mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-09 04:21:49 +08:00
9a3c826307
Note: I needed to split this patch in two, otherwise it's too big for the mailing list. This patch adds explicit casts to situations where a void pointer is assigned to a pointer to the "real" type. Building in C++ mode requires those assignments to use an explicit cast. This includes, for example: - callback arguments (cleanups, comparison functions, ...) - data attached to some object (objfile, program space, etc) in the form of a void pointer - "user data" passed to some function This patch comes from the commit "(mostly) auto-generated patch to insert casts needed for C++", taken from Pedro's C++ branch. Only files built on x86 with --enable-targets=all are modified, so the native files for other arches will need to be dealt with separately. I built-tested this with --enable-targets=all and reg-tested. To my surprise, a test case (selftest.exp) had to be adjusted. Here's the ChangeLog entry. Again, this was relatively quick to make despite the length, thanks to David Malcom's script, although I don't believe it's very useful information in that particular case... gdb/ChangeLog: * aarch64-tdep.c (aarch64_make_prologue_cache): Add cast(s). (aarch64_make_stub_cache): Likewise. (value_of_aarch64_user_reg): Likewise. * ada-lang.c (ada_inferior_data_cleanup): Likewise. (get_ada_inferior_data): Likewise. (get_ada_pspace_data): Likewise. (ada_pspace_data_cleanup): Likewise. (ada_complete_symbol_matcher): Likewise. (ada_exc_search_name_matches): Likewise. * ada-tasks.c (get_ada_tasks_pspace_data): Likewise. (get_ada_tasks_inferior_data): Likewise. * addrmap.c (addrmap_mutable_foreach_worker): Likewise. (splay_obstack_alloc): Likewise. (splay_obstack_free): Likewise. * alpha-linux-tdep.c (alpha_linux_supply_gregset): Likewise. (alpha_linux_collect_gregset): Likewise. (alpha_linux_supply_fpregset): Likewise. (alpha_linux_collect_fpregset): Likewise. * alpha-mdebug-tdep.c (alpha_mdebug_frame_unwind_cache): Likewise. * alpha-tdep.c (alpha_lds): Likewise. (alpha_sts): Likewise. (alpha_sigtramp_frame_unwind_cache): Likewise. (alpha_heuristic_frame_unwind_cache): Likewise. (alpha_supply_int_regs): Likewise. (alpha_fill_int_regs): Likewise. (alpha_supply_fp_regs): Likewise. (alpha_fill_fp_regs): Likewise. * alphanbsd-tdep.c (alphanbsd_supply_fpregset): Likewise. (alphanbsd_aout_supply_gregset): Likewise. (alphanbsd_supply_gregset): Likewise. * amd64-linux-tdep.c (amd64_linux_init_abi): Likewise. (amd64_x32_linux_init_abi): Likewise. * amd64-nat.c (amd64_supply_native_gregset): Likewise. (amd64_collect_native_gregset): Likewise. * amd64-tdep.c (amd64_frame_cache): Likewise. (amd64_sigtramp_frame_cache): Likewise. (amd64_epilogue_frame_cache): Likewise. (amd64_supply_fxsave): Likewise. (amd64_supply_xsave): Likewise. (amd64_collect_fxsave): Likewise. (amd64_collect_xsave): Likewise. * amd64-windows-tdep.c (amd64_windows_frame_cache): Likewise. * amd64obsd-tdep.c (amd64obsd_trapframe_cache): Likewise. * arm-linux-tdep.c (arm_linux_supply_gregset): Likewise. (arm_linux_collect_gregset): Likewise. (arm_linux_supply_nwfpe): Likewise. (arm_linux_collect_nwfpe): Likewise. (arm_linux_supply_vfp): Likewise. (arm_linux_collect_vfp): Likewise. * arm-tdep.c (arm_find_mapping_symbol): Likewise. (arm_prologue_unwind_stop_reason): Likewise. (arm_prologue_this_id): Likewise. (arm_prologue_prev_register): Likewise. (arm_exidx_data_free): Likewise. (arm_find_exidx_entry): Likewise. (arm_stub_this_id): Likewise. (arm_m_exception_this_id): Likewise. (arm_m_exception_prev_register): Likewise. (arm_normal_frame_base): Likewise. (gdb_print_insn_arm): Likewise. (arm_objfile_data_free): Likewise. (arm_record_special_symbol): Likewise. (value_of_arm_user_reg): Likewise. * armbsd-tdep.c (armbsd_supply_fpregset): Likewise. (armbsd_supply_gregset): Likewise. * auto-load.c (auto_load_pspace_data_cleanup): Likewise. (get_auto_load_pspace_data): Likewise. (hash_loaded_script_entry): Likewise. (eq_loaded_script_entry): Likewise. (clear_section_scripts): Likewise. (collect_matching_scripts): Likewise. * auxv.c (auxv_inferior_data_cleanup): Likewise. (get_auxv_inferior_data): Likewise. * avr-tdep.c (avr_frame_unwind_cache): Likewise. * ax-general.c (do_free_agent_expr_cleanup): Likewise. * bfd-target.c (target_bfd_xfer_partial): Likewise. (target_bfd_xclose): Likewise. (target_bfd_get_section_table): Likewise. * bfin-tdep.c (bfin_frame_cache): Likewise. * block.c (find_block_in_blockvector): Likewise. (call_site_for_pc): Likewise. (block_find_non_opaque_type_preferred): Likewise. * break-catch-sig.c (signal_catchpoint_insert_location): Likewise. (signal_catchpoint_remove_location): Likewise. (signal_catchpoint_breakpoint_hit): Likewise. (signal_catchpoint_print_one): Likewise. (signal_catchpoint_print_mention): Likewise. (signal_catchpoint_print_recreate): Likewise. * break-catch-syscall.c (get_catch_syscall_inferior_data): Likewise. * breakpoint.c (do_cleanup_counted_command_line): Likewise. (bp_location_compare_addrs): Likewise. (get_first_locp_gte_addr): Likewise. (check_tracepoint_command): Likewise. (do_map_commands_command): Likewise. (get_breakpoint_objfile_data): Likewise. (free_breakpoint_probes): Likewise. (do_captured_breakpoint_query): Likewise. (compare_breakpoints): Likewise. (bp_location_compare): Likewise. (bpstat_remove_breakpoint_callback): Likewise. (do_delete_breakpoint_cleanup): Likewise. * bsd-uthread.c (bsd_uthread_set_supply_uthread): Likewise. (bsd_uthread_set_collect_uthread): Likewise. (bsd_uthread_activate): Likewise. (bsd_uthread_fetch_registers): Likewise. (bsd_uthread_store_registers): Likewise. * btrace.c (check_xml_btrace_version): Likewise. (parse_xml_btrace_block): Likewise. (parse_xml_btrace_pt_config_cpu): Likewise. (parse_xml_btrace_pt_raw): Likewise. (parse_xml_btrace_pt): Likewise. (parse_xml_btrace_conf_bts): Likewise. (parse_xml_btrace_conf_pt): Likewise. (do_btrace_data_cleanup): Likewise. * c-typeprint.c (find_typedef_for_canonicalize): Likewise. * charset.c (cleanup_iconv): Likewise. (do_cleanup_iterator): Likewise. * cli-out.c (cli_uiout_dtor): Likewise. (cli_table_begin): Likewise. (cli_table_body): Likewise. (cli_table_end): Likewise. (cli_table_header): Likewise. (cli_begin): Likewise. (cli_end): Likewise. (cli_field_int): Likewise. (cli_field_skip): Likewise. (cli_field_string): Likewise. (cli_field_fmt): Likewise. (cli_spaces): Likewise. (cli_text): Likewise. (cli_message): Likewise. (cli_wrap_hint): Likewise. (cli_flush): Likewise. (cli_redirect): Likewise. (out_field_fmt): Likewise. (field_separator): Likewise. (cli_out_set_stream): Likewise. * cli/cli-cmds.c (compare_symtabs): Likewise. * cli/cli-dump.c (call_dump_func): Likewise. (restore_section_callback): Likewise. * cli/cli-script.c (clear_hook_in_cleanup): Likewise. (do_restore_user_call_depth): Likewise. (do_free_command_lines_cleanup): Likewise. * coff-pe-read.c (get_section_vmas): Likewise. (pe_as16): Likewise. (pe_as32): Likewise. * coffread.c (coff_symfile_read): Likewise. * common/agent.c (agent_look_up_symbols): Likewise. * common/filestuff.c (do_close_cleanup): Likewise. * common/format.c (free_format_pieces_cleanup): Likewise. * common/vec.c (vec_o_reserve): Likewise. * compile/compile-c-support.c (print_one_macro): Likewise. * compile/compile-c-symbols.c (hash_symbol_error): Likewise. (eq_symbol_error): Likewise. (del_symbol_error): Likewise. (error_symbol_once): Likewise. (gcc_convert_symbol): Likewise. (gcc_symbol_address): Likewise. (hash_symname): Likewise. (eq_symname): Likewise. * compile/compile-c-types.c (hash_type_map_instance): Likewise. (eq_type_map_instance): Likewise. (insert_type): Likewise. (convert_type): Likewise. * compile/compile-object-load.c (munmap_listp_free_cleanup): Likewise. (setup_sections): Likewise. (link_hash_table_free): Likewise. (copy_sections): Likewise. * compile/compile-object-run.c (do_module_cleanup): Likewise. * compile/compile.c (compile_print_value): Likewise. (do_rmdir): Likewise. (cleanup_compile_instance): Likewise. (cleanup_unlink_file): Likewise. * completer.c (free_completion_tracker): Likewise. * corelow.c (add_to_spuid_list): Likewise. * cp-namespace.c (reset_directive_searched): Likewise. * cp-support.c (reset_directive_searched): Likewise. * cris-tdep.c (cris_sigtramp_frame_unwind_cache): Likewise. (cris_frame_unwind_cache): Likewise. * d-lang.c (builtin_d_type): Likewise. * d-namespace.c (reset_directive_searched): Likewise. * dbxread.c (dbx_free_symfile_info): Likewise. (do_free_bincl_list_cleanup): Likewise. * disasm.c (hash_dis_line_entry): Likewise. (eq_dis_line_entry): Likewise. (dis_asm_print_address): Likewise. (fprintf_disasm): Likewise. (do_ui_file_delete): Likewise. * doublest.c (convert_floatformat_to_doublest): Likewise. * dummy-frame.c (pop_dummy_frame_bpt): Likewise. (dummy_frame_prev_register): Likewise. (dummy_frame_this_id): Likewise. * dwarf2-frame-tailcall.c (cache_hash): Likewise. (cache_eq): Likewise. (cache_find): Likewise. (tailcall_frame_this_id): Likewise. (dwarf2_tailcall_prev_register_first): Likewise. (tailcall_frame_prev_register): Likewise. (tailcall_frame_dealloc_cache): Likewise. (tailcall_frame_prev_arch): Likewise. * dwarf2-frame.c (dwarf2_frame_state_free): Likewise. (dwarf2_frame_set_init_reg): Likewise. (dwarf2_frame_init_reg): Likewise. (dwarf2_frame_set_signal_frame_p): Likewise. (dwarf2_frame_signal_frame_p): Likewise. (dwarf2_frame_set_adjust_regnum): Likewise. (dwarf2_frame_adjust_regnum): Likewise. (clear_pointer_cleanup): Likewise. (dwarf2_frame_cache): Likewise. (find_cie): Likewise. (dwarf2_frame_find_fde): Likewise. * dwarf2expr.c (dwarf_expr_address_type): Likewise. (free_dwarf_expr_context_cleanup): Likewise. * dwarf2loc.c (locexpr_find_frame_base_location): Likewise. (locexpr_get_frame_base): Likewise. (loclist_find_frame_base_location): Likewise. (loclist_get_frame_base): Likewise. (dwarf_expr_dwarf_call): Likewise. (dwarf_expr_get_base_type): Likewise. (dwarf_expr_push_dwarf_reg_entry_value): Likewise. (dwarf_expr_get_obj_addr): Likewise. (entry_data_value_coerce_ref): Likewise. (entry_data_value_copy_closure): Likewise. (entry_data_value_free_closure): Likewise. (get_frame_address_in_block_wrapper): Likewise. (dwarf2_evaluate_property): Likewise. (dwarf2_compile_property_to_c): Likewise. (needs_frame_read_addr_from_reg): Likewise. (needs_frame_get_reg_value): Likewise. (needs_frame_frame_base): Likewise. (needs_frame_frame_cfa): Likewise. (needs_frame_tls_address): Likewise. (needs_frame_dwarf_call): Likewise. (needs_dwarf_reg_entry_value): Likewise. (get_ax_pc): Likewise. (locexpr_read_variable): Likewise. (locexpr_read_variable_at_entry): Likewise. (locexpr_read_needs_frame): Likewise. (locexpr_describe_location): Likewise. (locexpr_tracepoint_var_ref): Likewise. (locexpr_generate_c_location): Likewise. (loclist_read_variable): Likewise. (loclist_read_variable_at_entry): Likewise. (loclist_describe_location): Likewise. (loclist_tracepoint_var_ref): Likewise. (loclist_generate_c_location): Likewise. * dwarf2read.c (line_header_hash_voidp): Likewise. (line_header_eq_voidp): Likewise. (dwarf2_has_info): Likewise. (dwarf2_get_section_info): Likewise. (locate_dwz_sections): Likewise. (hash_file_name_entry): Likewise. (eq_file_name_entry): Likewise. (delete_file_name_entry): Likewise. (dw2_setup): Likewise. (dw2_get_file_names_reader): Likewise. (dw2_find_pc_sect_compunit_symtab): Likewise. (hash_signatured_type): Likewise. (eq_signatured_type): Likewise. (add_signatured_type_cu_to_table): Likewise. (create_debug_types_hash_table): Likewise. (lookup_dwo_signatured_type): Likewise. (lookup_dwp_signatured_type): Likewise. (lookup_signatured_type): Likewise. (hash_type_unit_group): Likewise. (eq_type_unit_group): Likewise. (get_type_unit_group): Likewise. (process_psymtab_comp_unit_reader): Likewise. (sort_tu_by_abbrev_offset): Likewise. (process_skeletonless_type_unit): Likewise. (psymtabs_addrmap_cleanup): Likewise. (dwarf2_read_symtab): Likewise. (psymtab_to_symtab_1): Likewise. (die_hash): Likewise. (die_eq): Likewise. (load_full_comp_unit_reader): Likewise. (reset_die_in_process): Likewise. (free_cu_line_header): Likewise. (handle_DW_AT_stmt_list): Likewise. (hash_dwo_file): Likewise. (eq_dwo_file): Likewise. (hash_dwo_unit): Likewise. (eq_dwo_unit): Likewise. (create_dwo_cu_reader): Likewise. (create_dwo_unit_in_dwp_v1): Likewise. (create_dwo_unit_in_dwp_v2): Likewise. (lookup_dwo_unit_in_dwp): Likewise. (dwarf2_locate_dwo_sections): Likewise. (dwarf2_locate_common_dwp_sections): Likewise. (dwarf2_locate_v2_dwp_sections): Likewise. (hash_dwp_loaded_cutus): Likewise. (eq_dwp_loaded_cutus): Likewise. (lookup_dwo_cutu): Likewise. (abbrev_table_free_cleanup): Likewise. (dwarf2_free_abbrev_table): Likewise. (find_partial_die_in_comp_unit): Likewise. (free_line_header_voidp): Likewise. (follow_die_offset): Likewise. (follow_die_sig_1): Likewise. (free_heap_comp_unit): Likewise. (free_stack_comp_unit): Likewise. (dwarf2_free_objfile): Likewise. (per_cu_offset_and_type_hash): Likewise. (per_cu_offset_and_type_eq): Likewise. (get_die_type_at_offset): Likewise. (partial_die_hash): Likewise. (partial_die_eq): Likewise. (dwarf2_per_objfile_free): Likewise. (hash_strtab_entry): Likewise. (eq_strtab_entry): Likewise. (add_string): Likewise. (hash_symtab_entry): Likewise. (eq_symtab_entry): Likewise. (delete_symtab_entry): Likewise. (cleanup_mapped_symtab): Likewise. (add_indices_to_cpool): Likewise. (hash_psymtab_cu_index): Likewise. (eq_psymtab_cu_index): Likewise. (add_address_entry_worker): Likewise. (unlink_if_set): Likewise. (write_one_signatured_type): Likewise. (save_gdb_index_command): Likewise. * elfread.c (elf_symtab_read): Likewise. (elf_gnu_ifunc_cache_hash): Likewise. (elf_gnu_ifunc_cache_eq): Likewise. (elf_gnu_ifunc_record_cache): Likewise. (elf_gnu_ifunc_resolve_by_cache): Likewise. (elf_get_probes): Likewise. (probe_key_free): Likewise. * f-lang.c (builtin_f_type): Likewise. * frame-base.c (frame_base_append_sniffer): Likewise. (frame_base_set_default): Likewise. (frame_base_find_by_frame): Likewise. * frame-unwind.c (frame_unwind_prepend_unwinder): Likewise. (frame_unwind_append_unwinder): Likewise. (frame_unwind_find_by_frame): Likewise. * frame.c (frame_addr_hash): Likewise. (frame_addr_hash_eq): Likewise. (frame_stash_find): Likewise. (do_frame_register_read): Likewise. (unwind_to_current_frame): Likewise. (frame_cleanup_after_sniffer): Likewise. * frv-linux-tdep.c (frv_linux_sigtramp_frame_cache): Likewise. * frv-tdep.c (frv_frame_unwind_cache): Likewise. * ft32-tdep.c (ft32_frame_cache): Likewise. * gcore.c (do_bfd_delete_cleanup): Likewise. (gcore_create_callback): Likewise. * gdb_bfd.c (hash_bfd): Likewise. (eq_bfd): Likewise. (gdb_bfd_open): Likewise. (free_one_bfd_section): Likewise. (gdb_bfd_ref): Likewise. (gdb_bfd_unref): Likewise. (get_section_descriptor): Likewise. (gdb_bfd_map_section): Likewise. (gdb_bfd_crc): Likewise. (gdb_bfd_mark_parent): Likewise. (gdb_bfd_record_inclusion): Likewise. (gdb_bfd_requires_relocations): Likewise. (print_one_bfd): Likewise. * gdbtypes.c (type_pair_hash): Likewise. (type_pair_eq): Likewise. (builtin_type): Likewise. (objfile_type): Likewise. * gnu-v3-abi.c (vtable_ptrdiff_type): Likewise. (vtable_address_point_offset): Likewise. (gnuv3_get_vtable): Likewise. (hash_value_and_voffset): Likewise. (eq_value_and_voffset): Likewise. (compare_value_and_voffset): Likewise. (compute_vtable_size): Likewise. (gnuv3_get_typeid_type): Likewise. * go-lang.c (builtin_go_type): Likewise. * guile/scm-block.c (bkscm_hash_block_smob): Likewise. (bkscm_eq_block_smob): Likewise. (bkscm_objfile_block_map): Likewise. (bkscm_del_objfile_blocks): Likewise. * guile/scm-breakpoint.c (bpscm_build_bp_list): Likewise. * guile/scm-disasm.c (gdbscm_disasm_read_memory_worker): Likewise. (gdbscm_disasm_print_address): Likewise. * guile/scm-frame.c (frscm_hash_frame_smob): Likewise. (frscm_eq_frame_smob): Likewise. (frscm_inferior_frame_map): Likewise. (frscm_del_inferior_frames): Likewise. * guile/scm-gsmob.c (gdbscm_add_objfile_ref): Likewise. * guile/scm-objfile.c (ofscm_handle_objfile_deleted): Likewise. (ofscm_objfile_smob_from_objfile): Likewise. * guile/scm-ports.c (ioscm_write): Likewise. (ioscm_file_port_delete): Likewise. (ioscm_file_port_rewind): Likewise. (ioscm_file_port_put): Likewise. (ioscm_file_port_write): Likewise. * guile/scm-progspace.c (psscm_handle_pspace_deleted): Likewise. (psscm_pspace_smob_from_pspace): Likewise. * guile/scm-safe-call.c (scscm_recording_pre_unwind_handler): Likewise. (scscm_recording_unwind_handler): Likewise. (gdbscm_with_catch): Likewise. (scscm_call_0_body): Likewise. (scscm_call_1_body): Likewise. (scscm_call_2_body): Likewise. (scscm_call_3_body): Likewise. (scscm_call_4_body): Likewise. (scscm_apply_1_body): Likewise. (scscm_eval_scheme_string): Likewise. (gdbscm_safe_eval_string): Likewise. (scscm_source_scheme_script): Likewise. (gdbscm_safe_source_script): Likewise. * guile/scm-string.c (gdbscm_call_scm_to_stringn): Likewise. (gdbscm_call_scm_from_stringn): Likewise. * guile/scm-symbol.c (syscm_hash_symbol_smob): Likewise. (syscm_eq_symbol_smob): Likewise. (syscm_get_symbol_map): Likewise. (syscm_del_objfile_symbols): Likewise. * guile/scm-symtab.c (stscm_hash_symtab_smob): Likewise. (stscm_eq_symtab_smob): Likewise. (stscm_objfile_symtab_map): Likewise. (stscm_del_objfile_symtabs): Likewise. * guile/scm-type.c (tyscm_hash_type_smob): Likewise. (tyscm_eq_type_smob): Likewise. (tyscm_type_map): Likewise. (tyscm_copy_type_recursive): Likewise. (save_objfile_types): Likewise. * guile/scm-utils.c (extract_arg): Likewise. * h8300-tdep.c (h8300_frame_cache): Likewise. * hppa-linux-tdep.c (hppa_linux_sigtramp_frame_unwind_cache): Likewise. * hppa-tdep.c (compare_unwind_entries): Likewise. (find_unwind_entry): Likewise. (hppa_frame_cache): Likewise. (hppa_stub_frame_unwind_cache): Likewise. * hppanbsd-tdep.c (hppanbsd_supply_gregset): Likewise. * hppaobsd-tdep.c (hppaobsd_supply_gregset): Likewise. (hppaobsd_supply_fpregset): Likewise. * i386-cygwin-tdep.c (core_process_module_section): Likewise. * i386-linux-tdep.c (i386_linux_init_abi): Likewise. * i386-tdep.c (i386_frame_cache): Likewise. (i386_epilogue_frame_cache): Likewise. (i386_sigtramp_frame_cache): Likewise. (i386_supply_gregset): Likewise. (i386_collect_gregset): Likewise. (i386_gdbarch_init): Likewise. * i386obsd-tdep.c (i386obsd_aout_supply_regset): Likewise. (i386obsd_trapframe_cache): Likewise. * i387-tdep.c (i387_supply_fsave): Likewise. (i387_collect_fsave): Likewise. (i387_supply_fxsave): Likewise. (i387_collect_fxsave): Likewise. (i387_supply_xsave): Likewise. (i387_collect_xsave): Likewise. * ia64-tdep.c (ia64_frame_cache): Likewise. (ia64_sigtramp_frame_cache): Likewise. * infcmd.c (attach_command_continuation): Likewise. (attach_command_continuation_free_args): Likewise. * inferior.c (restore_inferior): Likewise. (delete_thread_of_inferior): Likewise. * inflow.c (inflow_inferior_data_cleanup): Likewise. (get_inflow_inferior_data): Likewise. (inflow_inferior_exit): Likewise. * infrun.c (displaced_step_clear_cleanup): Likewise. (restore_current_uiout_cleanup): Likewise. (release_stop_context_cleanup): Likewise. (do_restore_infcall_suspend_state_cleanup): Likewise. (do_restore_infcall_control_state_cleanup): Likewise. (restore_inferior_ptid): Likewise. * inline-frame.c (block_starting_point_at): Likewise. * iq2000-tdep.c (iq2000_frame_cache): Likewise. * jit.c (get_jit_objfile_data): Likewise. (get_jit_program_space_data): Likewise. (jit_object_close_impl): Likewise. (jit_find_objf_with_entry_addr): Likewise. (jit_breakpoint_deleted): Likewise. (jit_unwind_reg_set_impl): Likewise. (jit_unwind_reg_get_impl): Likewise. (jit_dealloc_cache): Likewise. (jit_frame_sniffer): Likewise. (jit_frame_prev_register): Likewise. (jit_prepend_unwinder): Likewise. (jit_inferior_exit_hook): Likewise. (free_objfile_data): Likewise. * jv-lang.c (jv_per_objfile_free): Likewise. (get_dynamics_objfile): Likewise. (get_java_class_symtab): Likewise. (builtin_java_type): Likewise. * language.c (language_string_char_type): Likewise. (language_bool_type): Likewise. (language_lookup_primitive_type): Likewise. (language_lookup_primitive_type_as_symbol): Likewise. * linespec.c (hash_address_entry): Likewise. (eq_address_entry): Likewise. (iterate_inline_only): Likewise. (iterate_name_matcher): Likewise. (decode_line_2_compare_items): Likewise. (collect_one_symbol): Likewise. (compare_symbols): Likewise. (compare_msymbols): Likewise. (add_symtabs_to_list): Likewise. (collect_symbols): Likewise. (compare_msyms): Likewise. (add_minsym): Likewise. (cleanup_linespec_result): Likewise. * linux-fork.c (inferior_call_waitpid_cleanup): Likewise. * linux-nat.c (delete_lwp_cleanup): Likewise. (count_events_callback): Likewise. (select_event_lwp_callback): Likewise. (resume_stopped_resumed_lwps): Likewise. * linux-tdep.c (get_linux_gdbarch_data): Likewise. (invalidate_linux_cache_inf): Likewise. (get_linux_inferior_data): Likewise. (linux_find_memory_regions_thunk): Likewise. (linux_make_mappings_callback): Likewise. (linux_corefile_thread_callback): Likewise. (find_mapping_size): Likewise. * linux-thread-db.c (find_new_threads_callback): Likewise. * lm32-tdep.c (lm32_frame_cache): Likewise. * m2-lang.c (builtin_m2_type): Likewise. * m32c-tdep.c (m32c_analyze_frame_prologue): Likewise. * m32r-linux-tdep.c (m32r_linux_sigtramp_frame_cache): Likewise. (m32r_linux_supply_gregset): Likewise. (m32r_linux_collect_gregset): Likewise. * m32r-tdep.c (m32r_frame_unwind_cache): Likewise. * m68hc11-tdep.c (m68hc11_frame_unwind_cache): Likewise. * m68k-tdep.c (m68k_frame_cache): Likewise. * m68kbsd-tdep.c (m68kbsd_supply_fpregset): Likewise. (m68kbsd_supply_gregset): Likewise. * m68klinux-tdep.c (m68k_linux_sigtramp_frame_cache): Likewise. * m88k-tdep.c (m88k_frame_cache): Likewise. (m88k_supply_gregset): Likewise. gdb/gdbserver/ChangeLog: * dll.c (match_dll): Add cast(s). (unloaded_dll): Likewise. * linux-low.c (second_thread_of_pid_p): Likewise. (delete_lwp_callback): Likewise. (count_events_callback): Likewise. (select_event_lwp_callback): Likewise. (linux_set_resume_request): Likewise. * server.c (accumulate_file_name_length): Likewise. (emit_dll_description): Likewise. (handle_qxfer_threads_worker): Likewise. (visit_actioned_threads): Likewise. * thread-db.c (any_thread_of): Likewise. * tracepoint.c (same_process_p): Likewise. (match_blocktype): Likewise. (build_traceframe_info_xml): Likewise. gdb/testsuite/ChangeLog: * gdb.gdb/selftest.exp (do_steps_and_nexts): Adjust expected source line.
903 lines
28 KiB
C
903 lines
28 KiB
C
/* Floating point routines for GDB, the GNU debugger.
|
||
|
||
Copyright (C) 1986-2015 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
/* Support for converting target fp numbers into host DOUBLEST format. */
|
||
|
||
/* XXX - This code should really be in libiberty/floatformat.c,
|
||
however configuration issues with libiberty made this very
|
||
difficult to do in the available time. */
|
||
|
||
#include "defs.h"
|
||
#include "doublest.h"
|
||
#include "floatformat.h"
|
||
#include "gdbtypes.h"
|
||
#include <math.h> /* ldexp */
|
||
|
||
/* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
|
||
going to bother with trying to muck around with whether it is defined in
|
||
a system header, what we do if not, etc. */
|
||
#define FLOATFORMAT_CHAR_BIT 8
|
||
|
||
/* The number of bytes that the largest floating-point type that we
|
||
can convert to doublest will need. */
|
||
#define FLOATFORMAT_LARGEST_BYTES 16
|
||
|
||
/* Extract a field which starts at START and is LEN bytes long. DATA and
|
||
TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
|
||
static unsigned long
|
||
get_field (const bfd_byte *data, enum floatformat_byteorders order,
|
||
unsigned int total_len, unsigned int start, unsigned int len)
|
||
{
|
||
unsigned long result;
|
||
unsigned int cur_byte;
|
||
int cur_bitshift;
|
||
|
||
/* Caller must byte-swap words before calling this routine. */
|
||
gdb_assert (order == floatformat_little || order == floatformat_big);
|
||
|
||
/* Start at the least significant part of the field. */
|
||
if (order == floatformat_little)
|
||
{
|
||
/* We start counting from the other end (i.e, from the high bytes
|
||
rather than the low bytes). As such, we need to be concerned
|
||
with what happens if bit 0 doesn't start on a byte boundary.
