mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-12 12:16:04 +08:00
729efb1317
The rational behind this patch is to get started to implement the feature described in dwarf4 standard (2.19) Static and Dynamic Values of Attributes. It adds new BOUND_PROP to store either a constant, exprloc, or reference to describe an upper-/lower bound of a subrange. Other than that no new features are introduced. * dwarf2read.c (read_subrange_type): Use struct bound_prop for declaring high/low bounds and change uses accordingly. Call create_range_type instead of create_static_range_type. * gdbtypes.c (create_range_type): New function. (create_range_type): Convert bounds into struct bound_prop and pass them to create_range_type. * gdbtypes.h (struct bound_prop): New struct. (create_range_type): New function prototype. (struct range_bounds): Use struct bound_prop instead of LONGEST for high/low bounds. Remove low_undefined/high_undefined and adapt all uses. (TYPE_LOW_BOUND,TYPE_HIGH_BOUND): Adapt macros to refer to the static part of the bound. * parse.c (follow_types): Set high bound kind to BOUND_UNDEFINED.
1936 lines
52 KiB
C
1936 lines
52 KiB
C
/* Parse expressions for GDB.
|
||
|
||
Copyright (C) 1986-2014 Free Software Foundation, Inc.
|
||
|
||
Modified from expread.y by the Department of Computer Science at the
|
||
State University of New York at Buffalo, 1991.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
/* Parse an expression from text in a string,
|
||
and return the result as a struct expression pointer.
|
||
That structure contains arithmetic operations in reverse polish,
|
||
with constants represented by operations that are followed by special data.
|
||
See expression.h for the details of the format.
|
||
What is important here is that it can be built up sequentially
|
||
during the process of parsing; the lower levels of the tree always
|
||
come first in the result. */
|
||
|
||
#include "defs.h"
|
||
#include <ctype.h>
|
||
#include "arch-utils.h"
|
||
#include <string.h>
|
||
#include "symtab.h"
|
||
#include "gdbtypes.h"
|
||
#include "frame.h"
|
||
#include "expression.h"
|
||
#include "value.h"
|
||
#include "command.h"
|
||
#include "language.h"
|
||
#include "f-lang.h"
|
||
#include "parser-defs.h"
|
||
#include "gdbcmd.h"
|
||
#include "symfile.h" /* for overlay functions */
|
||
#include "inferior.h"
|
||
#include "doublest.h"
|
||
#include "gdb_assert.h"
|
||
#include "block.h"
|
||
#include "source.h"
|
||
#include "objfiles.h"
|
||
#include "exceptions.h"
|
||
#include "user-regs.h"
|
||
|
||
/* Standard set of definitions for printing, dumping, prefixifying,
|
||
* and evaluating expressions. */
|
||
|
||
const struct exp_descriptor exp_descriptor_standard =
|
||
{
|
||
print_subexp_standard,
|
||
operator_length_standard,
|
||
operator_check_standard,
|
||
op_name_standard,
|
||
dump_subexp_body_standard,
|
||
evaluate_subexp_standard
|
||
};
|
||
|
||
/* Global variables declared in parser-defs.h (and commented there). */
|
||
const struct block *expression_context_block;
|
||
CORE_ADDR expression_context_pc;
|
||
const struct block *innermost_block;
|
||
int arglist_len;
|
||
static struct type_stack type_stack;
|
||
const char *lexptr;
|
||
const char *prev_lexptr;
|
||
int paren_depth;
|
||
int comma_terminates;
|
||
|
||
/* True if parsing an expression to attempt completion. */
|
||
int parse_completion;
|
||
|
||
/* The index of the last struct expression directly before a '.' or
|
||
'->'. This is set when parsing and is only used when completing a
|
||
field name. It is -1 if no dereference operation was found. */
|
||
static int expout_last_struct = -1;
|
||
|
||
/* If we are completing a tagged type name, this will be nonzero. */
|
||
static enum type_code expout_tag_completion_type = TYPE_CODE_UNDEF;
|
||
|
||
/* The token for tagged type name completion. */
|
||
static char *expout_completion_name;
|
||
|
||
|
||
static unsigned int expressiondebug = 0;
|
||
static void
|
||
show_expressiondebug (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file, _("Expression debugging is %s.\n"), value);
|
||
}
|
||
|
||
|
||
/* Non-zero if an expression parser should set yydebug. */
|
||
int parser_debug;
|
||
|
||
static void
|
||
show_parserdebug (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file, _("Parser debugging is %s.\n"), value);
|
||
}
|
||
|
||
|
||
static void free_funcalls (void *ignore);
|
||
|
||
static int prefixify_subexp (struct expression *, struct expression *, int,
|
||
int);
|
||
|
||
static struct expression *parse_exp_in_context (const char **, CORE_ADDR,
|
||
const struct block *, int,
|
||
int, int *);
|
||
static struct expression *parse_exp_in_context_1 (const char **, CORE_ADDR,
|
||
const struct block *, int,
|
||
int, int *);
|
||
|
||
void _initialize_parse (void);
|
||
|
||
/* Data structure for saving values of arglist_len for function calls whose
|
||
arguments contain other function calls. */
|
||
|
||
struct funcall
|
||
{
|
||
struct funcall *next;
|
||
int arglist_len;
|
||
};
|
||
|
||
static struct funcall *funcall_chain;
|
||
|
||
/* Begin counting arguments for a function call,
|
||
saving the data about any containing call. */
|
||
|
||
void
|
||
start_arglist (void)
|
||
{
|
||
struct funcall *new;
|
||
|
||
new = (struct funcall *) xmalloc (sizeof (struct funcall));
|
||
new->next = funcall_chain;
|
||
new->arglist_len = arglist_len;
|
||
arglist_len = 0;
|
||
funcall_chain = new;
|
||
}
|
||
|
||
/* Return the number of arguments in a function call just terminated,
|
||
and restore the data for the containing function call. */
|
||
|
||
int
|
||
end_arglist (void)
|
||
{
|
||
int val = arglist_len;
|
||
struct funcall *call = funcall_chain;
|
||
|
||
funcall_chain = call->next;
|
||
arglist_len = call->arglist_len;
|
||
xfree (call);
|
||
return val;
|
||
}
|
||
|
||
/* Free everything in the funcall chain.
