. */
|
|
if (group == save_reggroup || group == restore_reggroup)
|
|
return 1;
|
|
|
|
return default_register_reggroup_p (gdbarch, regnum, group);
|
|
}
|
|
|
|
/* DWARF-2 register numbers. */
|
|
|
|
static int
|
|
spu_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
|
|
{
|
|
/* Use cooked instead of raw SP. */
|
|
return (reg == SPU_RAW_SP_REGNUM)? SPU_SP_REGNUM : reg;
|
|
}
|
|
|
|
|
|
/* Address handling. */
|
|
|
|
static int
|
|
spu_gdbarch_id (struct gdbarch *gdbarch)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
int id = tdep->id;
|
|
|
|
/* The objfile architecture of a standalone SPU executable does not
|
|
provide an SPU ID. Retrieve it from the objfile's relocated
|
|
address range in this special case. */
|
|
if (id == -1
|
|
&& symfile_objfile && symfile_objfile->obfd
|
|
&& bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu
|
|
&& symfile_objfile->sections != symfile_objfile->sections_end)
|
|
id = SPUADDR_SPU (obj_section_addr (symfile_objfile->sections));
|
|
|
|
return id;
|
|
}
|
|
|
|
static int
|
|
spu_address_class_type_flags (int byte_size, int dwarf2_addr_class)
|
|
{
|
|
if (dwarf2_addr_class == 1)
|
|
return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static const char *
|
|
spu_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
|
|
{
|
|
if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
|
|
return "__ea";
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
static int
|
|
spu_address_class_name_to_type_flags (struct gdbarch *gdbarch,
|
|
const char *name, int *type_flags_ptr)
|
|
{
|
|
if (strcmp (name, "__ea") == 0)
|
|
{
|
|
*type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
|
|
return 1;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
spu_address_to_pointer (struct gdbarch *gdbarch,
|
|
struct type *type, gdb_byte *buf, CORE_ADDR addr)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
|
|
SPUADDR_ADDR (addr));
|
|
}
|
|
|
|
static CORE_ADDR
|
|
spu_pointer_to_address (struct gdbarch *gdbarch,
|
|
struct type *type, const gdb_byte *buf)
|
|
{
|
|
int id = spu_gdbarch_id (gdbarch);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
ULONGEST addr
|
|
= extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
|
|
|
|
/* Do not convert __ea pointers. */
|
|
if (TYPE_ADDRESS_CLASS_1 (type))
|
|
return addr;
|
|
|
|
return addr? SPUADDR (id, addr) : 0;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
spu_integer_to_address (struct gdbarch *gdbarch,
|
|
struct type *type, const gdb_byte *buf)
|
|
{
|
|
int id = spu_gdbarch_id (gdbarch);
|
|
ULONGEST addr = unpack_long (type, buf);
|
|
|
|
return SPUADDR (id, addr);
|
|
}
|
|
|
|
|
|
/* Decoding SPU instructions. */
|
|
|
|
enum
|
|
{
|
|
op_lqd = 0x34,
|
|
op_lqx = 0x3c4,
|
|
op_lqa = 0x61,
|
|
op_lqr = 0x67,
|
|
op_stqd = 0x24,
|
|
op_stqx = 0x144,
|
|
op_stqa = 0x41,
|
|
op_stqr = 0x47,
|
|
|
|
op_il = 0x081,
|
|
op_ila = 0x21,
|
|
op_a = 0x0c0,
|
|
op_ai = 0x1c,
|
|
|
|
op_selb = 0x8,
|
|
|
|
op_br = 0x64,
|
|
op_bra = 0x60,
|
|
op_brsl = 0x66,
|
|
op_brasl = 0x62,
|
|
op_brnz = 0x42,
|
|
op_brz = 0x40,
|
|
op_brhnz = 0x46,
|
|
op_brhz = 0x44,
|
|
op_bi = 0x1a8,
|
|
op_bisl = 0x1a9,
|
|
op_biz = 0x128,
|
|
op_binz = 0x129,
|
|
op_bihz = 0x12a,
|
|
op_bihnz = 0x12b,
|
|
};
|
|
|
|
static int
|
|
is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
|
|
{
|
|
if ((insn >> 21) == op)
|
|
{
|
|
*rt = insn & 127;
|
|
*ra = (insn >> 7) & 127;
|
|
*rb = (insn >> 14) & 127;
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
|
|
{
|
|
if ((insn >> 28) == op)
|
|
{
|
|
*rt = (insn >> 21) & 127;
|
|
*ra = (insn >> 7) & 127;
|
|
*rb = (insn >> 14) & 127;
|
|
*rc = insn & 127;
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
|
|
{
|
|
if ((insn >> 21) == op)
|
|
{
|
|
*rt = insn & 127;
|
|
*ra = (insn >> 7) & 127;
|
|
*i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
|
|
{
|
|
if ((insn >> 24) == op)
|
|
{
|
|
*rt = insn & 127;
|
|
*ra = (insn >> 7) & 127;
|
|
*i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
is_ri16 (unsigned int insn, int op, int *rt, int *i16)
|
|
{
|
|
if ((insn >> 23) == op)
|
|
{
|
|
*rt = insn & 127;
|
|
*i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
is_ri18 (unsigned int insn, int op, int *rt, int *i18)
|
|
{
|
|
if ((insn >> 25) == op)
|
|
{
|
|
*rt = insn & 127;
|
|
*i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
is_branch (unsigned int insn, int *offset, int *reg)
|
|
{
|
|
int rt, i7, i16;
|
|
|
|
if (is_ri16 (insn, op_br, &rt, &i16)
|
|
|| is_ri16 (insn, op_brsl, &rt, &i16)
|
|
|| is_ri16 (insn, op_brnz, &rt, &i16)
|
|
|| is_ri16 (insn, op_brz, &rt, &i16)
|
|
|| is_ri16 (insn, op_brhnz, &rt, &i16)
|
|
|| is_ri16 (insn, op_brhz, &rt, &i16))
|
|
{
|
|
*reg = SPU_PC_REGNUM;
|
|
*offset = i16 << 2;
|
|
return 1;
|
|
}
|
|
|
|
if (is_ri16 (insn, op_bra, &rt, &i16)
|
|
|| is_ri16 (insn, op_brasl, &rt, &i16))
|
|
{
|
|
*reg = -1;
|
|
*offset = i16 << 2;
|
|
return 1;
|
|
}
|
|
|
|
if (is_ri7 (insn, op_bi, &rt, reg, &i7)
|
|
|| is_ri7 (insn, op_bisl, &rt, reg, &i7)
|
|
|| is_ri7 (insn, op_biz, &rt, reg, &i7)
|
|
|| is_ri7 (insn, op_binz, &rt, reg, &i7)
|
|
|| is_ri7 (insn, op_bihz, &rt, reg, &i7)
|
|
|| is_ri7 (insn, op_bihnz, &rt, reg, &i7))
|
|
{
|
|
*offset = 0;
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Prolog parsing. */
|
|
|
|
struct spu_prologue_data
|
|
{
|
|
/* Stack frame size. -1 if analysis was unsuccessful. */
|
|
int size;
|
|
|
|
/* How to find the CFA. The CFA is equal to SP at function entry. */
|
|
int cfa_reg;
|
|
int cfa_offset;
|
|
|
|
/* Offset relative to CFA where a register is saved. -1 if invalid. */
|
|
int reg_offset[SPU_NUM_GPRS];
|
|
};
|
|
|
|
static CORE_ADDR
|
|
spu_analyze_prologue (struct gdbarch *gdbarch,
|
|
CORE_ADDR start_pc, CORE_ADDR end_pc,
|
|
struct spu_prologue_data *data)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
int found_sp = 0;
|
|
int found_fp = 0;
|
|
int found_lr = 0;
|
|
int found_bc = 0;
|
|
int reg_immed[SPU_NUM_GPRS];
|
|
gdb_byte buf[16];
|
|
CORE_ADDR prolog_pc = start_pc;
|
|
CORE_ADDR pc;
|
|
int i;
|
|
|
|
|
|
/* Initialize DATA to default values. */
|
|
data->size = -1;
|
|
|
|
data->cfa_reg = SPU_RAW_SP_REGNUM;
|
|
data->cfa_offset = 0;
|
|
|
|
for (i = 0; i < SPU_NUM_GPRS; i++)
|
|
data->reg_offset[i] = -1;
|
|
|
|
/* Set up REG_IMMED array. This is non-zero for a register if we know its
|
|
preferred slot currently holds this immediate value. */
|
|
for (i = 0; i < SPU_NUM_GPRS; i++)
|
|
reg_immed[i] = 0;
|
|
|
|
/* Scan instructions until the first branch.
|
|
|
|
The following instructions are important prolog components:
|
|
|
|
- The first instruction to set up the stack pointer.
|
|
- The first instruction to set up the frame pointer.
|
|
- The first instruction to save the link register.
|
|
- The first instruction to save the backchain.
|
|
|
|
We return the instruction after the latest of these four,
|
|
or the incoming PC if none is found. The first instruction
|
|
to set up the stack pointer also defines the frame size.
|
|
|
|
Note that instructions saving incoming arguments to their stack
|
|
slots are not counted as important, because they are hard to
|
|
identify with certainty. This should not matter much, because
|
|
arguments are relevant only in code compiled with debug data,
|
|
and in such code the GDB core will advance until the first source
|
|
line anyway, using SAL data.
|
|
|
|
For purposes of stack unwinding, we analyze the following types
|
|
of instructions in addition:
|
|
|
|
- Any instruction adding to the current frame pointer.
|
|
- Any instruction loading an immediate constant into a register.
|
|
- Any instruction storing a register onto the stack.
|
|
|
|
These are used to compute the CFA and REG_OFFSET output. */
|
|
|
|
for (pc = start_pc; pc < end_pc; pc += 4)
|
|
{
|
|
unsigned int insn;
|
|
int rt, ra, rb, rc, immed;
|
|
|
|
if (target_read_memory (pc, buf, 4))
|
|
break;
|
|
insn = extract_unsigned_integer (buf, 4, byte_order);
|
|
|
|
/* AI is the typical instruction to set up a stack frame.
|
|
It is also used to initialize the frame pointer. */
|
|
if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
|
|
{
|
|
if (rt == data->cfa_reg && ra == data->cfa_reg)
|
|
data->cfa_offset -= immed;
|
|
|
|
if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
|
|
&& !found_sp)
|
|
{
|
|
found_sp = 1;
|
|
prolog_pc = pc + 4;
|
|
|
|
data->size = -immed;
|
|
}
|
|
else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
|
|
&& !found_fp)
|
|
{
|
|
found_fp = 1;
|
|
prolog_pc = pc + 4;
|
|
|
|
data->cfa_reg = SPU_FP_REGNUM;
|
|
data->cfa_offset -= immed;
|
|
}
|
|
}
|
|
|
|
/* A is used to set up stack frames of size >= 512 bytes.