|
||
I.e, we need to properly handle the case where total_len is
|
||
not evenly divisible by 8. So we compute ``excess'' which
|
||
represents the number of bits from the end of our starting
|
||
byte needed to get to bit 0. */
|
||
int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
|
||
|
||
cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
|
||
- ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
|
||
cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
|
||
- FLOATFORMAT_CHAR_BIT;
|
||
}
|
||
else
|
||
{
|
||
cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
|
||
cur_bitshift =
|
||
((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
|
||
}
|
||
if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
|
||
result = *(data + cur_byte) >> (-cur_bitshift);
|
||
else
|
||
result = 0;
|
||
cur_bitshift += FLOATFORMAT_CHAR_BIT;
|
||
if (order == floatformat_little)
|
||
++cur_byte;
|
||
else
|
||
--cur_byte;
|
||
|
||
/* Move towards the most significant part of the field. */
|
||
while (cur_bitshift < len)
|
||
{
|
||
result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
|
||
cur_bitshift += FLOATFORMAT_CHAR_BIT;
|
||
switch (order)
|
||
{
|
||
case floatformat_little:
|
||
++cur_byte;
|
||
break;
|
||
case floatformat_big:
|
||
--cur_byte;
|
||
break;
|
||
}
|
||
}
|
||
if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
|
||
/* Mask out bits which are not part of the field. */
|
||
result &= ((1UL << len) - 1);
|
||
return result;
|
||
}
|
||
|
||
/* Normalize the byte order of FROM into TO. If no normalization is
|
||
needed then FMT->byteorder is returned and TO is not changed;
|
||
otherwise the format of the normalized form in TO is returned. */
|
||
|
||
static enum floatformat_byteorders
|
||
floatformat_normalize_byteorder (const struct floatformat *fmt,
|
||
const void *from, void *to)
|
||
{
|
||
const unsigned char *swapin;
|
||
unsigned char *swapout;
|
||
int words;
|
||
|
||
if (fmt->byteorder == floatformat_little
|
||
|| fmt->byteorder == floatformat_big)
|
||
return fmt->byteorder;
|
||
|
||
words = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
|
||
words >>= 2;
|
||
|
||
swapout = (unsigned char *)to;
|
||
swapin = (const unsigned char *)from;
|
||
|
||
if (fmt->byteorder == floatformat_vax)
|
||
{
|
||
while (words-- > 0)
|
||
{
|
||
*swapout++ = swapin[1];
|
||
*swapout++ = swapin[0];
|
||
*swapout++ = swapin[3];
|
||
*swapout++ = swapin[2];
|
||
swapin += 4;
|
||
}
|
||
/* This may look weird, since VAX is little-endian, but it is
|
||
easier to translate to big-endian than to little-endian. */
|
||
return floatformat_big;
|
||
}
|
||
else
|
||
{
|
||
gdb_assert (fmt->byteorder == floatformat_littlebyte_bigword);
|
||
|
||
while (words-- > 0)
|
||
{
|
||
*swapout++ = swapin[3];
|
||
*swapout++ = swapin[2];
|
||
*swapout++ = swapin[1];
|
||
*swapout++ = swapin[0];
|
||
swapin += 4;
|
||
}
|
||
return floatformat_big;
|
||
}
|
||
}
|
||
|
||
/* Convert from FMT to a DOUBLEST.
|
||
FROM is the address of the extended float.
|
||
Store the DOUBLEST in *TO. */
|
||
|
||
static void
|
||
convert_floatformat_to_doublest (const struct floatformat *fmt,
|
||
const void *from,
|
||
DOUBLEST *to)
|
||
{
|
||
unsigned char *ufrom = (unsigned char *) from;
|
||
DOUBLEST dto;
|
||
long exponent;
|
||
unsigned long mant;
|
||
unsigned int mant_bits, mant_off;
|
||
int mant_bits_left;
|
||
int special_exponent; /* It's a NaN, denorm or zero. */
|
||
enum floatformat_byteorders order;
|
||
unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
|
||
enum float_kind kind;
|
||
|
||
gdb_assert (fmt->totalsize
|
||
<= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
|
||
|
||
/* For non-numbers, reuse libiberty's logic to find the correct
|
||
format. We do not lose any precision in this case by passing
|
||
through a double. */
|
||
kind = floatformat_classify (fmt, (const bfd_byte *) from);
|
||
if (kind == float_infinite || kind == float_nan)
|
||
{
|
||
double dto;
|
||
|
||
floatformat_to_double (fmt->split_half ? fmt->split_half : fmt,
|
||
from, &dto);
|
||
*to = (DOUBLEST) dto;
|
||
return;
|
||
}
|
||
|
||
order = floatformat_normalize_byteorder (fmt, ufrom, newfrom);
|
||
|
||
if (order != fmt->byteorder)
|
||
ufrom = newfrom;
|
||
|
||
if (fmt->split_half)
|
||
{
|
||
DOUBLEST dtop, dbot;
|
||
|
||
floatformat_to_doublest (fmt->split_half, ufrom, &dtop);
|
||
/* Preserve the sign of 0, which is the sign of the top
|
||
half. */
|
||
if (dtop == 0.0)
|
||
{
|
||
*to = dtop;
|
||
return;
|
||
}
|
||
floatformat_to_doublest (fmt->split_half,
|
||
ufrom + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2,
|
||
&dbot);
|
||
*to = dtop + dbot;
|
||
return;
|
||
}
|
||
|
||
exponent = get_field (ufrom, order, fmt->totalsize, fmt->exp_start,
|
||
fmt->exp_len);
|
||
/* Note that if exponent indicates a NaN, we can't really do anything useful
|
||
(not knowing if the host has NaN's, or how to build one). So it will
|
||
end up as an infinity or something close; that is OK. */
|
||
|
||
mant_bits_left = fmt->man_len;
|
||
mant_off = fmt->man_start;
|
||
dto = 0.0;
|
||
|
||
special_exponent = exponent == 0 || exponent == fmt->exp_nan;
|
||
|
||
/* Don't bias NaNs. Use minimum exponent for denorms. For
|
||
simplicity, we don't check for zero as the exponent doesn't matter.
|
||
Note the cast to int; exp_bias is unsigned, so it's important to
|
||
make sure the operation is done in signed arithmetic. */
|
||
if (!special_exponent)
|
||
exponent -= fmt->exp_bias;
|
||
else if (exponent == 0)
|
||
exponent = 1 - fmt->exp_bias;
|
||
|
||
/* Build the result algebraically. Might go infinite, underflow, etc;
|
||
who cares. */
|
||
|
||
/* If this format uses a hidden bit, explicitly add it in now. Otherwise,
|
||
increment the exponent by one to account for the integer bit. */
|
||
|
||
if (!special_exponent)
|
||
{
|
||
if (fmt->intbit == floatformat_intbit_no)
|
||
dto = ldexp (1.0, exponent);
|
||
else
|
||
exponent++;
|
||
}
|
||
|
||
while (mant_bits_left > 0)
|
||
{
|
||
mant_bits = min (mant_bits_left, 32);
|
||
|
||
mant = get_field (ufrom, order, fmt->totalsize, mant_off, mant_bits);
|
||
|
||
dto += ldexp ((double) mant, exponent - mant_bits);
|
||
exponent -= mant_bits;
|
||
mant_off += mant_bits;
|
||