|
||
Used when there is an error inside parsing. */
|
||
|
||
static void
|
||
free_funcalls (void *ignore)
|
||
{
|
||
struct funcall *call, *next;
|
||
|
||
for (call = funcall_chain; call; call = next)
|
||
{
|
||
next = call->next;
|
||
xfree (call);
|
||
}
|
||
}
|
||
|
||
|
||
/* See definition in parser-defs.h. */
|
||
|
||
void
|
||
initialize_expout (struct parser_state *ps, size_t initial_size,
|
||
const struct language_defn *lang,
|
||
struct gdbarch *gdbarch)
|
||
{
|
||
ps->expout_size = initial_size;
|
||
ps->expout_ptr = 0;
|
||
ps->expout = xmalloc (sizeof (struct expression)
|
||
+ EXP_ELEM_TO_BYTES (ps->expout_size));
|
||
ps->expout->language_defn = lang;
|
||
ps->expout->gdbarch = gdbarch;
|
||
}
|
||
|
||
/* See definition in parser-defs.h. */
|
||
|
||
void
|
||
reallocate_expout (struct parser_state *ps)
|
||
{
|
||
/* Record the actual number of expression elements, and then
|
||
reallocate the expression memory so that we free up any
|
||
excess elements. */
|
||
|
||
ps->expout->nelts = ps->expout_ptr;
|
||
ps->expout = (struct expression *)
|
||
xrealloc (ps->expout,
|
||
sizeof (struct expression)
|
||
+ EXP_ELEM_TO_BYTES (ps->expout_ptr));
|
||
}
|
||
|
||
/* This page contains the functions for adding data to the struct expression
|
||
being constructed. */
|
||
|
||
/* Add one element to the end of the expression. */
|
||
|
||
/* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
|
||
a register through here. */
|
||
|
||
static void
|
||
write_exp_elt (struct parser_state *ps, const union exp_element *expelt)
|
||
{
|
||
if (ps->expout_ptr >= ps->expout_size)
|
||
{
|
||
ps->expout_size *= 2;
|
||
ps->expout = (struct expression *)
|
||
xrealloc (ps->expout, sizeof (struct expression)
|
||
+ EXP_ELEM_TO_BYTES (ps->expout_size));
|
||
}
|
||
ps->expout->elts[ps->expout_ptr++] = *expelt;
|
||
}
|
||
|
||
void
|
||
write_exp_elt_opcode (struct parser_state *ps, enum exp_opcode expelt)
|
||
{
|
||
union exp_element tmp;
|
||
|
||
memset (&tmp, 0, sizeof (union exp_element));
|
||
tmp.opcode = expelt;
|
||
write_exp_elt (ps, &tmp);
|
||
}
|
||
|
||
void
|
||
write_exp_elt_sym (struct parser_state *ps, struct symbol *expelt)
|
||
{
|
||
union exp_element tmp;
|
||
|
||
memset (&tmp, 0, sizeof (union exp_element));
|
||
tmp.symbol = expelt;
|
||
write_exp_elt (ps, &tmp);
|
||
}
|
||
|
||
void
|
||
write_exp_elt_block (struct parser_state *ps, const struct block *b)
|
||
{
|
||
union exp_element tmp;
|
||
|
||
memset (&tmp, 0, sizeof (union exp_element));
|
||
tmp.block = b;
|
||
write_exp_elt (ps, &tmp);
|
||
}
|
||
|
||
void
|
||
write_exp_elt_objfile (struct parser_state *ps, struct objfile *objfile)
|
||
{
|
||
union exp_element tmp;
|
||
|
||
memset (&tmp, 0, sizeof (union exp_element));
|
||
tmp.objfile = objfile;
|
||
write_exp_elt (ps, &tmp);
|
||
}
|
||
|
||
void
|
||
write_exp_elt_longcst (struct parser_state *ps, LONGEST expelt)
|
||
{
|
||
union exp_element tmp;
|
||
|
||
memset (&tmp, 0, sizeof (union exp_element));
|
||
tmp.longconst = expelt;
|
||
write_exp_elt (ps, &tmp);
|
||
}
|
||
|
||
void
|
||
write_exp_elt_dblcst (struct parser_state *ps, DOUBLEST expelt)
|
||
{
|
||
union exp_element tmp;
|
||
|
||
memset (&tmp, 0, sizeof (union exp_element));
|
||
tmp.doubleconst = expelt;
|
||
write_exp_elt (ps, &tmp);
|
||
}
|
||
|
||
void
|
||
write_exp_elt_decfloatcst (struct parser_state *ps, gdb_byte expelt[16])
|
||
{
|
||
union exp_element tmp;
|
||
int index;
|
||
|
||
for (index = 0; index < 16; index++)
|
||
tmp.decfloatconst[index] = expelt[index];
|
||
|
||
write_exp_elt (ps, &tmp);
|
||
}
|
||
|
||
void
|
||
write_exp_elt_type (struct parser_state *ps, struct type *expelt)
|
||
{
|
||
union exp_element tmp;
|
||
|
||
memset (&tmp, 0, sizeof (union exp_element));
|
||
tmp.type = expelt;
|
||
write_exp_elt (ps, &tmp);
|
||
}
|
||
|
||
void
|
||
write_exp_elt_intern (struct parser_state *ps, struct internalvar *expelt)
|
||
{
|
||
union exp_element tmp;
|
||
|
||
memset (&tmp, 0, sizeof (union exp_element));
|
||
tmp.internalvar = expelt;
|
||
write_exp_elt (ps, &tmp);
|
||
}
|
||
|
||
/* Add a string constant to the end of the expression.
|
||
|
||
String constants are stored by first writing an expression element
|
||
that contains the length of the string, then stuffing the string
|
||
constant itself into however many expression elements are needed
|
||
to hold it, and then writing another expression element that contains
|
||
the length of the string. I.e. an expression element at each end of
|
||
the string records the string length, so you can skip over the
|
||
expression elements containing the actual string bytes from either
|
||
end of the string. Note that this also allows gdb to handle
|
||
strings with embedded null bytes, as is required for some languages.
|
||
|
||
Don't be fooled by the fact that the string is null byte terminated,
|
||
this is strictly for the convenience of debugging gdb itself.
|
||
Gdb does not depend up the string being null terminated, since the
|
||
actual length is recorded in expression elements at each end of the
|
||
string. The null byte is taken into consideration when computing how
|
||
many expression elements are required to hold the string constant, of
|
||
course. */
|
||
|
||
|
||
void
|
||
write_exp_string (struct parser_state *ps, struct stoken str)
|
||
{
|
||
int len = str.length;
|
||
size_t lenelt;
|
||
char *strdata;
|
||
|
||
/* Compute the number of expression elements required to hold the string
|
||
(including a null byte terminator), along with one expression element
|
||
at each end to record the actual string length (not including the
|
||
null byte terminator). */
|
||
|
||
lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
|
||
|
||
increase_expout_size (ps, lenelt);
|
||
|
||
/* Write the leading length expression element (which advances the current
|
||
expression element index), then write the string constant followed by a
|
||
terminating null byte, and then write the trailing length expression
|
||
element. */
|
||
|
||
write_exp_elt_longcst (ps, (LONGEST) len);
|
||
strdata = (char *) &ps->expout->elts[ps->expout_ptr];
|
||
memcpy (strdata, str.ptr, len);
|
||
*(strdata + len) = '\0';
|
||
ps->expout_ptr += lenelt - 2;
|
||
write_exp_elt_longcst (ps, (LONGEST) len);
|
||
}
|
||
|
||
/* Add a vector of string constants to the end of the expression.
|
||
|
||
This adds an OP_STRING operation, but encodes the contents
|
||
differently from write_exp_string. The language is expected to
|
||
handle evaluation of this expression itself.
|
||
|
||
After the usual OP_STRING header, TYPE is written into the
|
||
expression as a long constant. The interpretation of this field is
|
||
up to the language evaluator.
|
||
|
||
Next, each string in VEC is written. The length is written as a
|
||
long constant, followed by the contents of the string. */
|
||
|
||
void
|
||
write_exp_string_vector (struct parser_state *ps, int type,
|
||
struct stoken_vector *vec)
|
||
{
|
||
int i, len;
|
||
size_t n_slots;
|
||
|
||
/* Compute the size. We compute the size in number of slots to
|
||
avoid issues with string padding. */
|
||
n_slots = 0;
|
||
for (i = 0; i < vec->len; ++i)
|
||
{
|
||
/* One slot for the length of this element, plus the number of
|
||
slots needed for this string. */
|
||
n_slots += 1 + BYTES_TO_EXP_ELEM (vec->tokens[i].length);
|
||
}
|
||
|
||
/* One more slot for the type of the string. */
|
||
++n_slots;
|
||
|
||
/* Now compute a phony string length. */
|
||
len = EXP_ELEM_TO_BYTES (n_slots) - 1;
|
||
|
||
n_slots += 4;
|
||
increase_expout_size (ps, n_slots);
|
||
|
||
write_exp_elt_opcode (ps, OP_STRING);
|
||
write_exp_elt_longcst (ps, len);
|
||
write_exp_elt_longcst (ps, type);
|
||
|
||
for (i = 0; i < vec->len; ++i)
|
||
{
|
||
write_exp_elt_longcst (ps, vec->tokens[i].length);
|
||
memcpy (&ps->expout->elts[ps->expout_ptr], vec->tokens[i].ptr,
|
||
vec->tokens[i].length);
|
||
ps->expout_ptr += BYTES_TO_EXP_ELEM (vec->tokens[i].length);
|
||
}
|
||
|
||
write_exp_elt_longcst (ps, len);
|
||
write_exp_elt_opcode (ps, OP_STRING);
|
||
}
|
||
|
||
/* Add a bitstring constant to the end of the expression.