|
|
If we have tracked the contents of the addend register,
|
|
we can handle this as well. */
|
|
else if (is_rr (insn, op_a, &rt, &ra, &rb))
|
|
{
|
|
if (rt == data->cfa_reg && ra == data->cfa_reg)
|
|
{
|
|
if (reg_immed[rb] != 0)
|
|
data->cfa_offset -= reg_immed[rb];
|
|
else
|
|
data->cfa_reg = -1; /* We don't know the CFA any more. */
|
|
}
|
|
|
|
if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
|
|
&& !found_sp)
|
|
{
|
|
found_sp = 1;
|
|
prolog_pc = pc + 4;
|
|
|
|
if (reg_immed[rb] != 0)
|
|
data->size = -reg_immed[rb];
|
|
}
|
|
}
|
|
|
|
/* We need to track IL and ILA used to load immediate constants
|
|
in case they are later used as input to an A instruction. */
|
|
else if (is_ri16 (insn, op_il, &rt, &immed))
|
|
{
|
|
reg_immed[rt] = immed;
|
|
|
|
if (rt == SPU_RAW_SP_REGNUM && !found_sp)
|
|
found_sp = 1;
|
|
}
|
|
|
|
else if (is_ri18 (insn, op_ila, &rt, &immed))
|
|
{
|
|
reg_immed[rt] = immed & 0x3ffff;
|
|
|
|
if (rt == SPU_RAW_SP_REGNUM && !found_sp)
|
|
found_sp = 1;
|
|
}
|
|
|
|
/* STQD is used to save registers to the stack. */
|
|
else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
|
|
{
|
|
if (ra == data->cfa_reg)
|
|
data->reg_offset[rt] = data->cfa_offset - (immed << 4);
|
|
|
|
if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
|
|
&& !found_lr)
|
|
{
|
|
found_lr = 1;
|
|
prolog_pc = pc + 4;
|
|
}
|
|
|
|
if (ra == SPU_RAW_SP_REGNUM
|
|
&& (found_sp? immed == 0 : rt == SPU_RAW_SP_REGNUM)
|
|
&& !found_bc)
|
|
{
|
|
found_bc = 1;
|
|
prolog_pc = pc + 4;
|
|
}
|
|
}
|
|
|
|
/* _start uses SELB to set up the stack pointer. */
|
|
else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
|
|
{
|
|
if (rt == SPU_RAW_SP_REGNUM && !found_sp)
|
|
found_sp = 1;
|
|
}
|
|
|
|
/* We terminate if we find a branch. */
|
|
else if (is_branch (insn, &immed, &ra))
|
|
break;
|
|
}
|
|
|
|
|
|
/* If we successfully parsed until here, and didn't find any instruction
|
|
modifying SP, we assume we have a frameless function. */
|
|
if (!found_sp)
|
|
data->size = 0;
|
|
|
|
/* Return cooked instead of raw SP. */
|
|
if (data->cfa_reg == SPU_RAW_SP_REGNUM)
|
|
data->cfa_reg = SPU_SP_REGNUM;
|
|
|
|
return prolog_pc;
|
|
}
|
|
|
|
/* Return the first instruction after the prologue starting at PC. */
|
|
static CORE_ADDR
|
|
spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
|
{
|
|
struct spu_prologue_data data;
|
|
return spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
|
|
}
|
|
|
|
/* Return the frame pointer in use at address PC. */
|
|
static void
|
|
spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
|
|
int *reg, LONGEST *offset)
|
|
{
|
|
struct spu_prologue_data data;
|
|
spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
|
|
|
|
if (data.size != -1 && data.cfa_reg != -1)
|
|
{
|
|
/* The 'frame pointer' address is CFA minus frame size. */
|
|
*reg = data.cfa_reg;
|
|
*offset = data.cfa_offset - data.size;
|
|
}
|
|
else
|
|
{
|
|
/* ??? We don't really know ... */
|
|
*reg = SPU_SP_REGNUM;
|
|
*offset = 0;
|
|
}
|
|
}
|
|
|
|
/* Return true if we are in the function's epilogue, i.e. after the
|
|
instruction that destroyed the function's stack frame.
|
|
|
|
1) scan forward from the point of execution:
|
|
a) If you find an instruction that modifies the stack pointer
|
|
or transfers control (except a return), execution is not in
|
|
an epilogue, return.
|
|
b) Stop scanning if you find a return instruction or reach the
|
|
end of the function or reach the hard limit for the size of
|
|
an epilogue.
|
|
2) scan backward from the point of execution:
|
|
a) If you find an instruction that modifies the stack pointer,
|
|
execution *is* in an epilogue, return.
|
|
b) Stop scanning if you reach an instruction that transfers
|
|
control or the beginning of the function or reach the hard
|
|
limit for the size of an epilogue. */
|
|
|
|
static int
|
|
spu_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
|
|
bfd_byte buf[4];
|
|
unsigned int insn;
|
|
int rt, ra, rb, immed;
|
|
|
|
/* Find the search limits based on function boundaries and hard limit.
|
|
We assume the epilogue can be up to 64 instructions long. */
|
|
|
|
const int spu_max_epilogue_size = 64 * 4;
|
|
|
|
if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
|
|
return 0;
|
|
|
|
if (pc - func_start < spu_max_epilogue_size)
|
|
epilogue_start = func_start;
|
|
else
|
|
epilogue_start = pc - spu_max_epilogue_size;
|
|
|
|
if (func_end - pc < spu_max_epilogue_size)
|
|
epilogue_end = func_end;
|
|
else
|
|
epilogue_end = pc + spu_max_epilogue_size;
|
|
|
|
/* Scan forward until next 'bi $0'. */
|
|
|
|
for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
|
|
{
|
|
if (target_read_memory (scan_pc, buf, 4))
|
|
return 0;
|
|
insn = extract_unsigned_integer (buf, 4, byte_order);
|
|
|
|
if (is_branch (insn, &immed, &ra))
|
|
{
|
|
if (immed == 0 && ra == SPU_LR_REGNUM)
|
|
break;
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
|
|
|| is_rr (insn, op_a, &rt, &ra, &rb)
|
|
|| is_ri10 (insn, op_lqd, &rt, &ra, &immed))
|
|
{
|
|
if (rt == SPU_RAW_SP_REGNUM)
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (scan_pc >= epilogue_end)
|
|
return 0;
|
|
|
|
/* Scan backward until adjustment to stack pointer (R1). */
|
|
|
|
for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
|
|
{
|
|
if (target_read_memory (scan_pc, buf, 4))
|
|
return 0;
|
|
insn = extract_unsigned_integer (buf, 4, byte_order);
|
|
|
|
if (is_branch (insn, &immed, &ra))
|
|
return 0;
|
|
|
|
if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
|
|
|| is_rr (insn, op_a, &rt, &ra, &rb)
|
|
|| is_ri10 (insn, op_lqd, &rt, &ra, &immed))
|
|
{
|
|
if (rt == SPU_RAW_SP_REGNUM)
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Normal stack frames. */
|
|
|
|
struct spu_unwind_cache
|
|
{
|
|
CORE_ADDR func;
|
|
CORE_ADDR frame_base;
|
|
CORE_ADDR local_base;
|
|
|
|
struct trad_frame_saved_reg *saved_regs;
|
|
};
|
|
|
|
static struct spu_unwind_cache *
|
|
spu_frame_unwind_cache (struct frame_info *this_frame,
|
|
void **this_prologue_cache)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
struct spu_unwind_cache *info;
|
|
struct spu_prologue_data data;
|
|
CORE_ADDR id = tdep->id;
|
|
gdb_byte buf[16];
|
|
|
|
if (*this_prologue_cache)
|
|
return *this_prologue_cache;
|
|
|
|
info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
|
|
*this_prologue_cache = info;
|
|
info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
|
|
info->frame_base = 0;
|
|
info->local_base = 0;
|
|
|
|
/* Find the start of the current function, and analyze its prologue. */
|
|
info->func = get_frame_func (this_frame);
|
|
if (info->func == 0)
|
|
{
|
|
/* Fall back to using the current PC as frame ID. */
|
|
info->func = get_frame_pc (this_frame);
|
|
data.size = -1;
|
|
}
|
|
else
|
|
spu_analyze_prologue (gdbarch, info->func, get_frame_pc (this_frame),
|
|
&data);
|
|
|
|
/* If successful, use prologue analysis data. */
|
|
if (data.size != -1 && data.cfa_reg != -1)
|
|
{
|
|
CORE_ADDR cfa;
|
|
int i;
|
|
|
|
/* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
|
|
get_frame_register (this_frame, data.cfa_reg, buf);
|
|
cfa = extract_unsigned_integer (buf, 4, byte_order) + data.cfa_offset;
|
|
cfa = SPUADDR (id, cfa);
|
|
|
|
/* Call-saved register slots. */
|
|
for (i = 0; i < SPU_NUM_GPRS; i++)
|
|
if (i == SPU_LR_REGNUM
|
|
|| (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
|
|
if (data.reg_offset[i] != -1)
|
|
info->saved_regs[i].addr = cfa - data.reg_offset[i];
|
|
|
|
/* Frame bases. */
|
|
info->frame_base = cfa;
|
|
info->local_base = cfa - data.size;
|
|
}
|
|
|
|
/* Otherwise, fall back to reading the backchain link. */
|
|
else
|
|
{
|
|
CORE_ADDR reg;
|
|
LONGEST backchain;
|
|
ULONGEST lslr;
|
|
int status;
|
|
|
|
/* Get local store limit. */
|
|
lslr = get_frame_register_unsigned (this_frame, SPU_LSLR_REGNUM);
|
|
if (!lslr)
|
|
lslr = (ULONGEST) -1;
|
|
|
|
/* Get the backchain. */
|
|
reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
|
|
status = safe_read_memory_integer (SPUADDR (id, reg), 4, byte_order,
|
|
&backchain);
|
|
|
|
/* A zero backchain terminates the frame chain. Also, sanity
|
|
check against the local store size limit. */
|
|
if (status && backchain > 0 && backchain <= lslr)
|
|
{
|
|
/* Assume the link register is saved into its slot. */
|
|
if (backchain + 16 <= lslr)
|
|
info->saved_regs[SPU_LR_REGNUM].addr = SPUADDR (id,
|
|
backchain + 16);
|
|
|
|
/* Frame bases. */
|
|
info->frame_base = SPUADDR (id, backchain);
|
|
info->local_base = SPUADDR (id, reg);
|
|
}
|
|
}
|
|
|
|
/* If we didn't find a frame, we cannot determine SP / return address. */
|
|
if (info->frame_base == 0)
|
|
return info;
|
|
|
|
/* The previous SP is equal to the CFA. */
|
|
trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM,
|
|
SPUADDR_ADDR (info->frame_base));
|
|
|
|
/* Read full contents of the unwound link register in order to
|
|
be able to determine the return address. */
|
|
if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
|
|
target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
|
|
else
|
|
get_frame_register (this_frame, SPU_LR_REGNUM, buf);
|
|
|
|
/* Normally, the return address is contained in the slot 0 of the
|
|
link register, and slots 1-3 are zero. For an overlay return,
|
|
slot 0 contains the address of the overlay manager return stub,
|
|
slot 1 contains the partition number of the overlay section to
|
|
be returned to, and slot 2 contains the return address within
|
|
that section. Return the latter address in that case. */
|
|
if (extract_unsigned_integer (buf + 8, 4, byte_order) != 0)
|
|
trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
|
|
extract_unsigned_integer (buf + 8, 4, byte_order));
|
|
else
|
|
trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
|
|
extract_unsigned_integer (buf, 4, byte_order));
|
|
|
|
return info;
|
|
}
|
|
|
|
static void
|
|
spu_frame_this_id (struct frame_info *this_frame,
|
|
void **this_prologue_cache, struct frame_id *this_id)
|
|
{
|
|
struct spu_unwind_cache *info =
|
|
spu_frame_unwind_cache (this_frame, this_prologue_cache);
|
|
|
|
if (info->frame_base == 0)
|
|
return;
|
|
|
|
*this_id = frame_id_build (info->frame_base, info->func);
|
|
}
|
|
|
|
static struct value *
|
|
spu_frame_prev_register (struct frame_info *this_frame,
|
|
void **this_prologue_cache, int regnum)
|
|
{
|
|
struct spu_unwind_cache *info
|
|
= spu_frame_unwind_cache (this_frame, this_prologue_cache);
|
|
|
|
/* Special-case the stack pointer. */
|
|
if (regnum == SPU_RAW_SP_REGNUM)
|
|
regnum = SPU_SP_REGNUM;
|
|
|
|
return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
|
|
}
|
|
|
|
static const struct frame_unwind spu_frame_unwind = {
|
|
NORMAL_FRAME,
|
|
default_frame_unwind_stop_reason,
|
|
spu_frame_this_id,
|
|
spu_frame_prev_register,
|
|
NULL,
|
|
default_frame_sniffer
|
|
};
|
|
|
|
static CORE_ADDR
|
|
spu_frame_base_address (struct frame_info *this_frame, void **this_cache)
|
|
{
|
|
struct spu_unwind_cache *info
|
|
= spu_frame_unwind_cache (this_frame, this_cache);
|
|
return info->local_base;
|
|
}
|
|
|
|
static const struct frame_base spu_frame_base = {
|
|
&spu_frame_unwind,
|
|
spu_frame_base_address,
|
|
spu_frame_base_address,
|
|
spu_frame_base_address
|
|
};
|
|
|
|
static CORE_ADDR
|
|
spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
|
|
/* Mask off interrupt enable bit. */
|
|
return SPUADDR (tdep->id, pc & -4);
|
|
}
|
|
|
|
static CORE_ADDR
|
|
spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
|
|
return SPUADDR (tdep->id, sp);
|
|
}
|
|
|
|
static CORE_ADDR
|
|
spu_read_pc (struct regcache *regcache)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
|
|
ULONGEST pc;
|
|
regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &pc);
|
|
/* Mask off interrupt enable bit. */
|
|
return SPUADDR (tdep->id, pc & -4);
|
|
}
|
|
|
|
static void
|
|
spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
|
|
{
|
|
/* Keep interrupt enabled state unchanged. */
|
|
ULONGEST old_pc;
|
|
|
|
regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
|
|
regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
|
|
(SPUADDR_ADDR (pc) & -4) | (old_pc & 3));
|
|
}
|
|
|
|
|
|
/* Cell/B.E. cross-architecture unwinder support. */
|
|
|
|
struct spu2ppu_cache
|
|
{
|
|
struct frame_id frame_id;
|
|
struct regcache *regcache;
|
|
};
|
|
|
|
static struct gdbarch *
|
|
spu2ppu_prev_arch (struct frame_info *this_frame, void **this_cache)
|
|
{
|
|
struct spu2ppu_cache *cache = *this_cache;
|
|
return get_regcache_arch (cache->regcache);
|
|
}
|
|
|
|
static void
|
|
spu2ppu_this_id (struct frame_info *this_frame,
|
|
void **this_cache, struct frame_id *this_id)
|
|
{
|
|
struct spu2ppu_cache *cache = *this_cache;
|
|
*this_id = cache->frame_id;
|
|
}
|
|
|
|
static struct value *
|
|
spu2ppu_prev_register (struct frame_info *this_frame,
|
|
void **this_cache, int regnum)
|
|
{
|
|
struct spu2ppu_cache *cache = *this_cache;
|
|
struct gdbarch *gdbarch = get_regcache_arch (cache->regcache);
|
|
gdb_byte *buf;
|
|
|
|
buf = alloca (register_size (gdbarch, regnum));
|
|
regcache_cooked_read (cache->regcache, regnum, buf);
|
|
return frame_unwind_got_bytes (this_frame, regnum, buf);
|
|
}
|
|
|
|
static int
|
|
spu2ppu_sniffer (const struct frame_unwind *self,
|
|
struct frame_info *this_frame, void **this_prologue_cache)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
CORE_ADDR base, func, backchain;
|
|
gdb_byte buf[4];
|
|
|
|
if (gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_spu)
|
|
return 0;
|
|
|
|
base = get_frame_sp (this_frame);
|
|
func = get_frame_pc (this_frame);
|
|
if (target_read_memory (base, buf, 4))
|
|
return 0;
|
|
backchain = extract_unsigned_integer (buf, 4, byte_order);
|
|
|
|
if (!backchain)
|
|
{
|
|
struct frame_info *fi;
|
|
|
|
struct spu2ppu_cache *cache
|
|
= FRAME_OBSTACK_CALLOC (1, struct spu2ppu_cache);
|
|
|
|
cache->frame_id = frame_id_build (base + 16, func);
|
|
|
|
for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
|
|
if (gdbarch_bfd_arch_info (get_frame_arch (fi))->arch != bfd_arch_spu)
|
|
break;
|
|
|
|
if (fi)
|
|
{
|
|
cache->regcache = frame_save_as_regcache (fi);
|
|
*this_prologue_cache = cache;
|
|
return 1;
|
|
}
|
|
else
|
|
{
|
|
struct regcache *regcache;
|
|
regcache = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
|
|
cache->regcache = regcache_dup (regcache);
|
|
*this_prologue_cache = cache;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
spu2ppu_dealloc_cache (struct frame_info *self, void *this_cache)
|
|
{
|
|
struct spu2ppu_cache *cache = this_cache;
|
|
regcache_xfree (cache->regcache);
|
|
}
|
|
|
|
static const struct frame_unwind spu2ppu_unwind = {
|
|
ARCH_FRAME,
|
|
default_frame_unwind_stop_reason,
|
|
spu2ppu_this_id,
|
|
spu2ppu_prev_register,
|
|
NULL,
|
|
spu2ppu_sniffer,
|
|
spu2ppu_dealloc_cache,
|
|
spu2ppu_prev_arch,
|
|
};
|
|
|
|
|
|
/* Function calling convention. */
|
|
|
|
static CORE_ADDR
|
|
spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
|
|
{
|
|
return sp & ~15;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
spu_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
|
|
struct value **args, int nargs, struct type *value_type,
|
|
CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
|
|
struct regcache *regcache)
|
|
{
|
|
/* Allocate space sufficient for a breakpoint, keeping the stack aligned. */
|
|
sp = (sp - 4) & ~15;
|
|
/* Store the address of that breakpoint */
|
|
*bp_addr = sp;
|
|
/* The call starts at the callee's entry point. */
|
|
*real_pc = funaddr;
|
|
|
|
return sp;
|
|
}
|
|
|
|
static int
|
|
spu_scalar_value_p (struct type *type)
|
|
{
|
|
switch (TYPE_CODE (type))
|
|
{
|
|
case TYPE_CODE_INT:
|
|
case TYPE_CODE_ENUM:
|
|
case TYPE_CODE_RANGE:
|
|
case TYPE_CODE_CHAR:
|
|
case TYPE_CODE_BOOL:
|
|
case TYPE_CODE_PTR:
|
|
case TYPE_CODE_REF:
|
|
return TYPE_LENGTH (type) <= 16;
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void
|
|
spu_value_to_regcache (struct regcache *regcache, int regnum,
|
|
struct type *type, const gdb_byte *in)
|
|
{
|
|
int len = TYPE_LENGTH (type);
|
|
|
|
if (spu_scalar_value_p (type))
|
|
{
|
|
int preferred_slot = len < 4 ? 4 - len : 0;
|
|
regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
|
|
}
|
|
else
|
|
{
|
|
while (len >= 16)
|
|
{
|
|
regcache_cooked_write (regcache, regnum++, in);
|
|
in += 16;
|
|
len -= 16;
|
|
}
|
|
|
|
if (len > 0)
|
|
regcache_cooked_write_part (regcache, regnum, 0, len, in);
|
|
}
|
|
}
|
|
|
|
static void
|
|
spu_regcache_to_value (struct regcache *regcache, int regnum,
|
|
struct type *type, gdb_byte *out)
|
|
{
|
|
int len = TYPE_LENGTH (type);
|
|
|
|
if (spu_scalar_value_p (type))
|
|
{
|
|
int preferred_slot = len < 4 ? 4 - len : 0;
|
|
regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
|
|
}
|
|
else
|
|
{
|
|
while (len >= 16)
|
|
{
|
|
regcache_cooked_read (regcache, regnum++, out);
|
|
out += 16;
|
|
len -= 16;
|
|
}
|
|
|
|
if (len > 0)
|
|
regcache_cooked_read_part (regcache, regnum, 0, len, out);
|
|
}
|
|
}
|
|
|
|
static CORE_ADDR
|
|
spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
|
struct regcache *regcache, CORE_ADDR bp_addr,
|
|
int nargs, struct value **args, CORE_ADDR sp,
|
|
int struct_return, CORE_ADDR struct_addr)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
CORE_ADDR sp_delta;
|
|
int i;
|
|
int regnum = SPU_ARG1_REGNUM;
|
|
int stack_arg = -1;
|
|
gdb_byte buf[16];
|
|
|
|
/* Set the return address. */
|
|
memset (buf, 0, sizeof buf);
|
|
store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (bp_addr));
|
|
regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
|
|
|
|
/* If STRUCT_RETURN is true, then the struct return address (in
|
|
STRUCT_ADDR) will consume the first argument-passing register.
