mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-21 04:42:53 +08:00
681 lines
17 KiB
C
681 lines
17 KiB
C
/* Low level interface to SPUs, for the remote server for GDB.
|
|
Copyright (C) 2006-2014 Free Software Foundation, Inc.
|
|
|
|
Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "server.h"
|
|
|
|
#include "gdb_wait.h"
|
|
#include <stdio.h>
|
|
#include <sys/ptrace.h>
|
|
#include <fcntl.h>
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
#include <unistd.h>
|
|
#include <errno.h>
|
|
#include <sys/syscall.h>
|
|
#include "filestuff.h"
|
|
#include "hostio.h"
|
|
|
|
/* Some older glibc versions do not define this. */
|
|
#ifndef __WNOTHREAD
|
|
#define __WNOTHREAD 0x20000000 /* Don't wait on children of other
|
|
threads in this group */
|
|
#endif
|
|
|
|
#define PTRACE_TYPE_RET long
|
|
#define PTRACE_TYPE_ARG3 long
|
|
|
|
/* Number of registers. */
|
|
#define SPU_NUM_REGS 130
|
|
#define SPU_NUM_CORE_REGS 128
|
|
|
|
/* Special registers. */
|
|
#define SPU_ID_REGNUM 128
|
|
#define SPU_PC_REGNUM 129
|
|
|
|
/* PPU side system calls. */
|
|
#define INSTR_SC 0x44000002
|
|
#define NR_spu_run 0x0116
|
|
|
|
/* These are used in remote-utils.c. */
|
|
int using_threads = 0;
|
|
|
|
/* Defined in auto-generated file reg-spu.c. */
|
|
void init_registers_spu (void);
|
|
extern const struct target_desc *tdesc_spu;
|
|
|
|
/* Fetch PPU register REGNO. */
|
|
static CORE_ADDR
|
|
fetch_ppc_register (int regno)
|
|
{
|
|
PTRACE_TYPE_RET res;
|
|
|
|
int tid = ptid_get_lwp (current_ptid);
|
|
|
|
#ifndef __powerpc64__
|
|
/* If running as a 32-bit process on a 64-bit system, we attempt
|
|
to get the full 64-bit register content of the target process.
|
|
If the PPC special ptrace call fails, we're on a 32-bit system;
|
|
just fall through to the regular ptrace call in that case. */
|
|
{
|
|
char buf[8];
|
|
|
|
errno = 0;
|
|
ptrace (PPC_PTRACE_PEEKUSR_3264, tid,
|
|
(PTRACE_TYPE_ARG3) (regno * 8), buf);
|
|
if (errno == 0)
|
|
ptrace (PPC_PTRACE_PEEKUSR_3264, tid,
|
|
(PTRACE_TYPE_ARG3) (regno * 8 + 4), buf + 4);
|
|
if (errno == 0)
|
|
return (CORE_ADDR) *(unsigned long long *)buf;
|
|
}
|
|
#endif
|
|
|
|
errno = 0;
|
|
res = ptrace (PT_READ_U, tid,
|
|
(PTRACE_TYPE_ARG3) (regno * sizeof (PTRACE_TYPE_RET)), 0);
|
|
if (errno != 0)
|
|
{
|
|
char mess[128];
|
|
sprintf (mess, "reading PPC register #%d", regno);
|
|
perror_with_name (mess);
|
|
}
|
|
|
|
return (CORE_ADDR) (unsigned long) res;
|
|
}
|
|
|
|
/* Fetch WORD from PPU memory at (aligned) MEMADDR in thread TID. */
|
|
static int
|
|
fetch_ppc_memory_1 (int tid, CORE_ADDR memaddr, PTRACE_TYPE_RET *word)
|
|
{
|
|
errno = 0;
|
|
|
|
#ifndef __powerpc64__
|
|
if (memaddr >> 32)
|
|
{
|
|
unsigned long long addr_8 = (unsigned long long) memaddr;
|
|
ptrace (PPC_PTRACE_PEEKTEXT_3264, tid, (PTRACE_TYPE_ARG3) &addr_8, word);
|
|
}
|
|
else
|
|
#endif
|
|
*word = ptrace (PT_READ_I, tid, (PTRACE_TYPE_ARG3) (size_t) memaddr, 0);
|
|
|
|
return errno;
|
|
}
|
|
|
|
/* Store WORD into PPU memory at (aligned) MEMADDR in thread TID. */
|
|
static int
|
|
store_ppc_memory_1 (int tid, CORE_ADDR memaddr, PTRACE_TYPE_RET word)