mant_bits_left -= mant_bits;
|
||
}
|
||
|
||
/* Negate it if negative. */
|
||
if (get_field (ufrom, order, fmt->totalsize, fmt->sign_start, 1))
|
||
dto = -dto;
|
||
*to = dto;
|
||
}
|
||
|
||
/* Set a field which starts at START and is LEN bytes long. DATA and
|
||
TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
|
||
static void
|
||
put_field (unsigned char *data, enum floatformat_byteorders order,
|
||
unsigned int total_len, unsigned int start, unsigned int len,
|
||
unsigned long stuff_to_put)
|
||
{
|
||
unsigned int cur_byte;
|
||
int cur_bitshift;
|
||
|
||
/* Caller must byte-swap words before calling this routine. */
|
||
gdb_assert (order == floatformat_little || order == floatformat_big);
|
||
|
||
/* Start at the least significant part of the field. */
|
||
if (order == floatformat_little)
|
||
{
|
||
int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
|
||
|
||
cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
|
||
- ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
|
||
cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
|
||
- FLOATFORMAT_CHAR_BIT;
|
||
}
|
||
else
|
||
{
|
||
cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
|
||
cur_bitshift =
|
||
((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
|
||
}
|
||
if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
|
||
{
|
||
*(data + cur_byte) &=
|
||
~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
|
||
<< (-cur_bitshift));
|
||
*(data + cur_byte) |=
|
||
(stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
|
||
}
|
||
cur_bitshift += FLOATFORMAT_CHAR_BIT;
|
||
if (order == floatformat_little)
|
||
++cur_byte;
|
||
else
|
||
--cur_byte;
|
||
|
||
/* Move towards the most significant part of the field. */
|
||
while (cur_bitshift < len)
|
||
{
|
||
if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
|
||
{
|
||
/* This is the last byte. */
|
||
*(data + cur_byte) &=
|
||
~((1 << (len - cur_bitshift)) - 1);
|
||
*(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
|
||
}
|
||
else
|
||
*(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
|
||
& ((1 << FLOATFORMAT_CHAR_BIT) - 1));
|
||
cur_bitshift += FLOATFORMAT_CHAR_BIT;
|
||
if (order == floatformat_little)
|
||
++cur_byte;
|
||
else
|
||
--cur_byte;
|
||
}
|
||
}
|
||
|
||
/* The converse: convert the DOUBLEST *FROM to an extended float and
|
||
store where TO points. Neither FROM nor TO have any alignment
|
||
restrictions. */
|
||
|
||
static void
|
||
convert_doublest_to_floatformat (const struct floatformat *fmt,
|
||
const DOUBLEST *from, void *to)
|
||
{
|
||
DOUBLEST dfrom;
|
||
int exponent;
|
||
DOUBLEST mant;
|
||
unsigned int mant_bits, mant_off;
|
||
int mant_bits_left;
|
||
unsigned char *uto = (unsigned char *) to;
|
||
enum floatformat_byteorders order = fmt->byteorder;
|
||
unsigned char newto[FLOATFORMAT_LARGEST_BYTES];
|
||
|
||
if (order != floatformat_little)
|
||
order = floatformat_big;
|
||
|
||
if (order != fmt->byteorder)
|
||
uto = newto;
|
||
|
||
memcpy (&dfrom, from, sizeof (dfrom));
|
||
memset (uto, 0, (fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1)
|
||
/ FLOATFORMAT_CHAR_BIT);
|
||
|
||
if (fmt->split_half)
|
||
{
|
||
/* Use static volatile to ensure that any excess precision is
|
||
removed via storing in memory, and so the top half really is
|
||
the result of converting to double. */
|
||
static volatile double dtop, dbot;
|
||
DOUBLEST dtopnv, dbotnv;
|
||
|
||
dtop = (double) dfrom;
|
||
/* If the rounded top half is Inf, the bottom must be 0 not NaN
|
||
or Inf. */
|
||
if (dtop + dtop == dtop && dtop != 0.0)
|
||
dbot = 0.0;
|
||
else
|
||
dbot = (double) (dfrom - (DOUBLEST) dtop);
|
||
dtopnv = dtop;
|
||
dbotnv = dbot;
|
||
floatformat_from_doublest (fmt->split_half, &dtopnv, uto);
|
||
floatformat_from_doublest (fmt->split_half, &dbotnv,
|
||
(uto
|
||
+ fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2));
|
||
return;
|
||
}
|
||
|
||
if (dfrom == 0)
|
||
return; /* Result is zero */
|
||
if (dfrom != dfrom) /* Result is NaN */
|
||
{
|
||
/* From is NaN */
|
||
put_field (uto, order, fmt->totalsize, fmt->exp_start,
|
||
fmt->exp_len, fmt->exp_nan);
|
||
/* Be sure it's not infinity, but NaN value is irrel. */
|
||
put_field (uto, order, fmt->totalsize, fmt->man_start,
|
||
fmt->man_len, 1);
|
||
goto finalize_byteorder;
|
||
}
|
||
|
||
/* If negative, set the sign bit. */
|
||
if (dfrom < 0)
|
||
{
|
||
put_field (uto, order, fmt->totalsize, fmt->sign_start, 1, 1);
|
||
dfrom = -dfrom;
|
||
}
|
||
|
||
if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity. */
|
||
{
|
||
/* Infinity exponent is same as NaN's. */
|
||
put_field (uto, order, fmt->totalsize, fmt->exp_start,
|
||
fmt->exp_len, fmt->exp_nan);
|
||
/* Infinity mantissa is all zeroes. */
|
||
put_field (uto, order, fmt->totalsize, fmt->man_start,
|
||
fmt->man_len, 0);
|
||
goto finalize_byteorder;
|
||
}
|
||
|
||
#ifdef HAVE_LONG_DOUBLE
|
||
mant = frexpl (dfrom, &exponent);
|
||
#else
|
||
mant = frexp (dfrom, &exponent);
|
||
#endif
|
||
|
||
if (exponent + fmt->exp_bias <= 0)
|
||
{
|
||
/* The value is too small to be expressed in the destination
|
||
type (not enough bits in the exponent. Treat as 0. */
|
||
put_field (uto, order, fmt->totalsize, fmt->exp_start,
|
||
fmt->exp_len, 0);
|
||
put_field (uto, order, fmt->totalsize, fmt->man_start,
|
||
fmt->man_len, 0);
|
||
goto finalize_byteorder;
|
||
}
|
||
|
||
if (exponent + fmt->exp_bias >= (1 << fmt->exp_len))
|
||
{
|
||
/* The value is too large to fit into the destination.
|
||
Treat as infinity. */
|
||
put_field (uto, order, fmt->totalsize, fmt->exp_start,
|
||
fmt->exp_len, fmt->exp_nan);
|
||
put_field (uto, order, fmt->totalsize, fmt->man_start,
|
||
fmt->man_len, 0);
|
||
goto finalize_byteorder;
|
||
}
|
||
|
||
put_field (uto, order, fmt->totalsize, fmt->exp_start, fmt->exp_len,
|
||
exponent + fmt->exp_bias - 1);
|
||
|
||
mant_bits_left = fmt->man_len;
|
||
mant_off = fmt->man_start;
|
||
while (mant_bits_left > 0)
|
||
{
|
||
unsigned long mant_long;
|
||
|
||
mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
|
||
|
||
mant *= 4294967296.0;
|
||
mant_long = ((unsigned long) mant) & 0xffffffffL;
|
||
mant -= mant_long;
|
||
|
||
/* If the integer bit is implicit, then we need to discard it.