|
|
Both adjust the register count and store that value. */
|
|
if (struct_return)
|
|
{
|
|
memset (buf, 0, sizeof buf);
|
|
store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (struct_addr));
|
|
regcache_cooked_write (regcache, regnum++, buf);
|
|
}
|
|
|
|
/* Fill in argument registers. */
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
struct value *arg = args[i];
|
|
struct type *type = check_typedef (value_type (arg));
|
|
const gdb_byte *contents = value_contents (arg);
|
|
int n_regs = align_up (TYPE_LENGTH (type), 16) / 16;
|
|
|
|
/* If the argument doesn't wholly fit into registers, it and
|
|
all subsequent arguments go to the stack. */
|
|
if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
|
|
{
|
|
stack_arg = i;
|
|
break;
|
|
}
|
|
|
|
spu_value_to_regcache (regcache, regnum, type, contents);
|
|
regnum += n_regs;
|
|
}
|
|
|
|
/* Overflow arguments go to the stack. */
|
|
if (stack_arg != -1)
|
|
{
|
|
CORE_ADDR ap;
|
|
|
|
/* Allocate all required stack size. */
|
|
for (i = stack_arg; i < nargs; i++)
|
|
{
|
|
struct type *type = check_typedef (value_type (args[i]));
|
|
sp -= align_up (TYPE_LENGTH (type), 16);
|
|
}
|
|
|
|
/* Fill in stack arguments. */
|
|
ap = sp;
|
|
for (i = stack_arg; i < nargs; i++)
|
|
{
|
|
struct value *arg = args[i];
|
|
struct type *type = check_typedef (value_type (arg));
|
|
int len = TYPE_LENGTH (type);
|
|
int preferred_slot;
|
|
|
|
if (spu_scalar_value_p (type))
|
|
preferred_slot = len < 4 ? 4 - len : 0;
|
|
else
|
|
preferred_slot = 0;
|
|
|
|
target_write_memory (ap + preferred_slot, value_contents (arg), len);
|
|
ap += align_up (TYPE_LENGTH (type), 16);
|
|
}
|
|
}
|
|
|
|
/* Allocate stack frame header. */
|
|
sp -= 32;
|
|
|
|
/* Store stack back chain. */
|
|
regcache_cooked_read (regcache, SPU_RAW_SP_REGNUM, buf);
|
|
target_write_memory (sp, buf, 16);
|
|
|
|
/* Finally, update all slots of the SP register. */
|
|
sp_delta = sp - extract_unsigned_integer (buf, 4, byte_order);
|
|
for (i = 0; i < 4; i++)
|
|
{
|
|
CORE_ADDR sp_slot = extract_unsigned_integer (buf + 4*i, 4, byte_order);
|
|
store_unsigned_integer (buf + 4*i, 4, byte_order, sp_slot + sp_delta);
|
|
}
|
|
regcache_cooked_write (regcache, SPU_RAW_SP_REGNUM, buf);
|
|
|
|
return sp;
|
|
}
|
|
|
|
static struct frame_id
|
|
spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM);
|
|
CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
|
|
return frame_id_build (SPUADDR (tdep->id, sp), SPUADDR (tdep->id, pc & -4));
|
|
}
|
|
|
|
/* Function return value access. */
|
|
|
|
static enum return_value_convention
|
|
spu_return_value (struct gdbarch *gdbarch, struct value *function,
|
|
struct type *type, struct regcache *regcache,
|
|
gdb_byte *out, const gdb_byte *in)
|
|
{
|
|
struct type *func_type = function ? value_type (function) : NULL;
|
|
enum return_value_convention rvc;
|
|
int opencl_vector = 0;
|
|
|
|
if (func_type)
|
|
{
|
|
func_type = check_typedef (func_type);
|
|
|
|
if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
|
|
func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
|
|
|
|
if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
|
|
&& TYPE_CALLING_CONVENTION (func_type) == DW_CC_GDB_IBM_OpenCL
|
|
&& TYPE_CODE (type) == TYPE_CODE_ARRAY
|
|
&& TYPE_VECTOR (type))
|
|
opencl_vector = 1;
|
|
}
|
|
|
|
if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
|
|
rvc = RETURN_VALUE_REGISTER_CONVENTION;
|
|
else
|
|
rvc = RETURN_VALUE_STRUCT_CONVENTION;
|
|
|
|
if (in)
|
|
{
|
|
switch (rvc)
|
|
{
|
|
case RETURN_VALUE_REGISTER_CONVENTION:
|
|
if (opencl_vector && TYPE_LENGTH (type) == 2)
|
|
regcache_cooked_write_part (regcache, SPU_ARG1_REGNUM, 2, 2, in);
|
|
else
|
|
spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
|
|
break;
|
|
|
|
case RETURN_VALUE_STRUCT_CONVENTION:
|
|
error (_("Cannot set function return value."));
|
|
break;
|
|
}
|
|
}
|
|
else if (out)
|
|
{
|
|
switch (rvc)
|
|
{
|
|
case RETURN_VALUE_REGISTER_CONVENTION:
|
|
if (opencl_vector && TYPE_LENGTH (type) == 2)
|
|
regcache_cooked_read_part (regcache, SPU_ARG1_REGNUM, 2, 2, out);
|
|
else
|
|
spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
|
|
break;
|
|
|
|
case RETURN_VALUE_STRUCT_CONVENTION:
|
|
error (_("Function return value unknown."));
|
|
break;
|
|
}
|
|
}
|
|
|
|
return rvc;
|
|
}
|
|
|
|
|
|
/* Breakpoints. */
|
|
|
|
static const gdb_byte *
|
|
spu_breakpoint_from_pc (struct gdbarch *gdbarch,
|
|
CORE_ADDR * pcptr, int *lenptr)
|
|
{
|
|
static const gdb_byte breakpoint[] = { 0x00, 0x00, 0x3f, 0xff };
|
|
|
|
*lenptr = sizeof breakpoint;
|
|
return breakpoint;
|
|
}
|
|
|
|
static int
|
|
spu_memory_remove_breakpoint (struct gdbarch *gdbarch,
|
|
struct bp_target_info *bp_tgt)
|
|
{
|
|
/* We work around a problem in combined Cell/B.E. debugging here. Consider
|
|
that in a combined application, we have some breakpoints inserted in SPU
|
|
code, and now the application forks (on the PPU side). GDB common code
|
|
will assume that the fork system call copied all breakpoints into the new
|
|
process' address space, and that all those copies now need to be removed
|
|
(see breakpoint.c:detach_breakpoints).
|
|
|
|
While this is certainly true for PPU side breakpoints, it is not true
|
|
for SPU side breakpoints. fork will clone the SPU context file
|
|
descriptors, so that all the existing SPU contexts are in accessible
|
|
in the new process. However, the contents of the SPU contexts themselves
|
|
are *not* cloned. Therefore the effect of detach_breakpoints is to
|
|
remove SPU breakpoints from the *original* SPU context's local store
|
|
-- this is not the correct behaviour.
|
|
|
|
The workaround is to check whether the PID we are asked to remove this
|
|
breakpoint from (i.e. ptid_get_pid (inferior_ptid)) is different from the
|
|
PID of the current inferior (i.e. current_inferior ()->pid). This is only
|
|
true in the context of detach_breakpoints. If so, we simply do nothing.
|
|
[ Note that for the fork child process, it does not matter if breakpoints
|
|
remain inserted, because those SPU contexts are not runnable anyway --
|
|
the Linux kernel allows only the original process to invoke spu_run. */
|
|
|
|
if (ptid_get_pid (inferior_ptid) != current_inferior ()->pid)
|
|
return 0;
|
|
|
|
return default_memory_remove_breakpoint (gdbarch, bp_tgt);
|
|
}
|
|
|
|
|
|
/* Software single-stepping support. */
|
|
|
|
static int
|
|
spu_software_single_step (struct frame_info *frame)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
|
struct address_space *aspace = get_frame_address_space (frame);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
CORE_ADDR pc, next_pc;
|
|
unsigned int insn;
|
|
int offset, reg;
|
|
gdb_byte buf[4];
|
|
ULONGEST lslr;
|
|
|
|
pc = get_frame_pc (frame);
|
|
|
|
if (target_read_memory (pc, buf, 4))
|
|
return 1;
|
|
insn = extract_unsigned_integer (buf, 4, byte_order);
|
|
|
|
/* Get local store limit. */
|
|
lslr = get_frame_register_unsigned (frame, SPU_LSLR_REGNUM);
|
|
if (!lslr)
|
|
lslr = (ULONGEST) -1;
|
|
|
|
/* Next sequential instruction is at PC + 4, except if the current
|
|
instruction is a PPE-assisted call, in which case it is at PC + 8.
|
|
Wrap around LS limit to be on the safe side. */
|
|
if ((insn & 0xffffff00) == 0x00002100)
|
|
next_pc = (SPUADDR_ADDR (pc) + 8) & lslr;
|
|
else
|
|
next_pc = (SPUADDR_ADDR (pc) + 4) & lslr;
|
|
|
|
insert_single_step_breakpoint (gdbarch,
|
|
aspace, SPUADDR (SPUADDR_SPU (pc), next_pc));
|
|
|
|
if (is_branch (insn, &offset, ®))
|
|
{
|
|
CORE_ADDR target = offset;
|
|
|
|
if (reg == SPU_PC_REGNUM)
|
|
target += SPUADDR_ADDR (pc);
|
|
else if (reg != -1)
|
|
{
|
|
int optim, unavail;
|
|
|
|
if (get_frame_register_bytes (frame, reg, 0, 4, buf,
|
|
&optim, &unavail))
|
|
target += extract_unsigned_integer (buf, 4, byte_order) & -4;
|
|
else
|
|
{
|
|
if (optim)
|
|
throw_error (OPTIMIZED_OUT_ERROR,
|
|
_("Could not determine address of "
|
|
"single-step breakpoint."));
|
|
if (unavail)
|
|
throw_error (NOT_AVAILABLE_ERROR,
|
|
_("Could not determine address of "
|
|
"single-step breakpoint."));
|
|
}
|
|
}
|
|
|
|
target = target & lslr;
|
|
if (target != next_pc)
|
|
insert_single_step_breakpoint (gdbarch, aspace,
|
|
SPUADDR (SPUADDR_SPU (pc), target));
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
/* Longjmp support. */
|
|
|
|
static int
|
|
spu_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
gdb_byte buf[4];
|
|
CORE_ADDR jb_addr;
|
|
int optim, unavail;
|
|
|
|
/* Jump buffer is pointed to by the argument register $r3. */
|
|
if (!get_frame_register_bytes (frame, SPU_ARG1_REGNUM, 0, 4, buf,
|
|
&optim, &unavail))
|
|
return 0;
|
|
|
|
jb_addr = extract_unsigned_integer (buf, 4, byte_order);
|
|
if (target_read_memory (SPUADDR (tdep->id, jb_addr), buf, 4))
|
|
return 0;
|
|
|
|
*pc = extract_unsigned_integer (buf, 4, byte_order);
|
|
*pc = SPUADDR (tdep->id, *pc);
|
|
return 1;
|
|
}
|
|
|
|
|
|
/* Disassembler. */
|
|
|
|
struct spu_dis_asm_data
|
|
{
|
|
struct gdbarch *gdbarch;
|
|
int id;
|
|
};
|
|
|
|
static void
|
|
spu_dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
|
|
{
|
|
struct spu_dis_asm_data *data = info->application_data;
|
|
print_address (data->gdbarch, SPUADDR (data->id, addr), info->stream);
|
|
}
|
|
|
|
static int
|
|
gdb_print_insn_spu (bfd_vma memaddr, struct disassemble_info *info)
|
|
{
|
|
/* The opcodes disassembler does 18-bit address arithmetic. Make
|
|
sure the SPU ID encoded in the high bits is added back when we
|
|
call print_address. */
|
|
struct disassemble_info spu_info = *info;
|
|
struct spu_dis_asm_data data;
|
|
data.gdbarch = info->application_data;
|
|
data.id = SPUADDR_SPU (memaddr);
|
|
|
|
spu_info.application_data = &data;
|
|
spu_info.print_address_func = spu_dis_asm_print_address;
|
|
return print_insn_spu (memaddr, &spu_info);
|
|
}
|
|
|
|
|
|
/* Target overlays for the SPU overlay manager.