|
||
|
||
Bitstring constants are stored by first writing an expression element
|
||
that contains the length of the bitstring (in bits), then stuffing the
|
||
bitstring constant itself into however many expression elements are
|
||
needed to hold it, and then writing another expression element that
|
||
contains the length of the bitstring. I.e. an expression element at
|
||
each end of the bitstring records the bitstring length, so you can skip
|
||
over the expression elements containing the actual bitstring bytes from
|
||
either end of the bitstring. */
|
||
|
||
void
|
||
write_exp_bitstring (struct parser_state *ps, struct stoken str)
|
||
{
|
||
int bits = str.length; /* length in bits */
|
||
int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
|
||
size_t lenelt;
|
||
char *strdata;
|
||
|
||
/* Compute the number of expression elements required to hold the bitstring,
|
||
along with one expression element at each end to record the actual
|
||
bitstring length in bits. */
|
||
|
||
lenelt = 2 + BYTES_TO_EXP_ELEM (len);
|
||
|
||
increase_expout_size (ps, lenelt);
|
||
|
||
/* Write the leading length expression element (which advances the current
|
||
expression element index), then write the bitstring constant, and then
|
||
write the trailing length expression element. */
|
||
|
||
write_exp_elt_longcst (ps, (LONGEST) bits);
|
||
strdata = (char *) &ps->expout->elts[ps->expout_ptr];
|
||
memcpy (strdata, str.ptr, len);
|
||
ps->expout_ptr += lenelt - 2;
|
||
write_exp_elt_longcst (ps, (LONGEST) bits);
|
||
}
|
||
|
||
/* Add the appropriate elements for a minimal symbol to the end of
|
||
the expression. */
|
||
|
||
void
|
||
write_exp_msymbol (struct parser_state *ps,
|
||
struct bound_minimal_symbol bound_msym)
|
||
{
|
||
struct minimal_symbol *msymbol = bound_msym.minsym;
|
||
struct objfile *objfile = bound_msym.objfile;
|
||
struct gdbarch *gdbarch = get_objfile_arch (objfile);
|
||
|
||
CORE_ADDR addr = BMSYMBOL_VALUE_ADDRESS (bound_msym);
|
||
struct obj_section *section = MSYMBOL_OBJ_SECTION (objfile, msymbol);
|
||
enum minimal_symbol_type type = MSYMBOL_TYPE (msymbol);
|
||
CORE_ADDR pc;
|
||
|
||
/* The minimal symbol might point to a function descriptor;
|
||
resolve it to the actual code address instead. */
|
||
pc = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, ¤t_target);
|
||
if (pc != addr)
|
||
{
|
||
struct bound_minimal_symbol ifunc_msym = lookup_minimal_symbol_by_pc (pc);
|
||
|
||
/* In this case, assume we have a code symbol instead of
|
||
a data symbol. */
|
||
|
||
if (ifunc_msym.minsym != NULL
|
||
&& MSYMBOL_TYPE (ifunc_msym.minsym) == mst_text_gnu_ifunc
|
||
&& BMSYMBOL_VALUE_ADDRESS (ifunc_msym) == pc)
|
||
{
|
||
/* A function descriptor has been resolved but PC is still in the
|
||
STT_GNU_IFUNC resolver body (such as because inferior does not
|
||
run to be able to call it). */
|
||
|
||
type = mst_text_gnu_ifunc;
|
||
}
|
||
else
|
||
type = mst_text;
|
||
section = NULL;
|
||
addr = pc;
|
||
}
|
||
|
||
if (overlay_debugging)
|
||
addr = symbol_overlayed_address (addr, section);
|
||
|
||
write_exp_elt_opcode (ps, OP_LONG);
|
||
/* Let's make the type big enough to hold a 64-bit address. */
|
||
write_exp_elt_type (ps, objfile_type (objfile)->builtin_core_addr);
|
||
write_exp_elt_longcst (ps, (LONGEST) addr);
|
||
write_exp_elt_opcode (ps, OP_LONG);
|
||
|
||
if (section && section->the_bfd_section->flags & SEC_THREAD_LOCAL)
|
||
{
|
||
write_exp_elt_opcode (ps, UNOP_MEMVAL_TLS);
|
||
write_exp_elt_objfile (ps, objfile);
|
||
write_exp_elt_type (ps, objfile_type (objfile)->nodebug_tls_symbol);
|
||
write_exp_elt_opcode (ps, UNOP_MEMVAL_TLS);
|
||
return;
|
||
}
|
||
|
||
write_exp_elt_opcode (ps, UNOP_MEMVAL);
|
||
switch (type)
|
||
{
|
||
case mst_text:
|
||
case mst_file_text:
|
||
case mst_solib_trampoline:
|
||
write_exp_elt_type (ps, objfile_type (objfile)->nodebug_text_symbol);
|
||
break;
|
||
|
||
case mst_text_gnu_ifunc:
|
||
write_exp_elt_type (ps, objfile_type (objfile)
|
||
->nodebug_text_gnu_ifunc_symbol);
|
||
break;
|
||
|
||
case mst_data:
|
||
case mst_file_data:
|
||
case mst_bss:
|
||
case mst_file_bss:
|
||
write_exp_elt_type (ps, objfile_type (objfile)->nodebug_data_symbol);
|
||
break;
|
||
|
||
case mst_slot_got_plt:
|
||
write_exp_elt_type (ps, objfile_type (objfile)->nodebug_got_plt_symbol);
|
||
break;
|
||
|
||
default:
|
||
write_exp_elt_type (ps, objfile_type (objfile)->nodebug_unknown_symbol);
|
||
break;
|
||
}
|
||
write_exp_elt_opcode (ps, UNOP_MEMVAL);
|
||
}
|
||
|
||
/* Mark the current index as the starting location of a structure
|
||
expression. This is used when completing on field names. */
|
||
|
||
void
|
||
mark_struct_expression (struct parser_state *ps)
|
||
{
|
||
gdb_assert (parse_completion
|
||
&& expout_tag_completion_type == TYPE_CODE_UNDEF);
|
||
expout_last_struct = ps->expout_ptr;
|
||
}
|
||
|
||
/* Indicate that the current parser invocation is completing a tag.
|
||
TAG is the type code of the tag, and PTR and LENGTH represent the
|
||
start of the tag name. */
|
||
|
||
void
|
||
mark_completion_tag (enum type_code tag, const char *ptr, int length)
|
||
{
|
||
gdb_assert (parse_completion
|
||
&& expout_tag_completion_type == TYPE_CODE_UNDEF
|
||
&& expout_completion_name == NULL
|
||
&& expout_last_struct == -1);
|
||
gdb_assert (tag == TYPE_CODE_UNION
|
||
|| tag == TYPE_CODE_STRUCT
|
||
|| tag == TYPE_CODE_CLASS
|
||
|| tag == TYPE_CODE_ENUM);
|
||
expout_tag_completion_type = tag;
|
||
expout_completion_name = xmalloc (length + 1);
|
||
memcpy (expout_completion_name, ptr, length);
|
||
expout_completion_name[length] = '\0';
|
||
}
|
||
|
||
|
||
/* Recognize tokens that start with '$'. These include:
|
||
|
||
$regname A native register name or a "standard
|
||
register name".
|
||
|
||
$variable A convenience variable with a name chosen
|
||
by the user.
|
||
|
||
$digits Value history with index <digits>, starting
|
||
from the first value which has index 1.
|
||
|
||
$$digits Value history with index <digits> relative
|
||
to the last value. I.e. $$0 is the last
|
||
value, $$1 is the one previous to that, $$2
|
||
is the one previous to $$1, etc.
|
||
|
||
$ | $0 | $$0 The last value in the value history.
|
||
|
||
$$ An abbreviation for the second to the last
|
||
value in the value history, I.e. $$1 */
|
||
|
||
void
|
||
write_dollar_variable (struct parser_state *ps, struct stoken str)
|
||
{
|
||
struct symbol *sym = NULL;
|
||
struct bound_minimal_symbol msym;
|
||
struct internalvar *isym = NULL;
|
||
|
||
/* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
|
||
and $$digits (equivalent to $<-digits> if you could type that). */
|
||
|
||
int negate = 0;
|
||
int i = 1;
|
||
/* Double dollar means negate the number and add -1 as well.