|
|
{
|
|
errno = 0;
|
|
|
|
#ifndef __powerpc64__
|
|
if (memaddr >> 32)
|
|
{
|
|
unsigned long long addr_8 = (unsigned long long) memaddr;
|
|
ptrace (PPC_PTRACE_POKEDATA_3264, tid, (PTRACE_TYPE_ARG3) &addr_8, word);
|
|
}
|
|
else
|
|
#endif
|
|
ptrace (PT_WRITE_D, tid, (PTRACE_TYPE_ARG3) (size_t) memaddr, word);
|
|
|
|
return errno;
|
|
}
|
|
|
|
/* Fetch LEN bytes of PPU memory at MEMADDR to MYADDR. */
|
|
static int
|
|
fetch_ppc_memory (CORE_ADDR memaddr, char *myaddr, int len)
|
|
{
|
|
int i, ret;
|
|
|
|
CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_TYPE_RET);
|
|
int count = ((((memaddr + len) - addr) + sizeof (PTRACE_TYPE_RET) - 1)
|
|
/ sizeof (PTRACE_TYPE_RET));
|
|
PTRACE_TYPE_RET *buffer;
|
|
|
|
int tid = ptid_get_lwp (current_ptid);
|
|
|
|
buffer = (PTRACE_TYPE_RET *) alloca (count * sizeof (PTRACE_TYPE_RET));
|
|
for (i = 0; i < count; i++, addr += sizeof (PTRACE_TYPE_RET))
|
|
if ((ret = fetch_ppc_memory_1 (tid, addr, &buffer[i])) != 0)
|
|
return ret;
|
|
|
|
memcpy (myaddr,
|
|
(char *) buffer + (memaddr & (sizeof (PTRACE_TYPE_RET) - 1)),
|
|
len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Store LEN bytes from MYADDR to PPU memory at MEMADDR. */
|
|
static int
|
|
store_ppc_memory (CORE_ADDR memaddr, char *myaddr, int len)
|
|
{
|
|
int i, ret;
|
|
|
|
CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_TYPE_RET);
|
|
int count = ((((memaddr + len) - addr) + sizeof (PTRACE_TYPE_RET) - 1)
|
|
/ sizeof (PTRACE_TYPE_RET));
|
|
PTRACE_TYPE_RET *buffer;
|
|
|
|
int tid = ptid_get_lwp (current_ptid);
|
|
|
|
buffer = (PTRACE_TYPE_RET *) alloca (count * sizeof (PTRACE_TYPE_RET));
|
|
|
|
if (addr != memaddr || len < (int) sizeof (PTRACE_TYPE_RET))
|
|
if ((ret = fetch_ppc_memory_1 (tid, addr, &buffer[0])) != 0)
|
|
return ret;
|
|
|
|
if (count > 1)
|
|
if ((ret = fetch_ppc_memory_1 (tid, addr + (count - 1)
|
|
* sizeof (PTRACE_TYPE_RET),
|
|
&buffer[count - 1])) != 0)
|
|
return ret;
|
|
|
|
memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_TYPE_RET) - 1)),
|
|
myaddr, len);
|
|
|
|
for (i = 0; i < count; i++, addr += sizeof (PTRACE_TYPE_RET))
|
|
if ((ret = store_ppc_memory_1 (tid, addr, buffer[i])) != 0)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* If the PPU thread is currently stopped on a spu_run system call,
|
|
return to FD and ADDR the file handle and NPC parameter address
|
|
used with the system call. Return non-zero if successful. */
|
|
static int
|
|
parse_spufs_run (int *fd, CORE_ADDR *addr)
|
|
{
|
|
unsigned int insn;
|
|
CORE_ADDR pc = fetch_ppc_register (32); /* nip */
|
|
|
|
/* Fetch instruction preceding current NIP. */
|
|
if (fetch_ppc_memory (pc-4, (char *) &insn, 4) != 0)
|
|
return 0;
|
|
/* It should be a "sc" instruction. */
|
|
if (insn != INSTR_SC)
|
|
return 0;
|
|
/* System call number should be NR_spu_run. */
|
|
if (fetch_ppc_register (0) != NR_spu_run)
|
|
return 0;
|
|
|
|
/* Register 3 contains fd, register 4 the NPC param pointer. */
|
|
*fd = fetch_ppc_register (34); /* orig_gpr3 */
|
|
*addr = fetch_ppc_register (4);
|
|
return 1;
|
|
}
|
|
|
|
|
|