|
|
|
|
See the documentation of simple_overlay_update for how the
|
|
interface is supposed to work.
|
|
|
|
Data structures used by the overlay manager:
|
|
|
|
struct ovly_table
|
|
{
|
|
u32 vma;
|
|
u32 size;
|
|
u32 pos;
|
|
u32 buf;
|
|
} _ovly_table[]; -- one entry per overlay section
|
|
|
|
struct ovly_buf_table
|
|
{
|
|
u32 mapped;
|
|
} _ovly_buf_table[]; -- one entry per overlay buffer
|
|
|
|
_ovly_table should never change.
|
|
|
|
Both tables are aligned to a 16-byte boundary, the symbols
|
|
_ovly_table and _ovly_buf_table are of type STT_OBJECT and their
|
|
size set to the size of the respective array. buf in _ovly_table is
|
|
an index into _ovly_buf_table.
|
|
|
|
mapped is an index into _ovly_table. Both the mapped and buf indices start
|
|
from one to reference the first entry in their respective tables. */
|
|
|
|
/* Using the per-objfile private data mechanism, we store for each
|
|
objfile an array of "struct spu_overlay_table" structures, one
|
|
for each obj_section of the objfile. This structure holds two
|
|
fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
|
|
is *not* an overlay section. If it is non-zero, it represents
|
|
a target address. The overlay section is mapped iff the target
|
|
integer at this location equals MAPPED_VAL. */
|
|
|
|
static const struct objfile_data *spu_overlay_data;
|
|
|
|
struct spu_overlay_table
|
|
{
|
|
CORE_ADDR mapped_ptr;
|
|
CORE_ADDR mapped_val;
|
|
};
|
|
|
|
/* Retrieve the overlay table for OBJFILE. If not already cached, read
|
|
the _ovly_table data structure from the target and initialize the
|
|
spu_overlay_table data structure from it. */
|
|
static struct spu_overlay_table *
|
|
spu_get_overlay_table (struct objfile *objfile)
|
|
{
|
|
enum bfd_endian byte_order = bfd_big_endian (objfile->obfd)?
|
|
BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
|
|
struct bound_minimal_symbol ovly_table_msym, ovly_buf_table_msym;
|
|
CORE_ADDR ovly_table_base, ovly_buf_table_base;
|
|
unsigned ovly_table_size, ovly_buf_table_size;
|
|
struct spu_overlay_table *tbl;
|
|
struct obj_section *osect;
|
|
gdb_byte *ovly_table;
|
|
int i;
|
|
|
|
tbl = objfile_data (objfile, spu_overlay_data);
|
|
if (tbl)
|
|
return tbl;
|
|
|
|
ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
|
|
if (!ovly_table_msym.minsym)
|
|
return NULL;
|
|
|
|
ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table",
|
|
NULL, objfile);
|
|
if (!ovly_buf_table_msym.minsym)
|
|
return NULL;
|
|
|
|
ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
|
|
ovly_table_size = MSYMBOL_SIZE (ovly_table_msym.minsym);
|
|
|
|
ovly_buf_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
|
|
ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym.minsym);
|
|
|
|
ovly_table = xmalloc (ovly_table_size);
|
|
read_memory (ovly_table_base, ovly_table, ovly_table_size);
|
|
|
|
tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
|
|
objfile->sections_end - objfile->sections,
|
|
struct spu_overlay_table);
|
|
|
|
for (i = 0; i < ovly_table_size / 16; i++)
|
|
{
|
|
CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0,
|
|
4, byte_order);
|
|
CORE_ADDR size = extract_unsigned_integer (ovly_table + 16*i + 4,
|
|
4, byte_order);
|
|
CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8,
|
|
4, byte_order);
|
|
CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12,
|
|
4, byte_order);
|
|
|
|
if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
|
|
continue;
|
|
|
|
ALL_OBJFILE_OSECTIONS (objfile, osect)
|
|
if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section)
|
|
&& pos == osect->the_bfd_section->filepos)
|
|
{
|
|
int ndx = osect - objfile->sections;
|
|
tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
|
|
tbl[ndx].mapped_val = i + 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
xfree (ovly_table);
|
|
set_objfile_data (objfile, spu_overlay_data, tbl);
|
|
return tbl;
|
|
}
|
|
|
|
/* Read _ovly_buf_table entry from the target to dermine whether
|
|
OSECT is currently mapped, and update the mapped state. */
|
|
static void
|
|
spu_overlay_update_osect (struct obj_section *osect)
|
|
{
|
|
enum bfd_endian byte_order = bfd_big_endian (osect->objfile->obfd)?
|
|
BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
|
|
struct spu_overlay_table *ovly_table;
|
|
CORE_ADDR id, val;
|
|
|
|
ovly_table = spu_get_overlay_table (osect->objfile);
|
|
if (!ovly_table)
|
|
return;
|
|
|
|
ovly_table += osect - osect->objfile->sections;
|
|
if (ovly_table->mapped_ptr == 0)
|
|
return;
|
|
|
|
id = SPUADDR_SPU (obj_section_addr (osect));
|
|
val = read_memory_unsigned_integer (SPUADDR (id, ovly_table->mapped_ptr),
|
|
4, byte_order);
|
|
osect->ovly_mapped = (val == ovly_table->mapped_val);
|
|
}
|
|
|
|
/* If OSECT is NULL, then update all sections' mapped state.
|
|
If OSECT is non-NULL, then update only OSECT's mapped state. */
|
|
static void
|
|
spu_overlay_update (struct obj_section *osect)
|
|
{
|
|
/* Just one section. */
|
|
if (osect)
|
|
spu_overlay_update_osect (osect);
|
|
|
|
/* All sections. */
|
|
else
|
|
{
|
|
struct objfile *objfile;
|
|
|
|
ALL_OBJSECTIONS (objfile, osect)
|
|
if (section_is_overlay (osect))
|
|
spu_overlay_update_osect (osect);
|
|
}
|
|
}
|
|
|
|
/* Whenever a new objfile is loaded, read the target's _ovly_table.
|
|
If there is one, go through all sections and make sure for non-
|
|
overlay sections LMA equals VMA, while for overlay sections LMA
|
|
is larger than SPU_OVERLAY_LMA. */
|
|
static void
|
|
spu_overlay_new_objfile (struct objfile *objfile)
|
|
{
|
|
struct spu_overlay_table *ovly_table;
|
|
struct obj_section *osect;
|
|
|
|
/* If we've already touched this file, do nothing. */
|
|
if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL)
|
|
return;
|
|
|
|
/* Consider only SPU objfiles. */
|
|
if (bfd_get_arch (objfile->obfd) != bfd_arch_spu)
|
|
return;
|
|
|
|
/* Check if this objfile has overlays. */
|
|
ovly_table = spu_get_overlay_table (objfile);
|
|
if (!ovly_table)
|
|
return;
|
|
|
|
/* Now go and fiddle with all the LMAs. */
|
|
ALL_OBJFILE_OSECTIONS (objfile, osect)
|
|
{
|
|
bfd *obfd = objfile->obfd;
|
|
asection *bsect = osect->the_bfd_section;
|
|
int ndx = osect - objfile->sections;
|
|
|
|
if (ovly_table[ndx].mapped_ptr == 0)
|
|
bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect);
|
|
else
|
|
bfd_section_lma (obfd, bsect) = SPU_OVERLAY_LMA + bsect->filepos;
|
|
}
|
|
}
|
|
|
|
|
|
/* Insert temporary breakpoint on "main" function of newly loaded
|
|
SPE context OBJFILE. */
|
|
static void
|
|
spu_catch_start (struct objfile *objfile)
|
|
{
|
|
struct bound_minimal_symbol minsym;
|
|
struct symtab *symtab;
|
|
CORE_ADDR pc;
|
|
char buf[32];
|
|
|
|
/* Do this only if requested by "set spu stop-on-load on". */
|
|
if (!spu_stop_on_load_p)
|
|
return;
|
|
|
|
/* Consider only SPU objfiles. */
|
|
if (!objfile || bfd_get_arch (objfile->obfd) != bfd_arch_spu)
|
|
return;
|
|
|
|
/* The main objfile is handled differently. */
|
|
if (objfile == symfile_objfile)
|
|
return;
|
|
|
|
/* There can be multiple symbols named "main". Search for the
|
|
"main" in *this* objfile. */
|
|
minsym = lookup_minimal_symbol ("main", NULL, objfile);
|
|
if (!minsym.minsym)
|
|
return;
|
|
|
|
/* If we have debugging information, try to use it -- this
|
|
will allow us to properly skip the prologue. */
|
|
pc = BMSYMBOL_VALUE_ADDRESS (minsym);
|
|
symtab = find_pc_sect_symtab (pc, MSYMBOL_OBJ_SECTION (minsym.objfile,
|
|
minsym.minsym));
|
|
if (symtab != NULL)
|
|
{
|
|
struct blockvector *bv = BLOCKVECTOR (symtab);
|
|
struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
|
|
struct symbol *sym;
|
|
struct symtab_and_line sal;
|
|
|
|
sym = lookup_block_symbol (block, "main", VAR_DOMAIN);
|
|
if (sym)
|
|
{
|
|
fixup_symbol_section (sym, objfile);
|
|
sal = find_function_start_sal (sym, 1);
|
|
pc = sal.pc;
|
|
}
|
|
}
|
|
|
|
/* Use a numerical address for the set_breakpoint command to avoid having
|
|
the breakpoint re-set incorrectly. */
|
|
xsnprintf (buf, sizeof buf, "*%s", core_addr_to_string (pc));
|
|
create_breakpoint (get_objfile_arch (objfile), buf /* arg */,
|
|
NULL /* cond_string */, -1 /* thread */,
|
|
NULL /* extra_string */,
|
|
0 /* parse_condition_and_thread */, 1 /* tempflag */,
|
|
bp_breakpoint /* type_wanted */,
|
|
0 /* ignore_count */,
|
|
AUTO_BOOLEAN_FALSE /* pending_break_support */,
|
|
&bkpt_breakpoint_ops /* ops */, 0 /* from_tty */,
|
|
1 /* enabled */, 0 /* internal */, 0);
|
|
}
|
|
|
|
|
|
/* Look up OBJFILE loaded into FRAME's SPU context. */
|
|
static struct objfile *
|
|
spu_objfile_from_frame (struct frame_info *frame)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
struct objfile *obj;
|
|
|
|
if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
|
|
return NULL;
|
|
|
|
ALL_OBJFILES (obj)
|
|
{
|
|
if (obj->sections != obj->sections_end
|
|
&& SPUADDR_SPU (obj_section_addr (obj->sections)) == tdep->id)
|
|
return obj;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Flush cache for ea pointer access if available. */
|
|
static void
|
|
flush_ea_cache (void)
|
|
{
|
|
struct bound_minimal_symbol msymbol;
|
|
struct objfile *obj;
|
|
|
|
if (!has_stack_frames ())
|
|
return;
|
|
|
|
obj = spu_objfile_from_frame (get_current_frame ());
|
|
if (obj == NULL)
|
|
return;
|
|
|
|
/* Lookup inferior function __cache_flush. */
|
|
msymbol = lookup_minimal_symbol ("__cache_flush", NULL, obj);
|
|
if (msymbol.minsym != NULL)
|
|
{
|
|
struct type *type;
|
|
CORE_ADDR addr;
|
|
|
|
type = objfile_type (obj)->builtin_void;
|
|
type = lookup_function_type (type);
|
|
type = lookup_pointer_type (type);
|
|
addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
|
|
|
|
call_function_by_hand (value_from_pointer (type, addr), 0, NULL);
|
|
}
|
|
}
|
|
|
|
/* This handler is called when the inferior has stopped. If it is stopped in
|
|
SPU architecture then flush the ea cache if used. */
|
|
static void
|
|
spu_attach_normal_stop (struct bpstats *bs, int print_frame)
|
|
{
|
|
if (!spu_auto_flush_cache_p)
|
|
return;
|
|
|
|
/* Temporarily reset spu_auto_flush_cache_p to avoid recursively
|
|
re-entering this function when __cache_flush stops. */
|
|
spu_auto_flush_cache_p = 0;
|
|
flush_ea_cache ();
|
|
spu_auto_flush_cache_p = 1;
|
|
}
|
|
|
|
|
|
/* "info spu" commands. */
|
|
|
|
static void
|
|
info_spu_event_command (char *args, int from_tty)
|
|
{
|
|
struct frame_info *frame = get_selected_frame (NULL);
|
|
ULONGEST event_status = 0;
|
|