|
||
Thus $$ alone means -1. */
|
||
if (str.length >= 2 && str.ptr[1] == '$')
|
||
{
|
||
negate = 1;
|
||
i = 2;
|
||
}
|
||
if (i == str.length)
|
||
{
|
||
/* Just dollars (one or two). */
|
||
i = -negate;
|
||
goto handle_last;
|
||
}
|
||
/* Is the rest of the token digits? */
|
||
for (; i < str.length; i++)
|
||
if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
|
||
break;
|
||
if (i == str.length)
|
||
{
|
||
i = atoi (str.ptr + 1 + negate);
|
||
if (negate)
|
||
i = -i;
|
||
goto handle_last;
|
||
}
|
||
|
||
/* Handle tokens that refer to machine registers:
|
||
$ followed by a register name. */
|
||
i = user_reg_map_name_to_regnum (parse_gdbarch (ps),
|
||
str.ptr + 1, str.length - 1);
|
||
if (i >= 0)
|
||
goto handle_register;
|
||
|
||
/* Any names starting with $ are probably debugger internal variables. */
|
||
|
||
isym = lookup_only_internalvar (copy_name (str) + 1);
|
||
if (isym)
|
||
{
|
||
write_exp_elt_opcode (ps, OP_INTERNALVAR);
|
||
write_exp_elt_intern (ps, isym);
|
||
write_exp_elt_opcode (ps, OP_INTERNALVAR);
|
||
return;
|
||
}
|
||
|
||
/* On some systems, such as HP-UX and hppa-linux, certain system routines
|
||
have names beginning with $ or $$. Check for those, first. */
|
||
|
||
sym = lookup_symbol (copy_name (str), (struct block *) NULL,
|
||
VAR_DOMAIN, NULL);
|
||
if (sym)
|
||
{
|
||
write_exp_elt_opcode (ps, OP_VAR_VALUE);
|
||
write_exp_elt_block (ps, block_found); /* set by lookup_symbol */
|
||
write_exp_elt_sym (ps, sym);
|
||
write_exp_elt_opcode (ps, OP_VAR_VALUE);
|
||
return;
|
||
}
|
||
msym = lookup_bound_minimal_symbol (copy_name (str));
|
||
if (msym.minsym)
|
||
{
|
||
write_exp_msymbol (ps, msym);
|
||
return;
|
||
}
|
||
|
||
/* Any other names are assumed to be debugger internal variables. */
|
||
|
||
write_exp_elt_opcode (ps, OP_INTERNALVAR);
|
||
write_exp_elt_intern (ps, create_internalvar (copy_name (str) + 1));
|
||
write_exp_elt_opcode (ps, OP_INTERNALVAR);
|
||
return;
|
||
handle_last:
|
||
write_exp_elt_opcode (ps, OP_LAST);
|
||
write_exp_elt_longcst (ps, (LONGEST) i);
|
||
write_exp_elt_opcode (ps, OP_LAST);
|
||
return;
|
||
handle_register:
|
||
write_exp_elt_opcode (ps, OP_REGISTER);
|
||
str.length--;
|
||
str.ptr++;
|
||
write_exp_string (ps, str);
|
||
write_exp_elt_opcode (ps, OP_REGISTER);
|
||
return;
|
||
}
|
||
|
||
|
||
const char *
|
||
find_template_name_end (const char *p)
|
||
{
|
||
int depth = 1;
|
||
int just_seen_right = 0;
|
||
int just_seen_colon = 0;
|
||
int just_seen_space = 0;
|
||
|
||
if (!p || (*p != '<'))
|
||
return 0;
|
||
|
||
while (*++p)
|
||
{
|
||
switch (*p)
|
||
{
|
||
case '\'':
|
||
case '\"':
|
||
case '{':
|
||
case '}':
|
||
/* In future, may want to allow these?? */
|
||
return 0;
|
||
case '<':
|
||
depth++; /* start nested template */
|
||
if (just_seen_colon || just_seen_right || just_seen_space)
|
||
return 0; /* but not after : or :: or > or space */
|
||
break;
|
||
case '>':
|
||
if (just_seen_colon || just_seen_right)
|
||
return 0; /* end a (nested?) template */
|
||
just_seen_right = 1; /* but not after : or :: */
|
||
if (--depth == 0) /* also disallow >>, insist on > > */
|
||
return ++p; /* if outermost ended, return */
|
||
break;
|
||
case ':':
|
||
if (just_seen_space || (just_seen_colon > 1))
|
||
return 0; /* nested class spec coming up */
|
||
just_seen_colon++; /* we allow :: but not :::: */
|
||
break;
|
||
case ' ':
|
||
break;
|
||
default:
|
||
if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */
|
||
(*p >= 'A' && *p <= 'Z') ||
|
||
(*p >= '0' && *p <= '9') ||
|
||
(*p == '_') || (*p == ',') || /* commas for template args */
|
||
(*p == '&') || (*p == '*') || /* pointer and ref types */
|
||
(*p == '(') || (*p == ')') || /* function types */
|
||
(*p == '[') || (*p == ']'))) /* array types */
|
||
return 0;
|
||
}
|
||
if (*p != ' ')
|
||
just_seen_space = 0;
|
||
if (*p != ':')
|
||
just_seen_colon = 0;
|
||
if (*p != '>')
|
||
just_seen_right = 0;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Return a null-terminated temporary copy of the name of a string token.
|
||
|
||
Tokens that refer to names do so with explicit pointer and length,
|
||
so they can share the storage that lexptr is parsing.
|
||
When it is necessary to pass a name to a function that expects
|
||
a null-terminated string, the substring is copied out
|
||
into a separate block of storage.
|
||
|
||
N.B. A single buffer is reused on each call. */
|
||
|
||
char *
|
||
copy_name (struct stoken token)
|
||
{
|
||
/* A temporary buffer for identifiers, so we can null-terminate them.
|
||
We allocate this with xrealloc. parse_exp_1 used to allocate with
|
||
alloca, using the size of the whole expression as a conservative
|
||
estimate of the space needed. However, macro expansion can
|
||
introduce names longer than the original expression; there's no
|
||
practical way to know beforehand how large that might be. */
|
||
static char *namecopy;
|
||
static size_t namecopy_size;
|
||
|
||
/* Make sure there's enough space for the token. */
|
||
if (namecopy_size < token.length + 1)
|
||
{
|
||
namecopy_size = token.length + 1;
|
||
namecopy = xrealloc (namecopy, token.length + 1);
|
||
}
|
||
|
||
memcpy (namecopy, token.ptr, token.length);
|
||
namecopy[token.length] = 0;
|
||
|
||
return namecopy;
|
||
}
|
||
|
||
|
||
/* See comments on parser-defs.h. */
|
||
|
||
int
|
||
prefixify_expression (struct expression *expr)
|
||
{
|
||
int len = sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
|
||
struct expression *temp;
|
||
int inpos = expr->nelts, outpos = 0;
|
||
|
||
temp = (struct expression *) alloca (len);
|
||
|
||
/* Copy the original expression into temp. */
|
||
memcpy (temp, expr, len);
|
||
|
||
return prefixify_subexp (temp, expr, inpos, outpos);
|
||
}
|
||
|
||
/* Return the number of exp_elements in the postfix subexpression
|
||
of EXPR whose operator is at index ENDPOS - 1 in EXPR. */
|
||
|
||
int
|
||
length_of_subexp (struct expression *expr, int endpos)
|
||
{
|
||
int oplen, args;
|
||
|
||
operator_length (expr, endpos, &oplen, &args);
|
||
|
||
while (args > 0)
|
||
{
|
||
oplen += length_of_subexp (expr, endpos - oplen);
|
||
args--;
|
||
}
|
||
|
||
return oplen;
|
||
}
|
||
|
||
/* Sets *OPLENP to the length of the operator whose (last) index is
|
||
ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that
|
||
operator takes. */
|
||
|
||
void
|
||
operator_length (const struct expression *expr, int endpos, int *oplenp,
|
||
int *argsp)
|
||
{
|
||
expr->language_defn->la_exp_desc->operator_length (expr, endpos,
|
||
oplenp, argsp);
|
||
}
|
||
|
||
/* Default value for operator_length in exp_descriptor vectors. */
|
||
|
||
void
|
||
operator_length_standard (const struct expression *expr, int endpos,
|
||
int *oplenp, int *argsp)
|
||
{
|
||
int oplen = 1;
|
||
int args = 0;
|
||
enum f90_range_type range_type;
|
||
int i;
|
||
|
||
if (endpos < 1)
|
||
error (_("?error in operator_length_standard"));
|
||
|
||
i = (int) expr->elts[endpos - 1].opcode;
|
||
|
||
switch (i)
|
||
{
|
||
/* C++ */
|
||
case OP_SCOPE:
|
||
oplen = longest_to_int (expr->elts[endpos - 2].longconst);
|
||
oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
|
||
break;
|
||
|
||
case OP_LONG:
|
||
case OP_DOUBLE:
|
||
case OP_DECFLOAT:
|
||
case OP_VAR_VALUE:
|
||
oplen = 4;
|
||
break;
|
||
|
||
case OP_TYPE:
|
||
case OP_BOOL:
|
||
case OP_LAST:
|
||
case OP_INTERNALVAR:
|
||
case OP_VAR_ENTRY_VALUE:
|
||
oplen = 3;
|
||
break;
|
||
|
||
case OP_COMPLEX:
|
||
oplen = 3;
|
||
args = 2;
|
||
break;
|
||
|
||
case OP_FUNCALL:
|
||
case OP_F77_UNDETERMINED_ARGLIST:
|
||
oplen = 3;
|
||
args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
|
||
break;
|
||
|
||
case TYPE_INSTANCE:
|
||
oplen = 4 + longest_to_int (expr->elts[endpos - 2].longconst);