/* Copy LEN bytes at OFFSET in spufs file ANNEX into/from READBUF or WRITEBUF,
|
|
using the /proc file system. */
|
|
static int
|
|
spu_proc_xfer_spu (const char *annex, unsigned char *readbuf,
|
|
const unsigned char *writebuf,
|
|
CORE_ADDR offset, int len)
|
|
{
|
|
char buf[128];
|
|
int fd = 0;
|
|
int ret = -1;
|
|
|
|
if (!annex)
|
|
return 0;
|
|
|
|
sprintf (buf, "/proc/%ld/fd/%s", ptid_get_lwp (current_ptid), annex);
|
|
fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
|
|
if (fd <= 0)
|
|
return -1;
|
|
|
|
if (offset != 0
|
|
&& lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
|
|
{
|
|
close (fd);
|
|
return 0;
|
|
}
|
|
|
|
if (writebuf)
|
|
ret = write (fd, writebuf, (size_t) len);
|
|
else if (readbuf)
|
|
ret = read (fd, readbuf, (size_t) len);
|
|
|
|
close (fd);
|
|
return ret;
|
|
}
|
|
|
|
|
|
/* Start an inferior process and returns its pid.
|
|
ALLARGS is a vector of program-name and args. */
|
|
static int
|
|
spu_create_inferior (char *program, char **allargs)
|
|
{
|
|
int pid;
|
|
ptid_t ptid;
|
|
struct process_info *proc;
|
|
|
|
pid = fork ();
|
|
if (pid < 0)
|
|
perror_with_name ("fork");
|
|
|
|
if (pid == 0)
|
|
{
|
|
close_most_fds ();
|
|
ptrace (PTRACE_TRACEME, 0, 0, 0);
|
|
|
|
setpgid (0, 0);
|
|
|
|
execv (program, allargs);
|
|
if (errno == ENOENT)
|
|
execvp (program, allargs);
|
|
|
|
fprintf (stderr, "Cannot exec %s: %s.\n", program,
|
|
strerror (errno));
|
|
fflush (stderr);
|
|
_exit (0177);
|
|
}
|
|
|
|
proc = add_process (pid, 0);
|
|
proc->tdesc = tdesc_spu;
|
|
|
|
ptid = ptid_build (pid, pid, 0);
|
|
add_thread (ptid, NULL);
|
|
return pid;
|
|
}
|
|
|
|
/* Attach to an inferior process. */
|
|
int
|
|
spu_attach (unsigned long pid)
|
|
{
|
|
ptid_t ptid;
|
|
struct process_info *proc;
|
|
|
|
if (ptrace (PTRACE_ATTACH, pid, 0, 0) != 0)
|
|
{
|
|
fprintf (stderr, "Cannot attach to process %ld: %s (%d)\n", pid,
|
|
strerror (errno), errno);
|
|
fflush (stderr);
|
|
_exit (0177);
|
|
}
|
|
|
|
proc = add_process (pid, 1);
|
|
proc->tdesc = tdesc_spu;
|
|
ptid = ptid_build (pid, pid, 0);
|
|
add_thread (ptid, NULL);
|
|
return 0;
|
|
}
|
|
|
|
/* Kill the inferior process. */
|
|
static int
|
|
spu_kill (int pid)
|
|
{
|
|
int status, ret;
|
|
struct process_info *process = find_process_pid (pid);
|
|
if (process == NULL)
|
|
return -1;
|
|
|
|
ptrace (PTRACE_KILL, pid, 0, 0);
|
|
|
|
do {
|
|
ret = waitpid (pid, &status, 0);
|
|
if (WIFEXITED (status) || WIFSIGNALED (status))
|
|
break;
|
|
} while (ret != -1 || errno != ECHILD);
|
|
|
|
clear_inferiors ();
|
|
remove_process (process);
|
|
return 0;
|
|
}
|
|
|
|
/* Detach from inferior process. */
|
|
static int
|
|
spu_detach (int pid)
|
|
{
|
|
struct process_info *process = find_process_pid (pid);
|
|
if (process == NULL)
|
|
return -1;
|
|
|
|
ptrace (PTRACE_DETACH, pid, 0, 0);
|
|
|
|
clear_inferiors ();
|
|
remove_process (process);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
spu_mourn (struct process_info *process)
|
|
{
|
|
remove_process (process);
|
|
}
|
|
|
|
static void
|
|
spu_join (int pid)
|
|
{
|
|
int status, ret;
|
|
|
|
do {
|
|