ULONGEST event_mask = 0;
|
|
struct cleanup *chain;
|
|
gdb_byte buf[100];
|
|
char annex[32];
|
|
LONGEST len;
|
|
int id;
|
|
|
|
if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
|
|
error (_("\"info spu\" is only supported on the SPU architecture."));
|
|
|
|
id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
|
|
|
|
xsnprintf (annex, sizeof annex, "%d/event_status", id);
|
|
len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
|
|
buf, 0, (sizeof (buf) - 1));
|
|
if (len <= 0)
|
|
error (_("Could not read event_status."));
|
|
buf[len] = '\0';
|
|
event_status = strtoulst ((char *) buf, NULL, 16);
|
|
|
|
xsnprintf (annex, sizeof annex, "%d/event_mask", id);
|
|
len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
|
|
buf, 0, (sizeof (buf) - 1));
|
|
if (len <= 0)
|
|
error (_("Could not read event_mask."));
|
|
buf[len] = '\0';
|
|
event_mask = strtoulst ((char *) buf, NULL, 16);
|
|
|
|
chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoEvent");
|
|
|
|
if (ui_out_is_mi_like_p (current_uiout))
|
|
{
|
|
ui_out_field_fmt (current_uiout, "event_status",
|
|
"0x%s", phex_nz (event_status, 4));
|
|
ui_out_field_fmt (current_uiout, "event_mask",
|
|
"0x%s", phex_nz (event_mask, 4));
|
|
}
|
|
else
|
|
{
|
|
printf_filtered (_("Event Status 0x%s\n"), phex (event_status, 4));
|
|
printf_filtered (_("Event Mask 0x%s\n"), phex (event_mask, 4));
|
|
}
|
|
|
|
do_cleanups (chain);
|
|
}
|
|
|
|
static void
|
|
info_spu_signal_command (char *args, int from_tty)
|
|
{
|
|
struct frame_info *frame = get_selected_frame (NULL);
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
ULONGEST signal1 = 0;
|
|
ULONGEST signal1_type = 0;
|
|
int signal1_pending = 0;
|
|
ULONGEST signal2 = 0;
|
|
ULONGEST signal2_type = 0;
|
|
int signal2_pending = 0;
|
|
struct cleanup *chain;
|
|
char annex[32];
|
|
gdb_byte buf[100];
|
|
LONGEST len;
|
|
int id;
|
|
|
|
if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
|
|
error (_("\"info spu\" is only supported on the SPU architecture."));
|
|
|
|
id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
|
|
|
|
xsnprintf (annex, sizeof annex, "%d/signal1", id);
|
|
len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
|
|
if (len < 0)
|
|
error (_("Could not read signal1."));
|
|
else if (len == 4)
|
|
{
|
|
signal1 = extract_unsigned_integer (buf, 4, byte_order);
|
|
signal1_pending = 1;
|
|
}
|
|
|
|
xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
|
|
len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
|
|
buf, 0, (sizeof (buf) - 1));
|
|
if (len <= 0)
|
|
error (_("Could not read signal1_type."));
|
|
buf[len] = '\0';
|
|
signal1_type = strtoulst ((char *) buf, NULL, 16);
|
|
|
|
xsnprintf (annex, sizeof annex, "%d/signal2", id);
|
|
len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
|
|
if (len < 0)
|
|
error (_("Could not read signal2."));
|
|
else if (len == 4)
|
|
{
|
|
signal2 = extract_unsigned_integer (buf, 4, byte_order);
|
|
signal2_pending = 1;
|
|
}
|
|
|
|
xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
|
|
len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
|
|
buf, 0, (sizeof (buf) - 1));
|
|
if (len <= 0)
|
|
error (_("Could not read signal2_type."));
|
|
buf[len] = '\0';
|
|
signal2_type = strtoulst ((char *) buf, NULL, 16);
|
|
|
|
chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoSignal");
|
|
|
|
if (ui_out_is_mi_like_p (current_uiout))
|
|
{
|
|
ui_out_field_int (current_uiout, "signal1_pending", signal1_pending);
|
|
ui_out_field_fmt (current_uiout, "signal1", "0x%s", phex_nz (signal1, 4));
|
|
ui_out_field_int (current_uiout, "signal1_type", signal1_type);
|
|
ui_out_field_int (current_uiout, "signal2_pending", signal2_pending);
|
|
ui_out_field_fmt (current_uiout, "signal2", "0x%s", phex_nz (signal2, 4));
|
|
ui_out_field_int (current_uiout, "signal2_type", signal2_type);
|
|
}
|
|
else
|
|
{
|
|
if (signal1_pending)
|
|
printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
|
|
else
|
|
printf_filtered (_("Signal 1 not pending "));
|
|
|
|
if (signal1_type)
|
|
printf_filtered (_("(Type Or)\n"));
|
|
else
|
|
printf_filtered (_("(Type Overwrite)\n"));
|
|
|
|
if (signal2_pending)
|
|
printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
|
|
else
|
|
printf_filtered (_("Signal 2 not pending "));
|
|
|
|
if (signal2_type)
|
|
printf_filtered (_("(Type Or)\n"));
|
|
else
|
|
printf_filtered (_("(Type Overwrite)\n"));
|
|
}
|
|
|
|
do_cleanups (chain);
|
|
}
|
|
|
|
static void
|
|
info_spu_mailbox_list (gdb_byte *buf, int nr, enum bfd_endian byte_order,
|
|
const char *field, const char *msg)
|
|
{
|
|
struct cleanup *chain;
|
|
int i;
|
|
|
|
if (nr <= 0)
|
|
return;
|
|
|
|
chain = make_cleanup_ui_out_table_begin_end (current_uiout, 1, nr, "mbox");
|
|
|
|
ui_out_table_header (current_uiout, 32, ui_left, field, msg);
|
|
ui_out_table_body (current_uiout);
|
|
|
|
for (i = 0; i < nr; i++)
|
|
{
|
|
struct cleanup *val_chain;
|
|
ULONGEST val;
|
|
val_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "mbox");
|
|
val = extract_unsigned_integer (buf + 4*i, 4, byte_order);
|
|
ui_out_field_fmt (current_uiout, field, "0x%s", phex (val, 4));
|
|
do_cleanups (val_chain);
|
|
|
|
if (!ui_out_is_mi_like_p (current_uiout))
|
|
printf_filtered ("\n");
|
|
}
|
|
|
|
do_cleanups (chain);
|
|
}
|
|
|
|
static void
|
|
info_spu_mailbox_command (char *args, int from_tty)
|
|
{
|
|
struct frame_info *frame = get_selected_frame (NULL);
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
struct cleanup *chain;
|
|
char annex[32];
|
|
gdb_byte buf[1024];
|
|
LONGEST len;
|
|
int id;
|
|
|
|
if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
|
|
error (_("\"info spu\" is only supported on the SPU architecture."));
|
|
|
|
id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
|
|
|
|
chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoMailbox");
|
|
|
|
xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
|
|
len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
|
|
buf, 0, sizeof buf);
|
|
if (len < 0)
|
|
error (_("Could not read mbox_info."));
|
|
|
|
info_spu_mailbox_list (buf, len / 4, byte_order,
|
|
"mbox", "SPU Outbound Mailbox");
|
|
|
|
xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
|
|
len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
|
|
buf, 0, sizeof buf);
|
|
if (len < 0)
|
|
error (_("Could not read ibox_info."));
|
|
|
|
info_spu_mailbox_list (buf, len / 4, byte_order,
|
|
"ibox", "SPU Outbound Interrupt Mailbox");
|
|
|
|
xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
|
|
len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
|
|
buf, 0, sizeof buf);
|
|
if (len < 0)
|
|
error (_("Could not read wbox_info."));
|
|
|
|
info_spu_mailbox_list (buf, len / 4, byte_order,
|
|
"wbox", "SPU Inbound Mailbox");
|
|
|
|
do_cleanups (chain);
|
|
}
|
|
|
|
static ULONGEST
|
|
spu_mfc_get_bitfield (ULONGEST word, int first, int last)
|
|
{
|
|
ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
|
|
return (word >> (63 - last)) & mask;
|
|
}
|
|
|
|
static void
|
|
info_spu_dma_cmdlist (gdb_byte *buf, int nr, enum bfd_endian byte_order)
|
|
{
|
|
static char *spu_mfc_opcode[256] =
|
|
{
|
|
/* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
/* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
/* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
|
|
"puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
|
|
/* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
/* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
|
|
"gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
|
|
/* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
/* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
/* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
/* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
|
|
NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
|
|
/* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
/* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
/* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
|
|
"putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
/* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
"mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
|
|
/* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
/* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
/* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
};
|
|
|
|
int *seq = alloca (nr * sizeof (int));
|
|
int done = 0;
|
|
struct cleanup *chain;
|
|
int i, j;
|
|
|
|
|
|
/* Determine sequence in which to display (valid) entries. */
|
|
for (i = 0; i < nr; i++)
|
|
{
|
|
/* Search for the first valid entry all of whose
|
|
dependencies are met. */
|
|
for (j = 0; j < nr; j++)
|
|
{
|
|
ULONGEST mfc_cq_dw3;
|
|
ULONGEST dependencies;
|
|
|
|
if (done & (1 << (nr - 1 - j)))
|
|
continue;
|
|
|
|
mfc_cq_dw3
|
|
= extract_unsigned_integer (buf + 32*j + 24,8, byte_order);
|
|
if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16))
|
|
continue;
|
|
|
|
dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1);
|
|
if ((dependencies & done) != dependencies)
|
|
continue;
|
|
|
|
seq[i] = j;
|
|
done |= 1 << (nr - 1 - j);
|
|
break;
|
|
}
|
|
|
|
if (j == nr)
|
|
break;
|
|
}
|
|
|
|
nr = i;
|
|
|
|
|
|
chain = make_cleanup_ui_out_table_begin_end (current_uiout, 10, nr,
|
|
"dma_cmd");
|
|
|
|
ui_out_table_header (current_uiout, 7, ui_left, "opcode", "Opcode");
|
|
ui_out_table_header (current_uiout, 3, ui_left, "tag", "Tag");
|
|
ui_out_table_header (current_uiout, 3, ui_left, "tid", "TId");
|
|
ui_out_table_header (current_uiout, 3, ui_left, "rid", "RId");
|
|
ui_out_table_header (current_uiout, 18, ui_left, "ea", "EA");
|
|
ui_out_table_header (current_uiout, 7, ui_left, "lsa", "LSA");
|
|
ui_out_table_header (current_uiout, 7, ui_left, "size", "Size");
|
|
ui_out_table_header (current_uiout, 7, ui_left, "lstaddr", "LstAddr");
|
|
ui_out_table_header (current_uiout, 7, ui_left, "lstsize", "LstSize");
|
|
ui_out_table_header (current_uiout, 1, ui_left, "error_p", "E");
|
|
|
|
ui_out_table_body (current_uiout);
|
|
|
|
for (i = 0; i < nr; i++)
|
|
{
|
|
struct cleanup *cmd_chain;
|
|
ULONGEST mfc_cq_dw0;
|
|
ULONGEST mfc_cq_dw1;
|
|
ULONGEST mfc_cq_dw2;
|
|
int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
|
|
int list_lsa, list_size, mfc_lsa, mfc_size;
|
|
ULONGEST mfc_ea;
|
|
int list_valid_p, noop_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
|
|
|
|
/* Decode contents of MFC Command Queue Context Save/Restore Registers.