|
||
If we are discarding a zero, we should be (but are not) creating
|
||
a denormalized number which means adjusting the exponent
|
||
(I think). */
|
||
if (mant_bits_left == fmt->man_len
|
||
&& fmt->intbit == floatformat_intbit_no)
|
||
{
|
||
mant_long <<= 1;
|
||
mant_long &= 0xffffffffL;
|
||
/* If we are processing the top 32 mantissa bits of a doublest
|
||
so as to convert to a float value with implied integer bit,
|
||
we will only be putting 31 of those 32 bits into the
|
||
final value due to the discarding of the top bit. In the
|
||
case of a small float value where the number of mantissa
|
||
bits is less than 32, discarding the top bit does not alter
|
||
the number of bits we will be adding to the result. */
|
||
if (mant_bits == 32)
|
||
mant_bits -= 1;
|
||
}
|
||
|
||
if (mant_bits < 32)
|
||
{
|
||
/* The bits we want are in the most significant MANT_BITS bits of
|
||
mant_long. Move them to the least significant. */
|
||
mant_long >>= 32 - mant_bits;
|
||
}
|
||
|
||
put_field (uto, order, fmt->totalsize,
|
||
mant_off, mant_bits, mant_long);
|
||
mant_off += mant_bits;
|
||
mant_bits_left -= mant_bits;
|
||
}
|
||
|
||
finalize_byteorder:
|
||
/* Do we need to byte-swap the words in the result? */
|
||
if (order != fmt->byteorder)
|
||
floatformat_normalize_byteorder (fmt, newto, to);
|
||
}
|
||
|
||
/* Check if VAL (which is assumed to be a floating point number whose
|
||
format is described by FMT) is negative. */
|
||
|
||
int
|
||
floatformat_is_negative (const struct floatformat *fmt,
|
||
const bfd_byte *uval)
|
||
{
|
||
enum floatformat_byteorders order;
|
||
unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
|
||
|
||
gdb_assert (fmt != NULL);
|
||
gdb_assert (fmt->totalsize
|
||
<= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
|
||
|
||
/* An IBM long double (a two element array of double) always takes the
|
||
sign of the first double. */
|
||
if (fmt->split_half)
|
||
fmt = fmt->split_half;
|
||
|
||
order = floatformat_normalize_byteorder (fmt, uval, newfrom);
|
||
|
||
if (order != fmt->byteorder)
|
||
uval = newfrom;
|
||
|
||
return get_field (uval, order, fmt->totalsize, fmt->sign_start, 1);
|
||
}
|
||
|
||
/* Check if VAL is "not a number" (NaN) for FMT. */
|
||
|
||
enum float_kind
|
||
floatformat_classify (const struct floatformat *fmt,
|
||
const bfd_byte *uval)
|
||
{
|
||
long exponent;
|
||
unsigned long mant;
|
||
unsigned int mant_bits, mant_off;
|
||
int mant_bits_left;
|
||
enum floatformat_byteorders order;
|
||
unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
|
||
int mant_zero;
|
||
|
||
gdb_assert (fmt != NULL);
|
||
gdb_assert (fmt->totalsize
|
||
<= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
|
||
|
||
/* An IBM long double (a two element array of double) can be classified
|
||
by looking at the first double. inf and nan are specified as
|
||
ignoring the second double. zero and subnormal will always have
|
||
the second double 0.0 if the long double is correctly rounded. */
|
||
if (fmt->split_half)
|
||
fmt = fmt->split_half;
|
||
|
||
order = floatformat_normalize_byteorder (fmt, uval, newfrom);
|
||
|
||
if (order != fmt->byteorder)
|
||
uval = newfrom;
|
||
|
||
exponent = get_field (uval, order, fmt->totalsize, fmt->exp_start,
|
||
fmt->exp_len);
|
||
|
||
mant_bits_left = fmt->man_len;
|
||
mant_off = fmt->man_start;
|
||
|
||
mant_zero = 1;
|
||
while (mant_bits_left > 0)
|
||
{
|
||
mant_bits = min (mant_bits_left, 32);
|
||
|
||
mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);
|
||
|
||
/* If there is an explicit integer bit, mask it off. */
|
||
if (mant_off == fmt->man_start
|
||
&& fmt->intbit == floatformat_intbit_yes)
|
||
mant &= ~(1 << (mant_bits - 1));
|
||
|
||
if (mant)
|
||
{
|
||
mant_zero = 0;
|
||
break;
|
||
}
|
||
|
||
mant_off += mant_bits;
|
||
mant_bits_left -= mant_bits;
|
||
}
|
||
|
||
/* If exp_nan is not set, assume that inf, NaN, and subnormals are not
|
||
supported. */
|
||
if (! fmt->exp_nan)
|
||
{
|
||
if (mant_zero)
|
||
return float_zero;
|
||
else
|
||
return float_normal;
|
||
}
|
||
|
||
if (exponent == 0 && !mant_zero)
|
||
return float_subnormal;
|
||
|
||
if (exponent == fmt->exp_nan)
|
||
{
|
||
if (mant_zero)
|
||
return float_infinite;
|
||
else
|
||
return float_nan;
|
||
}
|
||
|
||
if (mant_zero)
|
||
return float_zero;
|
||
|
||
return float_normal;
|
||
}
|
||
|
||
/* Convert the mantissa of VAL (which is assumed to be a floating
|
||
point number whose format is described by FMT) into a hexadecimal
|
||
and store it in a static string. Return a pointer to that string. */
|
||
|
||
const char *
|
||
floatformat_mantissa (const struct floatformat *fmt,
|
||
const bfd_byte *val)
|
||
{
|
||
unsigned char *uval = (unsigned char *) val;
|
||
unsigned long mant;
|
||
unsigned int mant_bits, mant_off;
|
||
int mant_bits_left;
|
||
static char res[50];
|
||
char buf[9];
|
||
int len;
|
||
enum floatformat_byteorders order;
|
||
unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
|
||
|
||
gdb_assert (fmt != NULL);
|
||
gdb_assert (fmt->totalsize
|
||
<= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
|
||
|
||
/* For IBM long double (a two element array of double), return the
|
||
mantissa of the first double. The problem with returning the
|
||
actual mantissa from both doubles is that there can be an
|
||
arbitrary number of implied 0's or 1's between the mantissas
|
||
of the first and second double. In any case, this function
|
||
is only used for dumping out nans, and a nan is specified to
|
||
ignore the value in the second double. */
|
||
if (fmt->split_half)
|
||
fmt = fmt->split_half;
|
||
|
||
order = floatformat_normalize_byteorder (fmt, uval, newfrom);
|
||
|
||
if (order != fmt->byteorder)
|
||
uval = newfrom;
|
||
|
||
if (! fmt->exp_nan)
|
||
return 0;
|
||
|
||
/* Make sure we have enough room to store the mantissa. */
|
||
gdb_assert (sizeof res > ((fmt->man_len + 7) / 8) * 2);
|
||
|
||
mant_off = fmt->man_start;
|
||
mant_bits_left = fmt->man_len;
|
||
mant_bits = (mant_bits_left % 32) > 0 ? mant_bits_left % 32 : 32;
|
||
|
||
mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);
|
||
|
||
len = xsnprintf (res, sizeof res, "%lx", mant);
|
||
|
||
mant_off += mant_bits;
|
||
mant_bits_left -= mant_bits;
|
||
|
||
while (mant_bits_left > 0)
|
||
{
|
||
mant = get_field (uval, order, fmt->totalsize, mant_off, 32);
|
||
|
||
xsnprintf (buf, sizeof buf, "%08lx", mant);
|
||
gdb_assert (len + strlen (buf) <= sizeof res);
|
||
strcat (res, buf);
|
||
|
||
mant_off += 32;
|
||
mant_bits_left -= 32;
|
||
}
|
||
|
||
return res;
|
||
}
|
||
|
||
|
||
/* Convert TO/FROM target to the hosts DOUBLEST floating-point format.
|
||
|
||
If the host and target formats agree, we just copy the raw data
|
||
into the appropriate type of variable and return, letting the host
|
||
increase precision as necessary. Otherwise, we call the conversion
|
||
routine and let it do the dirty work. */
|
||
|
||
static const struct floatformat *host_float_format = GDB_HOST_FLOAT_FORMAT;
|
||
static const struct floatformat *host_double_format = GDB_HOST_DOUBLE_FORMAT;
|
||
static const struct floatformat *host_long_double_format
|
||
= GDB_HOST_LONG_DOUBLE_FORMAT;
|
||
|
||
void
|
||
floatformat_to_doublest (const struct floatformat *fmt,
|
||
const void *in, DOUBLEST *out)
|
||
{
|
||
gdb_assert (fmt != NULL);
|
||
if (fmt == host_float_format)
|
||
{
|
||
float val;
|
||
|
||
memcpy (&val, in, sizeof (val));
|
||
*out = val;
|
||
}
|
||
else if (fmt == host_double_format)
|
||
{
|
||
double val;
|
||
|
||
memcpy (&val, in, sizeof (val));
|
||
*out = val;
|
||
}
|
||
else if (fmt == host_long_double_format)
|
||
{
|
||
long double val;
|
||
|
||
memcpy (&val, in, sizeof (val));
|
||
*out = val;
|
||
}
|
||
else
|
||
convert_floatformat_to_doublest (fmt, in, out);
|
||
}
|
||
|
||
void
|
||
floatformat_from_doublest (const struct floatformat *fmt,
|
||
const DOUBLEST *in, void *out)
|
||
{
|
||
gdb_assert (fmt != NULL);
|
||
if (fmt == host_float_format)
|
||
{
|
||
float val = *in;
|
||
|
||
memcpy (out, &val, sizeof (val));
|
||
}
|
||
else if (fmt == host_double_format)
|
||
{
|
||
double val = *in;
|
||
|
||
memcpy (out, &val, sizeof (val));
|
||
}
|
||
else if (fmt == host_long_double_format)
|
||
{
|
||
long double val = *in;
|
||
|
||
memcpy (out, &val, sizeof (val));
|
||
}
|
||
else
|
||
convert_doublest_to_floatformat (fmt, in, out);
|
||
}
|
||
|
||
|
||
/* Return a floating-point format for a floating-point variable of
|
||
length LEN. If no suitable floating-point format is found, an
|
||
error is thrown.