ret = waitpid (pid, &status, 0);
|
|
if (WIFEXITED (status) || WIFSIGNALED (status))
|
|
break;
|
|
} while (ret != -1 || errno != ECHILD);
|
|
}
|
|
|
|
/* Return nonzero if the given thread is still alive. */
|
|
static int
|
|
spu_thread_alive (ptid_t ptid)
|
|
{
|
|
return ptid_equal (ptid, current_ptid);
|
|
}
|
|
|
|
/* Resume process. */
|
|
static void
|
|
spu_resume (struct thread_resume *resume_info, size_t n)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < n; i++)
|
|
if (ptid_equal (resume_info[i].thread, minus_one_ptid)
|
|
|| ptid_equal (resume_info[i].thread, current_ptid))
|
|
break;
|
|
|
|
if (i == n)
|
|
return;
|
|
|
|
/* We don't support hardware single-stepping right now, assume
|
|
GDB knows to use software single-stepping. */
|
|
if (resume_info[i].kind == resume_step)
|
|
fprintf (stderr, "Hardware single-step not supported.\n");
|
|
|
|
regcache_invalidate ();
|
|
|
|
errno = 0;
|
|
ptrace (PTRACE_CONT, ptid_get_lwp (current_ptid), 0, resume_info[i].sig);
|
|
if (errno)
|
|
perror_with_name ("ptrace");
|
|
}
|
|
|
|
/* Wait for process, returns status. */
|
|
static ptid_t
|
|
spu_wait (ptid_t ptid, struct target_waitstatus *ourstatus, int options)
|
|
{
|
|
int pid = ptid_get_pid (ptid);
|
|
int w;
|
|
int ret;
|
|
|
|
while (1)
|
|
{
|
|
ret = waitpid (pid, &w, WNOHANG | __WALL | __WNOTHREAD);
|
|
|
|
if (ret == -1)
|
|
{
|
|
if (errno != ECHILD)
|
|
perror_with_name ("waitpid");
|
|
}
|
|
else if (ret > 0)
|
|
break;
|
|
|
|
usleep (1000);
|
|
}
|
|
|
|
/* On the first wait, continue running the inferior until we are
|
|
blocked inside an spu_run system call. */
|
|
if (!server_waiting)
|
|
{
|
|
int fd;
|
|
CORE_ADDR addr;
|
|
|
|
while (!parse_spufs_run (&fd, &addr))
|
|
{
|
|
ptrace (PT_SYSCALL, pid, (PTRACE_TYPE_ARG3) 0, 0);
|
|
waitpid (pid, NULL, __WALL | __WNOTHREAD);
|
|
}
|
|
}
|
|
|
|
if (WIFEXITED (w))
|
|
{
|
|
fprintf (stderr, "\nChild exited with retcode = %x \n", WEXITSTATUS (w));
|
|
ourstatus->kind = TARGET_WAITKIND_EXITED;
|
|
ourstatus->value.integer = WEXITSTATUS (w);
|
|
clear_inferiors ();
|
|
return pid_to_ptid (ret);
|
|
}
|
|
else if (!WIFSTOPPED (w))
|
|
{
|
|
fprintf (stderr, "\nChild terminated with signal = %x \n", WTERMSIG (w));
|
|
ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
|
|
ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
|
|
clear_inferiors ();
|
|
return pid_to_ptid (ret);
|
|
}
|
|
|
|
/* After attach, we may have received a SIGSTOP. Do not return this
|
|
as signal to GDB, or else it will try to continue with SIGSTOP ... */
|
|
if (!server_waiting)
|
|
{
|
|
ourstatus->kind = TARGET_WAITKIND_STOPPED;
|
|
ourstatus->value.sig = GDB_SIGNAL_0;
|
|
return ptid_build (ret, ret, 0);
|
|
}
|
|
|
|
ourstatus->kind = TARGET_WAITKIND_STOPPED;
|
|
ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
|
|
return ptid_build (ret, ret, 0);
|
|
}
|
|
|
|
/* Fetch inferior registers. */
|
|
static void
|
|
spu_fetch_registers (struct regcache *regcache, int regno)
|
|
{
|
|
int fd;
|
|
CORE_ADDR addr;
|
|
|
|
/* We must be stopped on a spu_run system call. */
|
|
if (!parse_spufs_run (&fd, &addr))
|
|
return;
|