|
|
See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
|
|
|
|
mfc_cq_dw0
|
|
= extract_unsigned_integer (buf + 32*seq[i], 8, byte_order);
|
|
mfc_cq_dw1
|
|
= extract_unsigned_integer (buf + 32*seq[i] + 8, 8, byte_order);
|
|
mfc_cq_dw2
|
|
= extract_unsigned_integer (buf + 32*seq[i] + 16, 8, byte_order);
|
|
|
|
list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
|
|
list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
|
|
mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
|
|
mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
|
|
list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
|
|
rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
|
|
tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
|
|
|
|
mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
|
|
| spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
|
|
|
|
mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
|
|
mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
|
|
noop_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 37, 37);
|
|
qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
|
|
ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
|
|
cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
|
|
|
|
cmd_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "cmd");
|
|
|
|
if (spu_mfc_opcode[mfc_cmd_opcode])
|
|
ui_out_field_string (current_uiout, "opcode", spu_mfc_opcode[mfc_cmd_opcode]);
|
|
else
|
|
ui_out_field_int (current_uiout, "opcode", mfc_cmd_opcode);
|
|
|
|
ui_out_field_int (current_uiout, "tag", mfc_cmd_tag);
|
|
ui_out_field_int (current_uiout, "tid", tclass_id);
|
|
ui_out_field_int (current_uiout, "rid", rclass_id);
|
|
|
|
if (ea_valid_p)
|
|
ui_out_field_fmt (current_uiout, "ea", "0x%s", phex (mfc_ea, 8));
|
|
else
|
|
ui_out_field_skip (current_uiout, "ea");
|
|
|
|
ui_out_field_fmt (current_uiout, "lsa", "0x%05x", mfc_lsa << 4);
|
|
if (qw_valid_p)
|
|
ui_out_field_fmt (current_uiout, "size", "0x%05x", mfc_size << 4);
|
|
else
|
|
ui_out_field_fmt (current_uiout, "size", "0x%05x", mfc_size);
|
|
|
|
if (list_valid_p)
|
|
{
|
|
ui_out_field_fmt (current_uiout, "lstaddr", "0x%05x", list_lsa << 3);
|
|
ui_out_field_fmt (current_uiout, "lstsize", "0x%05x", list_size << 3);
|
|
}
|
|
else
|
|
{
|
|
ui_out_field_skip (current_uiout, "lstaddr");
|
|
ui_out_field_skip (current_uiout, "lstsize");
|
|
}
|
|
|
|
if (cmd_error_p)
|
|
ui_out_field_string (current_uiout, "error_p", "*");
|
|
else
|
|
ui_out_field_skip (current_uiout, "error_p");
|
|
|
|
do_cleanups (cmd_chain);
|
|
|
|
if (!ui_out_is_mi_like_p (current_uiout))
|
|
printf_filtered ("\n");
|
|
}
|
|
|
|
do_cleanups (chain);
|
|
}
|
|
|
|
static void
|
|
info_spu_dma_command (char *args, int from_tty)
|
|
{
|
|
struct frame_info *frame = get_selected_frame (NULL);
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
ULONGEST dma_info_type;
|
|
ULONGEST dma_info_mask;
|
|
ULONGEST dma_info_status;
|
|
ULONGEST dma_info_stall_and_notify;
|
|
ULONGEST dma_info_atomic_command_status;
|
|
struct cleanup *chain;
|
|
char annex[32];
|
|
gdb_byte buf[1024];
|
|
LONGEST len;
|
|
int id;
|
|
|
|
if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
|
|
error (_("\"info spu\" is only supported on the SPU architecture."));
|
|
|
|
id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
|
|
|
|
xsnprintf (annex, sizeof annex, "%d/dma_info", id);
|
|
len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
|
|
buf, 0, 40 + 16 * 32);
|
|
if (len <= 0)
|
|
error (_("Could not read dma_info."));
|
|
|
|
dma_info_type
|
|
= extract_unsigned_integer (buf, 8, byte_order);
|
|
dma_info_mask
|
|
= extract_unsigned_integer (buf + 8, 8, byte_order);
|
|
dma_info_status
|
|
= extract_unsigned_integer (buf + 16, 8, byte_order);
|
|
dma_info_stall_and_notify
|
|
= extract_unsigned_integer (buf + 24, 8, byte_order);
|
|
dma_info_atomic_command_status
|
|
= extract_unsigned_integer (buf + 32, 8, byte_order);
|
|
|
|
chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoDMA");
|
|
|
|
if (ui_out_is_mi_like_p (current_uiout))
|
|
{
|
|
ui_out_field_fmt (current_uiout, "dma_info_type", "0x%s",
|
|
phex_nz (dma_info_type, 4));
|
|
ui_out_field_fmt (current_uiout, "dma_info_mask", "0x%s",
|
|
phex_nz (dma_info_mask, 4));
|
|
ui_out_field_fmt (current_uiout, "dma_info_status", "0x%s",
|
|
phex_nz (dma_info_status, 4));
|
|
ui_out_field_fmt (current_uiout, "dma_info_stall_and_notify", "0x%s",
|
|
phex_nz (dma_info_stall_and_notify, 4));
|
|
ui_out_field_fmt (current_uiout, "dma_info_atomic_command_status", "0x%s",
|
|
phex_nz (dma_info_atomic_command_status, 4));
|
|
}
|
|
else
|
|
{
|
|
const char *query_msg = _("no query pending");
|
|
|
|
if (dma_info_type & 4)
|
|
switch (dma_info_type & 3)
|
|
{
|
|
case 1: query_msg = _("'any' query pending"); break;
|
|
case 2: query_msg = _("'all' query pending"); break;
|
|
default: query_msg = _("undefined query type"); break;
|
|
}
|
|
|
|
printf_filtered (_("Tag-Group Status 0x%s\n"),
|
|
phex (dma_info_status, 4));
|
|
printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
|
|
phex (dma_info_mask, 4), query_msg);
|
|
printf_filtered (_("Stall-and-Notify 0x%s\n"),
|
|
phex (dma_info_stall_and_notify, 4));
|
|
printf_filtered (_("Atomic Cmd Status 0x%s\n"),
|
|
phex (dma_info_atomic_command_status, 4));
|
|
printf_filtered ("\n");
|
|
}
|
|
|
|
info_spu_dma_cmdlist (buf + 40, 16, byte_order);
|
|
do_cleanups (chain);
|
|
}
|
|
|
|
static void
|
|
info_spu_proxydma_command (char *args, int from_tty)
|
|
{
|
|
struct frame_info *frame = get_selected_frame (NULL);
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
ULONGEST dma_info_type;
|
|
ULONGEST dma_info_mask;
|
|
ULONGEST dma_info_status;
|
|
struct cleanup *chain;
|
|
char annex[32];
|
|
gdb_byte buf[1024];
|
|
LONGEST len;
|
|
int id;
|
|
|
|
if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
|
|
error (_("\"info spu\" is only supported on the SPU architecture."));
|
|
|
|
id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
|
|
|
|
xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
|
|
len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
|
|
buf, 0, 24 + 8 * 32);
|
|
if (len <= 0)
|
|
error (_("Could not read proxydma_info."));
|
|
|
|
dma_info_type = extract_unsigned_integer (buf, 8, byte_order);
|
|
dma_info_mask = extract_unsigned_integer (buf + 8, 8, byte_order);
|
|
dma_info_status = extract_unsigned_integer (buf + 16, 8, byte_order);
|
|
|
|
chain = make_cleanup_ui_out_tuple_begin_end (current_uiout,
|
|
"SPUInfoProxyDMA");
|
|
|
|
if (ui_out_is_mi_like_p (current_uiout))
|
|
{
|
|
ui_out_field_fmt (current_uiout, "proxydma_info_type", "0x%s",
|
|
phex_nz (dma_info_type, 4));
|
|
ui_out_field_fmt (current_uiout, "proxydma_info_mask", "0x%s",
|
|
phex_nz (dma_info_mask, 4));
|
|
ui_out_field_fmt (current_uiout, "proxydma_info_status", "0x%s",
|
|
phex_nz (dma_info_status, 4));
|
|
}
|
|
else
|
|
{
|
|
const char *query_msg;
|
|
|
|
switch (dma_info_type & 3)
|
|
{
|
|
case 0: query_msg = _("no query pending"); break;
|
|
case 1: query_msg = _("'any' query pending"); break;
|
|
case 2: query_msg = _("'all' query pending"); break;
|
|
default: query_msg = _("undefined query type"); break;
|
|
}
|
|
|
|
printf_filtered (_("Tag-Group Status 0x%s\n"),
|
|
phex (dma_info_status, 4));
|
|
printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
|
|
phex (dma_info_mask, 4), query_msg);
|
|
printf_filtered ("\n");
|
|
}
|
|
|
|
info_spu_dma_cmdlist (buf + 24, 8, byte_order);
|
|
do_cleanups (chain);
|
|
}
|
|
|
|
static void
|
|
info_spu_command (char *args, int from_tty)
|
|
{
|
|
printf_unfiltered (_("\"info spu\" must be followed by "
|
|
"the name of an SPU facility.\n"));
|
|
help_list (infospucmdlist, "info spu ", -1, gdb_stdout);
|
|
}
|
|
|
|
|
|
/* Root of all "set spu "/"show spu " commands. */
|
|
|
|
static void
|
|
show_spu_command (char *args, int from_tty)
|
|
{
|
|
help_list (showspucmdlist, "show spu ", all_commands, gdb_stdout);
|
|
}
|
|
|
|
static void
|
|
set_spu_command (char *args, int from_tty)
|
|
{
|
|
help_list (setspucmdlist, "set spu ", all_commands, gdb_stdout);
|
|
}
|
|
|
|
static void
|
|
show_spu_stop_on_load (struct ui_file *file, int from_tty,
|
|
struct cmd_list_element *c, const char *value)
|
|
{
|
|
fprintf_filtered (file, _("Stopping for new SPE threads is %s.\n"),
|
|
value);
|
|
}
|
|
|
|
static void
|
|
show_spu_auto_flush_cache (struct ui_file *file, int from_tty,
|
|
struct cmd_list_element *c, const char *value)
|
|
{
|
|
fprintf_filtered (file, _("Automatic software-cache flush is %s.\n"),
|
|
value);
|
|
}
|
|
|
|
|
|
/* Set up gdbarch struct. */
|
|
|
|
static struct gdbarch *
|
|
spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
|
{
|
|
struct gdbarch *gdbarch;
|
|
struct gdbarch_tdep *tdep;
|
|
int id = -1;
|
|
|
|
/* Which spufs ID was requested as address space? */
|
|
if (info.tdep_info)
|
|
id = *(int *)info.tdep_info;
|
|
/* For objfile architectures of SPU solibs, decode the ID from the name.