|
||
|
||
We need this functionality since information about the
|
||
floating-point format of a type is not always available to GDB; the
|
||
debug information typically only tells us the size of a
|
||
floating-point type.
|
||
|
||
FIXME: kettenis/2001-10-28: In many places, particularly in
|
||
target-dependent code, the format of floating-point types is known,
|
||
but not passed on by GDB. This should be fixed. */
|
||
|
||
static const struct floatformat *
|
||
floatformat_from_length (struct gdbarch *gdbarch, int len)
|
||
{
|
||
const struct floatformat *format;
|
||
|
||
if (len * TARGET_CHAR_BIT == gdbarch_half_bit (gdbarch))
|
||
format = gdbarch_half_format (gdbarch)
|
||
[gdbarch_byte_order (gdbarch)];
|
||
else if (len * TARGET_CHAR_BIT == gdbarch_float_bit (gdbarch))
|
||
format = gdbarch_float_format (gdbarch)
|
||
[gdbarch_byte_order (gdbarch)];
|
||
else if (len * TARGET_CHAR_BIT == gdbarch_double_bit (gdbarch))
|
||
format = gdbarch_double_format (gdbarch)
|
||
[gdbarch_byte_order (gdbarch)];
|
||
else if (len * TARGET_CHAR_BIT == gdbarch_long_double_bit (gdbarch))
|
||
format = gdbarch_long_double_format (gdbarch)
|
||
[gdbarch_byte_order (gdbarch)];
|
||
/* On i386 the 'long double' type takes 96 bits,
|
||
while the real number of used bits is only 80,
|
||
both in processor and in memory.
|
||
The code below accepts the real bit size. */
|
||
else if ((gdbarch_long_double_format (gdbarch) != NULL)
|
||
&& (len * TARGET_CHAR_BIT
|
||
== gdbarch_long_double_format (gdbarch)[0]->totalsize))
|
||
format = gdbarch_long_double_format (gdbarch)
|
||
[gdbarch_byte_order (gdbarch)];
|
||
else
|
||
format = NULL;
|
||
if (format == NULL)
|
||
error (_("Unrecognized %d-bit floating-point type."),
|
||
len * TARGET_CHAR_BIT);
|
||
return format;
|
||
}
|
||
|
||
const struct floatformat *
|
||
floatformat_from_type (const struct type *type)
|
||
{
|
||
struct gdbarch *gdbarch = get_type_arch (type);
|
||
|
||
gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
|
||
if (TYPE_FLOATFORMAT (type) != NULL)
|
||
return TYPE_FLOATFORMAT (type)[gdbarch_byte_order (gdbarch)];
|
||
else
|
||
return floatformat_from_length (gdbarch, TYPE_LENGTH (type));
|
||
}
|
||
|
||
/* Extract a floating-point number of type TYPE from a target-order
|
||
byte-stream at ADDR. Returns the value as type DOUBLEST. */
|
||
|
||
DOUBLEST
|
||
extract_typed_floating (const void *addr, const struct type *type)
|
||
{
|
||
const struct floatformat *fmt = floatformat_from_type (type);
|
||
DOUBLEST retval;
|
||
|
||
floatformat_to_doublest (fmt, addr, &retval);
|
||
return retval;
|
||
}
|
||
|
||
/* Store VAL as a floating-point number of type TYPE to a target-order
|
||
byte-stream at ADDR. */
|
||
|
||
void
|
||
store_typed_floating (void *addr, const struct type *type, DOUBLEST val)
|
||
{
|
||
const struct floatformat *fmt = floatformat_from_type (type);
|
||
|
||
/* FIXME: kettenis/2001-10-28: It is debatable whether we should
|
||
zero out any remaining bytes in the target buffer when TYPE is
|
||
longer than the actual underlying floating-point format. Perhaps
|
||
we should store a fixed bitpattern in those remaining bytes,
|
||
instead of zero, or perhaps we shouldn't touch those remaining
|
||
bytes at all.
|
||
|
||
NOTE: cagney/2001-10-28: With the way things currently work, it
|
||
isn't a good idea to leave the end bits undefined. This is
|
||
because GDB writes out the entire sizeof(<floating>) bits of the
|
||
floating-point type even though the value might only be stored
|
||
in, and the target processor may only refer to, the first N <
|
||
TYPE_LENGTH (type) bits. If the end of the buffer wasn't
|
||
initialized, GDB would write undefined data to the target. An
|
||
errant program, refering to that undefined data, would then
|
||
become non-deterministic.
|
||
|
||
See also the function convert_typed_floating below. */
|
||
memset (addr, 0, TYPE_LENGTH (type));
|
||
|
||
floatformat_from_doublest (fmt, &val, addr);
|
||
}
|
||
|
||
/* Convert a floating-point number of type FROM_TYPE from a
|
||
target-order byte-stream at FROM to a floating-point number of type
|
||
TO_TYPE, and store it to a target-order byte-stream at TO. */
|
||
|
||
void
|
||
convert_typed_floating (const void *from, const struct type *from_type,
|
||
void *to, const struct type *to_type)
|
||
{
|
||
const struct floatformat *from_fmt = floatformat_from_type (from_type);
|
||
const struct floatformat *to_fmt = floatformat_from_type (to_type);
|
||
|
||
if (from_fmt == NULL || to_fmt == NULL)
|
||
{
|
||
/* If we don't know the floating-point format of FROM_TYPE or
|
||
TO_TYPE, there's not much we can do. We might make the
|
||
assumption that if the length of FROM_TYPE and TO_TYPE match,
|
||
their floating-point format would match too, but that
|
||
assumption might be wrong on targets that support
|
||
floating-point types that only differ in endianness for
|
||
example. So we warn instead, and zero out the target buffer. */
|
||
warning (_("Can't convert floating-point number to desired type."));
|
||
memset (to, 0, TYPE_LENGTH (to_type));
|
||
}
|
||
else if (from_fmt == to_fmt)
|
||
{
|
||
/* We're in business. The floating-point format of FROM_TYPE
|
||
and TO_TYPE match. However, even though the floating-point
|
||
format matches, the length of the type might still be
|
||
different. Make sure we don't overrun any buffers. See
|
||
comment in store_typed_floating for a discussion about
|
||
zeroing out remaining bytes in the target buffer. */
|
||
memset (to, 0, TYPE_LENGTH (to_type));
|
||
memcpy (to, from, min (TYPE_LENGTH (from_type), TYPE_LENGTH (to_type)));
|
||
}
|
||
else
|
||
{
|
||
/* The floating-point types don't match. The best we can do
|
||
(apart from simulating the target FPU) is converting to the
|
||
widest floating-point type supported by the host, and then
|
||
again to the desired type. */
|
||
DOUBLEST d;
|
||
|
||
floatformat_to_doublest (from_fmt, from, &d);
|
||
floatformat_from_doublest (to_fmt, &d, to);
|
||
}
|
||
}
|