|
|
|
/* The ID register holds the spufs file handle. */
|
|
if (regno == -1 || regno == SPU_ID_REGNUM)
|
|
supply_register (regcache, SPU_ID_REGNUM, (char *)&fd);
|
|
|
|
/* The NPC register is found at ADDR. */
|
|
if (regno == -1 || regno == SPU_PC_REGNUM)
|
|
{
|
|
char buf[4];
|
|
if (fetch_ppc_memory (addr, buf, 4) == 0)
|
|
supply_register (regcache, SPU_PC_REGNUM, buf);
|
|
}
|
|
|
|
/* The GPRs are found in the "regs" spufs file. */
|
|
if (regno == -1 || (regno >= 0 && regno < SPU_NUM_CORE_REGS))
|
|
{
|
|
unsigned char buf[16*SPU_NUM_CORE_REGS];
|
|
char annex[32];
|
|
int i;
|
|
|
|
sprintf (annex, "%d/regs", fd);
|
|
if (spu_proc_xfer_spu (annex, buf, NULL, 0, sizeof buf) == sizeof buf)
|
|
for (i = 0; i < SPU_NUM_CORE_REGS; i++)
|
|
supply_register (regcache, i, buf + i*16);
|
|
}
|
|
}
|
|
|
|
/* Store inferior registers. */
|
|
static void
|
|
spu_store_registers (struct regcache *regcache, int regno)
|
|
{
|
|
int fd;
|
|
CORE_ADDR addr;
|
|
|
|
/* ??? Some callers use 0 to mean all registers. */
|
|
if (regno == 0)
|
|
regno = -1;
|
|
|
|
/* We must be stopped on a spu_run system call. */
|
|
if (!parse_spufs_run (&fd, &addr))
|
|
return;
|
|
|
|
/* The NPC register is found at ADDR. */
|
|
if (regno == -1 || regno == SPU_PC_REGNUM)
|
|
{
|
|
char buf[4];
|
|
collect_register (regcache, SPU_PC_REGNUM, buf);
|
|
store_ppc_memory (addr, buf, 4);
|
|
}
|
|
|
|
/* The GPRs are found in the "regs" spufs file. */
|
|
if (regno == -1 || (regno >= 0 && regno < SPU_NUM_CORE_REGS))
|
|
{
|
|
unsigned char buf[16*SPU_NUM_CORE_REGS];
|
|
char annex[32];
|
|
int i;
|
|
|
|
for (i = 0; i < SPU_NUM_CORE_REGS; i++)
|
|
collect_register (regcache, i, buf + i*16);
|
|
|
|
sprintf (annex, "%d/regs", fd);
|
|
spu_proc_xfer_spu (annex, NULL, buf, 0, sizeof buf);
|
|
}
|
|
}
|
|
|
|
/* Copy LEN bytes from inferior's memory starting at MEMADDR
|
|
to debugger memory starting at MYADDR. */
|
|
static int
|
|
spu_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
|
|
{
|
|
int fd, ret;
|
|
CORE_ADDR addr;
|
|
char annex[32], lslr_annex[32], buf[32];
|
|
CORE_ADDR lslr;
|
|
|
|
/* We must be stopped on a spu_run system call. */
|
|
if (!parse_spufs_run (&fd, &addr))
|
|
return 0;
|
|
|
|
/* Use the "mem" spufs file to access SPU local store. */
|
|
sprintf (annex, "%d/mem", fd);
|
|
ret = spu_proc_xfer_spu (annex, myaddr, NULL, memaddr, len);
|
|
if (ret > 0)
|
|
return ret == len ? 0 : EIO;
|
|
|
|
/* SPU local store access wraps the address around at the
|
|
local store limit. We emulate this here. To avoid needing
|
|
an extra access to retrieve the LSLR, we only do that after
|
|
trying the original address first, and getting end-of-file. */
|
|
sprintf (lslr_annex, "%d/lslr", fd);
|
|
memset (buf, 0, sizeof buf);
|
|
if (spu_proc_xfer_spu (lslr_annex, (unsigned char *)buf, NULL,
|
|
0, sizeof buf) <= 0)
|
|
return ret;
|
|
|
|
lslr = strtoul (buf, NULL, 16);
|
|
ret = spu_proc_xfer_spu (annex, myaddr, NULL, memaddr & lslr, len);
|
|
|
|
return ret == len ? 0 : EIO;
|
|
}
|
|
|
|
/* Copy LEN bytes of data from debugger memory at MYADDR
|
|
to inferior's memory at MEMADDR.