|
||
args = 1;
|
||
break;
|
||
|
||
case OP_OBJC_MSGCALL: /* Objective C message (method) call. */
|
||
oplen = 4;
|
||
args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
|
||
break;
|
||
|
||
case UNOP_MAX:
|
||
case UNOP_MIN:
|
||
oplen = 3;
|
||
break;
|
||
|
||
case UNOP_CAST_TYPE:
|
||
case UNOP_DYNAMIC_CAST:
|
||
case UNOP_REINTERPRET_CAST:
|
||
case UNOP_MEMVAL_TYPE:
|
||
oplen = 1;
|
||
args = 2;
|
||
break;
|
||
|
||
case BINOP_VAL:
|
||
case UNOP_CAST:
|
||
case UNOP_MEMVAL:
|
||
oplen = 3;
|
||
args = 1;
|
||
break;
|
||
|
||
case UNOP_MEMVAL_TLS:
|
||
oplen = 4;
|
||
args = 1;
|
||
break;
|
||
|
||
case UNOP_ABS:
|
||
case UNOP_CAP:
|
||
case UNOP_CHR:
|
||
case UNOP_FLOAT:
|
||
case UNOP_HIGH:
|
||
case UNOP_ODD:
|
||
case UNOP_ORD:
|
||
case UNOP_TRUNC:
|
||
case OP_TYPEOF:
|
||
case OP_DECLTYPE:
|
||
case OP_TYPEID:
|
||
oplen = 1;
|
||
args = 1;
|
||
break;
|
||
|
||
case OP_ADL_FUNC:
|
||
oplen = longest_to_int (expr->elts[endpos - 2].longconst);
|
||
oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
|
||
oplen++;
|
||
oplen++;
|
||
break;
|
||
|
||
case STRUCTOP_STRUCT:
|
||
case STRUCTOP_PTR:
|
||
args = 1;
|
||
/* fall through */
|
||
case OP_REGISTER:
|
||
case OP_M2_STRING:
|
||
case OP_STRING:
|
||
case OP_OBJC_NSSTRING: /* Objective C Foundation Class
|
||
NSString constant. */
|
||
case OP_OBJC_SELECTOR: /* Objective C "@selector" pseudo-op. */
|
||
case OP_NAME:
|
||
oplen = longest_to_int (expr->elts[endpos - 2].longconst);
|
||
oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
|
||
break;
|
||
|
||
case OP_ARRAY:
|
||
oplen = 4;
|
||
args = longest_to_int (expr->elts[endpos - 2].longconst);
|
||
args -= longest_to_int (expr->elts[endpos - 3].longconst);
|
||
args += 1;
|
||
break;
|
||
|
||
case TERNOP_COND:
|
||
case TERNOP_SLICE:
|
||
args = 3;
|
||
break;
|
||
|
||
/* Modula-2 */
|
||
case MULTI_SUBSCRIPT:
|
||
oplen = 3;
|
||
args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
|
||
break;
|
||
|
||
case BINOP_ASSIGN_MODIFY:
|
||
oplen = 3;
|
||
args = 2;
|
||
break;
|
||
|
||
/* C++ */
|
||
case OP_THIS:
|
||
oplen = 2;
|
||
break;
|
||
|
||
case OP_F90_RANGE:
|
||
oplen = 3;
|
||
|
||
range_type = longest_to_int (expr->elts[endpos - 2].longconst);
|
||
switch (range_type)
|
||
{
|
||
case LOW_BOUND_DEFAULT:
|
||
case HIGH_BOUND_DEFAULT:
|
||
args = 1;
|
||
break;
|
||
case BOTH_BOUND_DEFAULT:
|
||
args = 0;
|
||
break;
|
||
case NONE_BOUND_DEFAULT:
|
||
args = 2;
|
||
break;
|
||
}
|
||
|
||
break;
|
||
|
||
default:
|
||
args = 1 + (i < (int) BINOP_END);
|
||
}
|
||
|
||
*oplenp = oplen;
|
||
*argsp = args;
|
||
}
|
||
|
||
/* Copy the subexpression ending just before index INEND in INEXPR
|
||
into OUTEXPR, starting at index OUTBEG.
|
||
In the process, convert it from suffix to prefix form.
|
||
If EXPOUT_LAST_STRUCT is -1, then this function always returns -1.
|
||
Otherwise, it returns the index of the subexpression which is the
|
||
left-hand-side of the expression at EXPOUT_LAST_STRUCT. */
|
||
|
||
static int
|
||
prefixify_subexp (struct expression *inexpr,
|
||
struct expression *outexpr, int inend, int outbeg)
|
||
{
|
||
int oplen;
|
||
int args;
|
||
int i;
|
||
int *arglens;
|
||
int result = -1;
|
||
|
||
operator_length (inexpr, inend, &oplen, &args);
|
||
|
||
/* Copy the final operator itself, from the end of the input
|
||
to the beginning of the output. */
|
||
inend -= oplen;
|
||
memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
|
||
EXP_ELEM_TO_BYTES (oplen));
|
||
outbeg += oplen;
|
||
|
||
if (expout_last_struct == inend)
|
||
result = outbeg - oplen;
|
||
|
||
/* Find the lengths of the arg subexpressions. */
|
||
arglens = (int *) alloca (args * sizeof (int));
|
||
for (i = args - 1; i >= 0; i--)
|
||
{
|
||
oplen = length_of_subexp (inexpr, inend);
|
||
arglens[i] = oplen;
|
||
inend -= oplen;
|
||
}
|
||
|
||
/* Now copy each subexpression, preserving the order of
|
||
the subexpressions, but prefixifying each one.
|
||
In this loop, inend starts at the beginning of
|
||
the expression this level is working on
|
||
and marches forward over the arguments.
|
||
outbeg does similarly in the output. */
|
||
for (i = 0; i < args; i++)
|
||
{
|
||
int r;
|
||
|
||
oplen = arglens[i];
|
||
inend += oplen;
|
||
r = prefixify_subexp (inexpr, outexpr, inend, outbeg);
|
||
if (r != -1)
|
||
{
|
||
/* Return immediately. We probably have only parsed a
|
||
partial expression, so we don't want to try to reverse
|
||
the other operands. */
|
||
return r;
|
||
}
|
||
outbeg += oplen;
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Read an expression from the string *STRINGPTR points to,
|
||
parse it, and return a pointer to a struct expression that we malloc.
|
||
Use block BLOCK as the lexical context for variable names;
|
||
if BLOCK is zero, use the block of the selected stack frame.
|
||
Meanwhile, advance *STRINGPTR to point after the expression,
|
||
at the first nonwhite character that is not part of the expression
|
||
(possibly a null character).
|
||
|
||
If COMMA is nonzero, stop if a comma is reached. */
|
||
|
||
struct expression *
|
||
parse_exp_1 (const char **stringptr, CORE_ADDR pc, const struct block *block,
|
||
int comma)
|
||
{
|
||
return parse_exp_in_context (stringptr, pc, block, comma, 0, NULL);
|
||
}
|
||
|
||
static struct expression *
|
||
parse_exp_in_context (const char **stringptr, CORE_ADDR pc,
|
||
const struct block *block,
|
||
int comma, int void_context_p, int *out_subexp)
|
||
{
|
||
return parse_exp_in_context_1 (stringptr, pc, block, comma,
|
||
void_context_p, out_subexp);
|
||
}
|
||
|
||
/* As for parse_exp_1, except that if VOID_CONTEXT_P, then
|
||
no value is expected from the expression.
|
||
OUT_SUBEXP is set when attempting to complete a field name; in this
|
||
case it is set to the index of the subexpression on the
|
||
left-hand-side of the struct op. If not doing such completion, it
|
||
is left untouched. */
|
||
|
||
static struct expression *
|
||
parse_exp_in_context_1 (const char **stringptr, CORE_ADDR pc,
|
||
const struct block *block,
|
||
int comma, int void_context_p, int *out_subexp)
|
||
{
|
||
volatile struct gdb_exception except;
|
||
struct cleanup *old_chain, *inner_chain;
|
||
const struct language_defn *lang = NULL;
|
||
struct parser_state ps;
|
||
int subexp;
|
||
|
||
lexptr = *stringptr;
|
||
prev_lexptr = NULL;
|
||
|
||
paren_depth = 0;
|
||
type_stack.depth = 0;
|
||
expout_last_struct = -1;
|
||
expout_tag_completion_type = TYPE_CODE_UNDEF;
|
||
xfree (expout_completion_name);
|
||
expout_completion_name = NULL;
|
||
|
||
comma_terminates = comma;
|
||
|
||
if (lexptr == 0 || *lexptr == 0)
|
||
error_no_arg (_("expression to compute"));
|
||
|
||
old_chain = make_cleanup (free_funcalls, 0 /*ignore*/);
|
||
funcall_chain = 0;
|
||
|
||
expression_context_block = block;
|
||
|
||
/* If no context specified, try using the current frame, if any. */
|
||
if (!expression_context_block)
|
||
expression_context_block = get_selected_block (&expression_context_pc);
|
||
else if (pc == 0)
|
||
expression_context_pc = BLOCK_START (expression_context_block);
|
||
else
|
||
expression_context_pc = pc;
|
||
|
||
/* Fall back to using the current source static context, if any. */
|
||
|
||
if (!expression_context_block)
|
||
{
|
||
struct symtab_and_line cursal = get_current_source_symtab_and_line ();
|
||
if (cursal.symtab)
|
||
expression_context_block
|
||
= BLOCKVECTOR_BLOCK (BLOCKVECTOR (cursal.symtab), STATIC_BLOCK);
|
||
if (expression_context_block)
|
||
expression_context_pc = BLOCK_START (expression_context_block);
|
||
}
|
||
|
||
if (language_mode == language_mode_auto && block != NULL)
|
||
{
|
||
/* Find the language associated to the given context block.
|
||
Default to the current language if it can not be determined.