|
|
This assumes the filename convention employed by solib-spu.c. */
|
|
else if (info.abfd)
|
|
{
|
|
char *name = strrchr (info.abfd->filename, '@');
|
|
if (name)
|
|
sscanf (name, "@0x%*x <%d>", &id);
|
|
}
|
|
|
|
/* Find a candidate among extant architectures. */
|
|
for (arches = gdbarch_list_lookup_by_info (arches, &info);
|
|
arches != NULL;
|
|
arches = gdbarch_list_lookup_by_info (arches->next, &info))
|
|
{
|
|
tdep = gdbarch_tdep (arches->gdbarch);
|
|
if (tdep && tdep->id == id)
|
|
return arches->gdbarch;
|
|
}
|
|
|
|
/* None found, so create a new architecture. */
|
|
tdep = XCNEW (struct gdbarch_tdep);
|
|
tdep->id = id;
|
|
gdbarch = gdbarch_alloc (&info, tdep);
|
|
|
|
/* Disassembler. */
|
|
set_gdbarch_print_insn (gdbarch, gdb_print_insn_spu);
|
|
|
|
/* Registers. */
|
|
set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
|
|
set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
|
|
set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
|
|
set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
|
|
set_gdbarch_read_pc (gdbarch, spu_read_pc);
|
|
set_gdbarch_write_pc (gdbarch, spu_write_pc);
|
|
set_gdbarch_register_name (gdbarch, spu_register_name);
|
|
set_gdbarch_register_type (gdbarch, spu_register_type);
|
|
set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
|
|
set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
|
|
set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
|
|
set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
|
|
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, spu_dwarf_reg_to_regnum);
|
|
set_gdbarch_ax_pseudo_register_collect
|
|
(gdbarch, spu_ax_pseudo_register_collect);
|
|
set_gdbarch_ax_pseudo_register_push_stack
|
|
(gdbarch, spu_ax_pseudo_register_push_stack);
|
|
|
|
/* Data types. */
|
|
set_gdbarch_char_signed (gdbarch, 0);
|
|
set_gdbarch_ptr_bit (gdbarch, 32);
|
|
set_gdbarch_addr_bit (gdbarch, 32);
|
|
set_gdbarch_short_bit (gdbarch, 16);
|
|
set_gdbarch_int_bit (gdbarch, 32);
|
|
set_gdbarch_long_bit (gdbarch, 32);
|
|
set_gdbarch_long_long_bit (gdbarch, 64);
|
|
set_gdbarch_float_bit (gdbarch, 32);
|
|
set_gdbarch_double_bit (gdbarch, 64);
|
|
set_gdbarch_long_double_bit (gdbarch, 64);
|
|
set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
|
|
set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
|
|
set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
|
|
|
|
/* Address handling. */
|
|
set_gdbarch_address_to_pointer (gdbarch, spu_address_to_pointer);
|
|
set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
|
|
set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
|
|
set_gdbarch_address_class_type_flags (gdbarch, spu_address_class_type_flags);
|
|
set_gdbarch_address_class_type_flags_to_name
|
|
(gdbarch, spu_address_class_type_flags_to_name);
|
|
set_gdbarch_address_class_name_to_type_flags
|
|
(gdbarch, spu_address_class_name_to_type_flags);
|
|
|
|
|
|
/* Inferior function calls. */
|
|
set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
|
|
set_gdbarch_frame_align (gdbarch, spu_frame_align);
|
|
set_gdbarch_frame_red_zone_size (gdbarch, 2000);
|
|
set_gdbarch_push_dummy_code (gdbarch, spu_push_dummy_code);
|
|
set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
|
|
set_gdbarch_dummy_id (gdbarch, spu_dummy_id);
|
|
set_gdbarch_return_value (gdbarch, spu_return_value);
|
|
|
|
/* Frame handling. */
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
|
dwarf2_append_unwinders (gdbarch);
|
|
frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind);
|
|
frame_base_set_default (gdbarch, &spu_frame_base);
|
|
set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
|
|
set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
|
|
set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
|
|
set_gdbarch_frame_args_skip (gdbarch, 0);
|
|
set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
|
|
set_gdbarch_in_function_epilogue_p (gdbarch, spu_in_function_epilogue_p);
|
|
|
|
/* Cell/B.E. cross-architecture unwinder support. */
|
|
frame_unwind_prepend_unwinder (gdbarch, &spu2ppu_unwind);
|
|
|
|
/* Breakpoints. */
|
|
set_gdbarch_decr_pc_after_break (gdbarch, 4);
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, spu_breakpoint_from_pc);
|
|
set_gdbarch_memory_remove_breakpoint (gdbarch, spu_memory_remove_breakpoint);
|
|
set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
|
|
set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
|
|
set_gdbarch_get_longjmp_target (gdbarch, spu_get_longjmp_target);
|
|
|
|
/* Overlays. */
|
|
set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
|
|
|
|
return gdbarch;
|
|
}
|
|
|
|
/* Provide a prototype to silence -Wmissing-prototypes. */
|
|
extern initialize_file_ftype _initialize_spu_tdep;
|
|
|
|
void
|
|
_initialize_spu_tdep (void)
|
|
{
|
|
register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
|
|
|
|
/* Add ourselves to objfile event chain. */
|
|
observer_attach_new_objfile (spu_overlay_new_objfile);
|
|
spu_overlay_data = register_objfile_data ();
|
|
|
|
/* Install spu stop-on-load handler. */
|
|
observer_attach_new_objfile (spu_catch_start);
|
|
|
|
/* Add ourselves to normal_stop event chain. */
|
|
observer_attach_normal_stop (spu_attach_normal_stop);
|
|
|
|
/* Add root prefix command for all "set spu"/"show spu" commands. */
|
|
add_prefix_cmd ("spu", no_class, set_spu_command,
|
|
_("Various SPU specific commands."),
|
|
&setspucmdlist, "set spu ", 0, &setlist);
|
|
add_prefix_cmd ("spu", no_class, show_spu_command,
|
|
_("Various SPU specific commands."),
|
|
&showspucmdlist, "show spu ", 0, &showlist);
|
|
|
|
/* Toggle whether or not to add a temporary breakpoint at the "main"
|
|
function of new SPE contexts. */
|
|
add_setshow_boolean_cmd ("stop-on-load", class_support,
|
|
&spu_stop_on_load_p, _("\
|
|
Set whether to stop for new SPE threads."),
|
|
_("\
|
|
Show whether to stop for new SPE threads."),
|
|
_("\
|
|
Use \"on\" to give control to the user when a new SPE thread\n\
|
|
enters its \"main\" function.\n\
|
|
Use \"off\" to disable stopping for new SPE threads."),
|
|
NULL,
|
|
show_spu_stop_on_load,
|
|
&setspucmdlist, &showspucmdlist);
|
|
|
|
/* Toggle whether or not to automatically flush the software-managed
|
|
cache whenever SPE execution stops. */
|
|
add_setshow_boolean_cmd ("auto-flush-cache", class_support,
|
|
&spu_auto_flush_cache_p, _("\
|
|
Set whether to automatically flush the software-managed cache."),
|
|
_("\
|
|
Show whether to automatically flush the software-managed cache."),
|
|
_("\
|
|
Use \"on\" to automatically flush the software-managed cache\n\
|
|
whenever SPE execution stops.\n\
|
|
Use \"off\" to never automatically flush the software-managed cache."),
|
|
NULL,
|
|
show_spu_auto_flush_cache,
|
|
&setspucmdlist, &showspucmdlist);
|
|
|
|
/* Add root prefix command for all "info spu" commands. */
|
|
add_prefix_cmd ("spu", class_info, info_spu_command,
|
|
_("Various SPU specific commands."),
|
|
&infospucmdlist, "info spu ", 0, &infolist);
|
|
|
|
/* Add various "info spu" commands. */
|
|
add_cmd ("event", class_info, info_spu_event_command,
|
|
_("Display SPU event facility status.\n"),
|
|
&infospucmdlist);
|
|
add_cmd ("signal", class_info, info_spu_signal_command,
|
|
_("Display SPU signal notification facility status.\n"),
|
|
&infospucmdlist);
|
|
add_cmd ("mailbox", class_info, info_spu_mailbox_command,
|
|
_("Display SPU mailbox facility status.\n"),
|
|
&infospucmdlist);
|
|
add_cmd ("dma", class_info, info_spu_dma_command,
|
|
_("Display MFC DMA status.\n"),
|
|
&infospucmdlist);
|
|
add_cmd ("proxydma", class_info, info_spu_proxydma_command,
|
|
_("Display MFC Proxy-DMA status.\n"),
|
|
&infospucmdlist);
|
|
}
|