|
|
On failure (cannot write the inferior)
|
|
returns the value of errno. */
|
|
static int
|
|
spu_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
|
|
{
|
|
int fd, ret;
|
|
CORE_ADDR addr;
|
|
char annex[32], lslr_annex[32], buf[32];
|
|
CORE_ADDR lslr;
|
|
|
|
/* We must be stopped on a spu_run system call. */
|
|
if (!parse_spufs_run (&fd, &addr))
|
|
return 0;
|
|
|
|
/* Use the "mem" spufs file to access SPU local store. */
|
|
sprintf (annex, "%d/mem", fd);
|
|
ret = spu_proc_xfer_spu (annex, NULL, myaddr, memaddr, len);
|
|
if (ret > 0)
|
|
return ret == len ? 0 : EIO;
|
|
|
|
/* SPU local store access wraps the address around at the
|
|
local store limit. We emulate this here. To avoid needing
|
|
an extra access to retrieve the LSLR, we only do that after
|
|
trying the original address first, and getting end-of-file. */
|
|
sprintf (lslr_annex, "%d/lslr", fd);
|
|
memset (buf, 0, sizeof buf);
|
|
if (spu_proc_xfer_spu (lslr_annex, (unsigned char *)buf, NULL,
|
|
0, sizeof buf) <= 0)
|
|
return ret;
|
|
|
|
lslr = strtoul (buf, NULL, 16);
|
|
ret = spu_proc_xfer_spu (annex, NULL, myaddr, memaddr & lslr, len);
|
|
|
|
return ret == len ? 0 : EIO;
|
|
}
|
|
|
|
/* Look up special symbols -- unneded here. */
|
|
static void
|
|
spu_look_up_symbols (void)
|
|
{
|
|
}
|
|
|
|
/* Send signal to inferior. */
|
|
static void
|
|
spu_request_interrupt (void)
|
|
{
|
|
syscall (SYS_tkill, ptid_get_lwp (current_ptid), SIGINT);
|
|
}
|
|
|
|
static struct target_ops spu_target_ops = {
|
|
spu_create_inferior,
|
|
spu_attach,
|
|
spu_kill,
|
|
spu_detach,
|
|
spu_mourn,
|
|
spu_join,
|
|
spu_thread_alive,
|
|
spu_resume,
|
|
spu_wait,
|
|
spu_fetch_registers,
|
|
spu_store_registers,
|
|
NULL, /* prepare_to_access_memory */
|
|
NULL, /* done_accessing_memory */
|
|
spu_read_memory,
|
|
spu_write_memory,
|
|
spu_look_up_symbols,
|
|
spu_request_interrupt,
|
|
NULL,
|
|
NULL,
|
|
NULL,
|
|
NULL,
|
|
NULL,
|
|
NULL,
|
|
NULL,
|
|
spu_proc_xfer_spu,
|
|
hostio_last_error_from_errno,
|
|
};
|
|
|
|
void
|
|
initialize_low (void)
|
|
{
|
|
static const unsigned char breakpoint[] = { 0x00, 0x00, 0x3f, 0xff };
|
|
|
|
set_target_ops (&spu_target_ops);
|
|
set_breakpoint_data (breakpoint, sizeof breakpoint);
|
|
init_registers_spu ();
|
|
}
|