|
||
|
||
Note that using the language corresponding to the current frame
|
||
can sometimes give unexpected results. For instance, this
|
||
routine is often called several times during the inferior
|
||
startup phase to re-parse breakpoint expressions after
|
||
a new shared library has been loaded. The language associated
|
||
to the current frame at this moment is not relevant for
|
||
the breakpoint. Using it would therefore be silly, so it seems
|
||
better to rely on the current language rather than relying on
|
||
the current frame language to parse the expression. That's why
|
||
we do the following language detection only if the context block
|
||
has been specifically provided. */
|
||
struct symbol *func = block_linkage_function (block);
|
||
|
||
if (func != NULL)
|
||
lang = language_def (SYMBOL_LANGUAGE (func));
|
||
if (lang == NULL || lang->la_language == language_unknown)
|
||
lang = current_language;
|
||
}
|
||
else
|
||
lang = current_language;
|
||
|
||
/* get_current_arch may reset CURRENT_LANGUAGE via select_frame.
|
||
While we need CURRENT_LANGUAGE to be set to LANG (for lookup_symbol
|
||
and others called from *.y) ensure CURRENT_LANGUAGE gets restored
|
||
to the value matching SELECTED_FRAME as set by get_current_arch. */
|
||
|
||
initialize_expout (&ps, 10, lang, get_current_arch ());
|
||
inner_chain = make_cleanup_restore_current_language ();
|
||
set_language (lang->la_language);
|
||
|
||
TRY_CATCH (except, RETURN_MASK_ALL)
|
||
{
|
||
if (lang->la_parser (&ps))
|
||
lang->la_error (NULL);
|
||
}
|
||
if (except.reason < 0)
|
||
{
|
||
if (! parse_completion)
|
||
{
|
||
xfree (ps.expout);
|
||
throw_exception (except);
|
||
}
|
||
}
|
||
|
||
reallocate_expout (&ps);
|
||
|
||
/* Convert expression from postfix form as generated by yacc
|
||
parser, to a prefix form. */
|
||
|
||
if (expressiondebug)
|
||
dump_raw_expression (ps.expout, gdb_stdlog,
|
||
"before conversion to prefix form");
|
||
|
||
subexp = prefixify_expression (ps.expout);
|
||
if (out_subexp)
|
||
*out_subexp = subexp;
|
||
|
||
lang->la_post_parser (&ps.expout, void_context_p);
|
||
|
||
if (expressiondebug)
|
||
dump_prefix_expression (ps.expout, gdb_stdlog);
|
||
|
||
do_cleanups (inner_chain);
|
||
discard_cleanups (old_chain);
|
||
|
||
*stringptr = lexptr;
|
||
return ps.expout;
|
||
}
|
||
|
||
/* Parse STRING as an expression, and complain if this fails
|
||
to use up all of the contents of STRING. */
|
||
|
||
struct expression *
|
||
parse_expression (const char *string)
|
||
{
|
||
struct expression *exp;
|
||
|
||
exp = parse_exp_1 (&string, 0, 0, 0);
|
||
if (*string)
|
||
error (_("Junk after end of expression."));
|
||
return exp;
|
||
}
|
||
|
||
/* Parse STRING as an expression. If parsing ends in the middle of a
|
||
field reference, return the type of the left-hand-side of the
|
||
reference; furthermore, if the parsing ends in the field name,
|
||
return the field name in *NAME. If the parsing ends in the middle
|
||
of a field reference, but the reference is somehow invalid, throw
|
||
an exception. In all other cases, return NULL. Returned non-NULL
|
||
*NAME must be freed by the caller. */
|
||
|
||
struct type *
|
||
parse_expression_for_completion (const char *string, char **name,
|
||
enum type_code *code)
|
||
{
|
||
struct expression *exp = NULL;
|
||
struct value *val;
|
||
int subexp;
|
||
volatile struct gdb_exception except;
|
||
|
||
TRY_CATCH (except, RETURN_MASK_ERROR)
|
||
{
|
||
parse_completion = 1;
|
||
exp = parse_exp_in_context (&string, 0, 0, 0, 0, &subexp);
|
||
}
|
||
parse_completion = 0;
|
||
if (except.reason < 0 || ! exp)
|
||
return NULL;
|
||
|
||
if (expout_tag_completion_type != TYPE_CODE_UNDEF)
|
||
{
|
||
*code = expout_tag_completion_type;
|
||
*name = expout_completion_name;
|
||
expout_completion_name = NULL;
|
||
return NULL;
|
||
}
|
||
|
||
if (expout_last_struct == -1)
|
||
{
|
||
xfree (exp);
|
||
return NULL;
|
||
}
|
||
|
||
*name = extract_field_op (exp, &subexp);
|
||
if (!*name)
|
||
{
|
||
xfree (exp);
|
||
return NULL;
|
||
}
|
||
|
||
/* This might throw an exception. If so, we want to let it
|
||
propagate. */
|
||
val = evaluate_subexpression_type (exp, subexp);
|
||
/* (*NAME) is a part of the EXP memory block freed below. */
|
||
*name = xstrdup (*name);
|
||
xfree (exp);
|
||
|
||
return value_type (val);
|
||
}
|
||
|
||
/* A post-parser that does nothing. */
|
||
|
||
void
|
||
null_post_parser (struct expression **exp, int void_context_p)
|
||
{
|
||
}
|
||
|
||
/* Parse floating point value P of length LEN.
|
||
Return 0 (false) if invalid, 1 (true) if valid.
|
||
The successfully parsed number is stored in D.
|
||
*SUFFIX points to the suffix of the number in P.
|
||
|
||
NOTE: This accepts the floating point syntax that sscanf accepts. */
|
||
|
||
int
|
||
parse_float (const char *p, int len, DOUBLEST *d, const char **suffix)
|
||
{
|
||
char *copy;
|
||
int n, num;
|
||
|
||
copy = xmalloc (len + 1);
|
||
memcpy (copy, p, len);
|
||
copy[len] = 0;
|
||
|
||
num = sscanf (copy, "%" DOUBLEST_SCAN_FORMAT "%n", d, &n);
|
||
xfree (copy);
|
||
|
||
/* The sscanf man page suggests not making any assumptions on the effect
|
||
of %n on the result, so we don't.
|
||
That is why we simply test num == 0. */
|
||
if (num == 0)
|
||
return 0;
|
||
|
||
*suffix = p + n;
|
||
return 1;
|
||
}
|
||
|
||
/* Parse floating point value P of length LEN, using the C syntax for floats.
|
||
Return 0 (false) if invalid, 1 (true) if valid.
|
||
The successfully parsed number is stored in *D.
|
||
Its type is taken from builtin_type (gdbarch) and is stored in *T. */
|
||
|
||
int
|
||
parse_c_float (struct gdbarch *gdbarch, const char *p, int len,
|
||
DOUBLEST *d, struct type **t)
|
||
{
|
||
const char *suffix;
|
||
int suffix_len;
|
||
const struct builtin_type *builtin_types = builtin_type (gdbarch);
|
||
|
||
if (! parse_float (p, len, d, &suffix))
|
||
return 0;
|
||
|
||
suffix_len = p + len - suffix;
|
||
|
||
if (suffix_len == 0)
|
||
*t = builtin_types->builtin_double;
|
||
else if (suffix_len == 1)
|
||
{
|
||
/* Handle suffixes: 'f' for float, 'l' for long double. */
|
||
if (tolower (*suffix) == 'f')
|
||
*t = builtin_types->builtin_float;
|
||
else if (tolower (*suffix) == 'l')
|
||
*t = builtin_types->builtin_long_double;
|
||
else
|
||
return 0;
|
||
}
|
||
else
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Stuff for maintaining a stack of types. Currently just used by C, but
|
||
probably useful for any language which declares its types "backwards". */
|
||
|
||
/* Ensure that there are HOWMUCH open slots on the type stack STACK. */
|
||
|
||
static void
|
||
type_stack_reserve (struct type_stack *stack, int howmuch)
|
||
{
|
||
if (stack->depth + howmuch >= stack->size)
|
||
{
|
||
stack->size *= 2;
|
||
if (stack->size < howmuch)
|
||
stack->size = howmuch;
|
||
stack->elements = xrealloc (stack->elements,
|
||
stack->size * sizeof (union type_stack_elt));
|
||
}
|
||
}
|
||
|
||
/* Ensure that there is a single open slot in the global type stack. */
|
||
|
||
static void
|
||
check_type_stack_depth (void)
|
||
{
|
||
type_stack_reserve (&type_stack, 1);
|
||
}
|
||
|
||
/* A helper function for insert_type and insert_type_address_space.
|
||
This does work of expanding the type stack and inserting the new
|
||
element, ELEMENT, into the stack at location SLOT. */
|
||
|
||
static void
|
||
insert_into_type_stack (int slot, union type_stack_elt element)
|
||
{
|
||
check_type_stack_depth ();
|
||
|
||
if (slot < type_stack.depth)
|
||
memmove (&type_stack.elements[slot + 1], &type_stack.elements[slot],
|
||
(type_stack.depth - slot) * sizeof (union type_stack_elt));
|
||
type_stack.elements[slot] = element;
|
||
++type_stack.depth;
|
||
}
|
||
|
||
/* Insert a new type, TP, at the bottom of the type stack. If TP is
|
||
tp_pointer or tp_reference, it is inserted at the bottom. If TP is
|
||
a qualifier, it is inserted at slot 1 (just above a previous
|
||
tp_pointer) if there is anything on the stack, or simply pushed if
|
||
the stack is empty. Other values for TP are invalid. */
|
||
|
||
void
|
||
insert_type (enum type_pieces tp)
|
||
{
|
||
union type_stack_elt element;
|
||
int slot;
|
||
|
||
gdb_assert (tp == tp_pointer || tp == tp_reference
|
||
|| tp == tp_const || tp == tp_volatile);
|
||
|
||
/* If there is anything on the stack (we know it will be a
|
||
tp_pointer), insert the qualifier above it. Otherwise, simply
|
||
push this on the top of the stack. */
|
||
if (type_stack.depth && (tp == tp_const || tp == tp_volatile))
|
||
slot = 1;
|
||
else
|
||
slot = 0;
|
||
|
||
element.piece = tp;
|
||
insert_into_type_stack (slot, element);
|
||
}
|
||
|
||
void
|
||
push_type (enum type_pieces tp)
|
||
{
|
||
check_type_stack_depth ();
|
||
type_stack.elements[type_stack.depth++].piece = tp;
|
||
}
|
||
|
||
void
|
||
push_type_int (int n)
|
||
{
|
||
check_type_stack_depth ();
|
||
type_stack.elements[type_stack.depth++].int_val = n;
|
||
}
|
||
|
||
/* Insert a tp_space_identifier and the corresponding address space
|
||
value into the stack. STRING is the name of an address space, as
|
||
recognized by address_space_name_to_int. If the stack is empty,
|
||
the new elements are simply pushed. If the stack is not empty,
|
||
this function assumes that the first item on the stack is a
|
||
tp_pointer, and the new values are inserted above the first
|
||
item. */
|
||
|
||
void
|
||
insert_type_address_space (struct parser_state *pstate, char *string)
|
||
{
|
||
union type_stack_elt element;
|
||
int slot;
|
||
|
||
/* If there is anything on the stack (we know it will be a
|
||
tp_pointer), insert the address space qualifier above it.
|
||
Otherwise, simply push this on the top of the stack. */
|
||
if (type_stack.depth)
|
||
slot = 1;
|
||
else
|
||
slot = 0;
|
||
|
||
element.piece = tp_space_identifier;
|
||
insert_into_type_stack (slot, element);
|
||
element.int_val = address_space_name_to_int (parse_gdbarch (pstate),
|
||
string);
|
||
insert_into_type_stack (slot, element);
|
||
}
|
||
|
||
enum type_pieces
|
||
pop_type (void)
|
||
{
|
||
if (type_stack.depth)
|
||
return type_stack.elements[--type_stack.depth].piece;
|
||
return tp_end;
|
||
}
|
||
|
||
int
|
||
pop_type_int (void)
|
||
{
|
||
if (type_stack.depth)
|
||
return type_stack.elements[--type_stack.depth].int_val;
|
||
/* "Can't happen". */
|
||
return 0;
|
||
}
|
||
|
||
/* Pop a type list element from the global type stack. */
|
||
|
||
static VEC (type_ptr) *
|
||
pop_typelist (void)
|
||
{
|
||
gdb_assert (type_stack.depth);
|
||
return type_stack.elements[--type_stack.depth].typelist_val;
|
||
}
|
||
|
||
/* Pop a type_stack element from the global type stack. */
|
||
|
||
static struct type_stack *
|
||
pop_type_stack (void)
|
||
{
|
||
gdb_assert (type_stack.depth);
|
||
return type_stack.elements[--type_stack.depth].stack_val;
|
||
}
|
||
|
||
/* Append the elements of the type stack FROM to the type stack TO.
|
||
Always returns TO. */
|
||
|
||
struct type_stack *
|
||
append_type_stack (struct type_stack *to, struct type_stack *from)
|
||
{
|
||
type_stack_reserve (to, from->depth);
|
||
|
||
memcpy (&to->elements[to->depth], &from->elements[0],
|
||
from->depth * sizeof (union type_stack_elt));
|
||
to->depth += from->depth;
|
||
|
||
return to;
|
||
}
|
||
|
||
/* Push the type stack STACK as an element on the global type stack. */
|
||
|
||
void
|
||
push_type_stack (struct type_stack *stack)
|
||
{
|
||
check_type_stack_depth ();
|
||
type_stack.elements[type_stack.depth++].stack_val = stack;
|
||
push_type (tp_type_stack);
|
||
}
|
||
|
||
/* Copy the global type stack into a newly allocated type stack and
|
||
return it. The global stack is cleared. The returned type stack
|
||
must be freed with type_stack_cleanup. */
|
||
|
||
struct type_stack *
|
||
get_type_stack (void)
|
||
{
|
||
struct type_stack *result = XNEW (struct type_stack);
|
||
|
||
*result = type_stack;
|
||
type_stack.depth = 0;
|
||
type_stack.size = 0;
|
||
type_stack.elements = NULL;
|
||
|
||
return result;
|
||
}
|
||
|
||
/* A cleanup function that destroys a single type stack. */
|
||
|
||
void
|
||
type_stack_cleanup (void *arg)
|
||
{
|
||
struct type_stack *stack = arg;
|
||
|
||
xfree (stack->elements);
|
||
xfree (stack);
|
||
}
|
||
|
||
/* Push a function type with arguments onto the global type stack.
|
||
LIST holds the argument types. If the final item in LIST is NULL,
|
||
then the function will be varargs. */
|
||
|
||
void
|
||
push_typelist (VEC (type_ptr) *list)
|
||
{
|
||
check_type_stack_depth ();
|
||
type_stack.elements[type_stack.depth++].typelist_val = list;
|
||
push_type (tp_function_with_arguments);
|
||
}
|
||
|
||
/* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
|
||
as modified by all the stuff on the stack. */
|
||
struct type *
|
||
follow_types (struct type *follow_type)
|
||
{
|
||
int done = 0;
|
||
int make_const = 0;
|
||
int make_volatile = 0;
|
||
int make_addr_space = 0;
|
||
int array_size;
|
||
|
||
while (!done)
|
||
switch (pop_type ())
|
||
{
|
||
case tp_end:
|
||
done = 1;
|
||
if (make_const)
|
||
follow_type = make_cv_type (make_const,
|
||
TYPE_VOLATILE (follow_type),
|
||
follow_type, 0);
|
||
if (make_volatile)
|
||
follow_type = make_cv_type (TYPE_CONST (follow_type),
|
||
make_volatile,
|
||
follow_type, 0);
|
||
if (make_addr_space)
|
||
follow_type = make_type_with_address_space (follow_type,
|
||
make_addr_space);
|
||
make_const = make_volatile = 0;
|
||
make_addr_space = 0;
|
||
break;
|
||
case tp_const:
|
||
make_const = 1;
|
||
break;
|
||
case tp_volatile:
|
||
make_volatile = 1;
|
||
break;
|
||
case tp_space_identifier:
|
||
make_addr_space = pop_type_int ();
|
||
break;
|
||
case tp_pointer:
|
||
follow_type = lookup_pointer_type (follow_type);
|
||
if (make_const)
|
||
follow_type = make_cv_type (make_const,
|
||
TYPE_VOLATILE (follow_type),
|
||
follow_type, 0);
|
||
if (make_volatile)
|
||
follow_type = make_cv_type (TYPE_CONST (follow_type),
|
||
make_volatile,
|
||
follow_type, 0);
|
||
if (make_addr_space)
|
||
follow_type = make_type_with_address_space (follow_type,
|
||
make_addr_space);
|
||
make_const = make_volatile = 0;
|
||
make_addr_space = 0;
|
||
break;
|
||
case tp_reference:
|
||
follow_type = lookup_reference_type (follow_type);
|
||
if (make_const)
|
||
follow_type = make_cv_type (make_const,
|
||
TYPE_VOLATILE (follow_type),
|
||
follow_type, 0);
|
||
if (make_volatile)
|
||
follow_type = make_cv_type (TYPE_CONST (follow_type),
|
||
make_volatile,
|
||
follow_type, 0);
|
||
if (make_addr_space)
|
||
follow_type = make_type_with_address_space (follow_type,
|
||
make_addr_space);
|
||
make_const = make_volatile = 0;
|
||
make_addr_space = 0;
|
||
break;
|
||
case tp_array:
|
||
array_size = pop_type_int ();
|
||
/* FIXME-type-allocation: need a way to free this type when we are
|
||
done with it. */
|
||
follow_type =
|
||
lookup_array_range_type (follow_type,
|
||
0, array_size >= 0 ? array_size - 1 : 0);
|
||
if (array_size < 0)
|
||
TYPE_HIGH_BOUND_KIND (TYPE_INDEX_TYPE (follow_type))
|
||
= PROP_UNDEFINED;
|
||
break;
|
||
case tp_function:
|
||
/* FIXME-type-allocation: need a way to free this type when we are
|
||
done with it. */
|
||
follow_type = lookup_function_type (follow_type);
|
||
break;
|
||
|
||
case tp_function_with_arguments:
|
||
{
|
||
VEC (type_ptr) *args = pop_typelist ();
|
||
|
||
follow_type
|
||
= lookup_function_type_with_arguments (follow_type,
|
||
VEC_length (type_ptr, args),
|
||
VEC_address (type_ptr,
|
||
args));
|
||
VEC_free (type_ptr, args);
|
||
}
|
||
break;
|
||
|
||
case tp_type_stack:
|
||
{
|
||
struct type_stack *stack = pop_type_stack ();
|
||
/* Sort of ugly, but not really much worse than the
|
||
alternatives. */
|
||
struct type_stack save = type_stack;
|
||
|
||
type_stack = *stack;
|
||
follow_type = follow_types (follow_type);
|
||
gdb_assert (type_stack.depth == 0);
|
||
|
||
type_stack = save;
|
||
}
|
||
break;
|
||
default:
|
||
gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
|
||
}
|
||
return follow_type;
|
||
}
|
||
|
||
/* This function avoids direct calls to fprintf
|
||
in the parser generated debug code. */
|
||
void
|
||
parser_fprintf (FILE *x, const char *y, ...)
|
||
{
|
||
va_list args;
|
||
|
||
va_start (args, y);
|
||
if (x == stderr)
|
||
vfprintf_unfiltered (gdb_stderr, y, args);
|
||
else
|
||
{
|
||
fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n");
|
||
vfprintf_unfiltered (gdb_stderr, y, args);
|
||
}
|
||
va_end (args);
|
||
}
|
||
|
||
/* Implementation of the exp_descriptor method operator_check. */
|
||
|
||
int
|
||
operator_check_standard (struct expression *exp, int pos,
|
||
int (*objfile_func) (struct objfile *objfile,
|
||
void *data),
|
||
void *data)
|
||
{
|
||
const union exp_element *const elts = exp->elts;
|
||
struct type *type = NULL;
|
||
struct objfile *objfile = NULL;
|
||
|
||
/* Extended operators should have been already handled by exp_descriptor
|
||
iterate method of its specific language. */
|
||
gdb_assert (elts[pos].opcode < OP_EXTENDED0);
|
||
|
||
/* Track the callers of write_exp_elt_type for this table. */
|
||
|
||
switch (elts[pos].opcode)
|
||
{
|
||
case BINOP_VAL:
|
||
case OP_COMPLEX:
|
||
case OP_DECFLOAT:
|
||
case OP_DOUBLE:
|
||
case OP_LONG:
|
||
case OP_SCOPE:
|
||
case OP_TYPE:
|
||
case UNOP_CAST:
|
||
case UNOP_MAX:
|
||
case UNOP_MEMVAL:
|
||
case UNOP_MIN:
|
||
type = elts[pos + 1].type;
|
||
break;
|
||
|
||
case TYPE_INSTANCE:
|
||
{
|
||
LONGEST arg, nargs = elts[pos + 1].longconst;
|
||
|
||
for (arg = 0; arg < nargs; arg++)
|
||
{
|
||
struct type *type = elts[pos + 2 + arg].type;
|
||
struct objfile *objfile = TYPE_OBJFILE (type);
|
||
|
||
if (objfile && (*objfile_func) (objfile, data))
|
||
return 1;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case UNOP_MEMVAL_TLS:
|
||
objfile = elts[pos + 1].objfile;
|
||
type = elts[pos + 2].type;
|
||
break;
|
||
|
||
case OP_VAR_VALUE:
|
||
{
|
||
const struct block *const block = elts[pos + 1].block;
|
||
const struct symbol *const symbol = elts[pos + 2].symbol;
|
||
|
||
/* Check objfile where the variable itself is placed.
|
||
SYMBOL_OBJ_SECTION (symbol) may be NULL. */
|
||
if ((*objfile_func) (SYMBOL_SYMTAB (symbol)->objfile, data))
|
||
return 1;
|
||
|
||
/* Check objfile where is placed the code touching the variable. */
|
||
objfile = lookup_objfile_from_block (block);
|
||
|
||
type = SYMBOL_TYPE (symbol);
|
||
}
|
||
break;
|
||
}
|
||
|
||
/* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
|
||
|
||
if (type && TYPE_OBJFILE (type)
|
||
&& (*objfile_func) (TYPE_OBJFILE (type), data))
|
||
return 1;
|
||
if (objfile && (*objfile_func) (objfile, data))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Call OBJFILE_FUNC for any TYPE and OBJFILE found being referenced by EXP.
|
||
The functions are never called with NULL OBJFILE. Functions get passed an
|
||
arbitrary caller supplied DATA pointer. If any of the functions returns
|
||
non-zero value then (any other) non-zero value is immediately returned to
|
||
the caller. Otherwise zero is returned after iterating through whole EXP.
|
||
*/
|
||
|
||
static int
|
||
exp_iterate (struct expression *exp,
|
||
int (*objfile_func) (struct objfile *objfile, void *data),
|
||
void *data)
|
||
{
|
||
int endpos;
|
||
|
||
for (endpos = exp->nelts; endpos > 0; )
|
||
{
|
||
int pos, args, oplen = 0;
|
||
|
||
operator_length (exp, endpos, &oplen, &args);
|
||
gdb_assert (oplen > 0);
|
||
|
||
pos = endpos - oplen;
|
||
if (exp->language_defn->la_exp_desc->operator_check (exp, pos,
|
||
objfile_func, data))
|
||
return 1;
|
||
|
||
endpos = pos;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Helper for exp_uses_objfile. */
|
||
|
||
static int
|
||
exp_uses_objfile_iter (struct objfile *exp_objfile, void *objfile_voidp)
|
||
{
|
||
struct objfile *objfile = objfile_voidp;
|
||
|
||
if (exp_objfile->separate_debug_objfile_backlink)
|
||
exp_objfile = exp_objfile->separate_debug_objfile_backlink;
|
||
|
||
return exp_objfile == objfile;
|
||
}
|
||
|
||
/* Return 1 if EXP uses OBJFILE (and will become dangling when OBJFILE
|
||
is unloaded), otherwise return 0. OBJFILE must not be a separate debug info
|
||
file. */
|
||
|
||
int
|
||
exp_uses_objfile (struct expression *exp, struct objfile *objfile)
|
||
{
|
||
gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
|
||
|
||
return exp_iterate (exp, exp_uses_objfile_iter, objfile);
|
||
}
|
||
|
||
/* See definition in parser-defs.h. */
|
||
|
||
void
|
||
increase_expout_size (struct parser_state *ps, size_t lenelt)
|
||
{
|
||
if ((ps->expout_ptr + lenelt) >= ps->expout_size)
|
||
{
|
||
ps->expout_size = max (ps->expout_size * 2,
|
||
ps->expout_ptr + lenelt + 10);
|
||
ps->expout = (struct expression *)
|
||
xrealloc (ps->expout, (sizeof (struct expression)
|
||
+ EXP_ELEM_TO_BYTES (ps->expout_size)));
|
||
}
|
||
}
|
||
|
||
void
|
||
_initialize_parse (void)
|
||
{
|
||
type_stack.size = 0;
|
||
type_stack.depth = 0;
|
||
type_stack.elements = NULL;
|
||
|
||
add_setshow_zuinteger_cmd ("expression", class_maintenance,
|
||
&expressiondebug,
|
||
_("Set expression debugging."),
|
||
_("Show expression debugging."),
|
||
_("When non-zero, the internal representation "
|
||
"of expressions will be printed."),
|
||
NULL,
|
||
show_expressiondebug,
|
||
&setdebuglist, &showdebuglist);
|
||
add_setshow_boolean_cmd ("parser", class_maintenance,
|
||
&parser_debug,
|
||
_("Set parser debugging."),
|
||
_("Show parser debugging."),
|
||
_("When non-zero, expression parser "
|
||
"tracing will be enabled."),
|
||
NULL,
|
||
show_parserdebug,
|
||
&setdebuglist, &showdebuglist);
|
||
}
|