binutils-gdb/gdb/sparc-netbsd-tdep.c
Andrew Burgess 08106042d9 gdb: move the type cast into gdbarch_tdep
I built GDB for all targets on a x86-64/GNU-Linux system, and
then (accidentally) passed GDB a RISC-V binary, and asked GDB to "run"
the binary on the native target.  I got this error:

  (gdb) show architecture
  The target architecture is set to "auto" (currently "i386").
  (gdb) file /tmp/hello.rv32.exe
  Reading symbols from /tmp/hello.rv32.exe...
  (gdb) show architecture
  The target architecture is set to "auto" (currently "riscv:rv32").
  (gdb) run
  Starting program: /tmp/hello.rv32.exe
  ../../src/gdb/i387-tdep.c:596: internal-error: i387_supply_fxsave: Assertion `tdep->st0_regnum >= I386_ST0_REGNUM' failed.

What's going on here is this; initially the architecture is i386, this
is based on the default architecture, which is set based on the native
target.  After loading the RISC-V executable the architecture of the
current inferior is updated based on the architecture of the
executable.

When we "run", GDB does a fork & exec, with the inferior being
controlled through ptrace.  GDB sees an initial stop from the inferior
as soon as the inferior comes to life.  In response to this stop GDB
ends up calling save_stop_reason (linux-nat.c), which ends up trying
to read register from the inferior, to do this we end up calling
target_ops::fetch_registers, which, for the x86-64 native target,
calls amd64_linux_nat_target::fetch_registers.

After this I eventually end up in i387_supply_fxsave, different x86
based targets will end in different functions to fetch registers, but
it doesn't really matter which function we end up in, the problem is
this line, which is repeated in many places:

  i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (arch);

The problem here is that the ARCH in this line comes from the current
inferior, which, as we discussed above, will be a RISC-V gdbarch, the
tdep field will actually be of type riscv_gdbarch_tdep, not
i386_gdbarch_tdep.  After this cast we are relying on undefined
behaviour, in my case I happen to trigger an assert, but this might
not always be the case.

The thing I tried that exposed this problem was of course, trying to
start an executable of the wrong architecture on a native target.  I
don't think that the correct solution for this problem is to detect,
at the point of cast, that the gdbarch_tdep object is of the wrong
type, but, I did wonder, is there a way that we could protect
ourselves from incorrectly casting the gdbarch_tdep object?

I think that there is something we can do here, and this commit is the
first step in that direction, though no actual check is added by this
commit.

This commit can be split into two parts:

 (1) In gdbarch.h and arch-utils.c.  In these files I have modified
 gdbarch_tdep (the function) so that it now takes a template argument,
 like this:

    template<typename TDepType>
    static inline TDepType *
    gdbarch_tdep (struct gdbarch *gdbarch)
    {
      struct gdbarch_tdep *tdep = gdbarch_tdep_1 (gdbarch);
      return static_cast<TDepType *> (tdep);
    }

  After this change we are no better protected, but the cast is now
  done within the gdbarch_tdep function rather than at the call sites,
  this leads to the second, much larger change in this commit,

  (2) Everywhere gdbarch_tdep is called, we make changes like this:

    -  i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (arch);
    +  i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch);

There should be no functional change after this commit.

In the next commit I will build on this change to add an assertion in
gdbarch_tdep that checks we are casting to the correct type.
2022-07-21 15:19:42 +01:00

328 lines
9.7 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Target-dependent code for NetBSD/sparc.
Copyright (C) 2002-2022 Free Software Foundation, Inc.
Contributed by Wasabi Systems, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "frame.h"
#include "frame-unwind.h"
#include "gdbcore.h"
#include "gdbtypes.h"
#include "osabi.h"
#include "regcache.h"
#include "regset.h"
#include "solib-svr4.h"
#include "symtab.h"
#include "trad-frame.h"
#include "gdbarch.h"
#include "sparc-tdep.h"
#include "netbsd-tdep.h"
/* Macros to extract fields from SPARC instructions. */
#define X_RS1(i) (((i) >> 14) & 0x1f)
#define X_RS2(i) ((i) & 0x1f)
#define X_I(i) (((i) >> 13) & 1)
const struct sparc_gregmap sparc32nbsd_gregmap =
{
0 * 4, /* %psr */
1 * 4, /* %pc */
2 * 4, /* %npc */
3 * 4, /* %y */
-1, /* %wim */
-1, /* %tbr */
5 * 4, /* %g1 */
-1 /* %l0 */
};
static void
sparc32nbsd_supply_gregset (const struct regset *regset,
struct regcache *regcache,
int regnum, const void *gregs, size_t len)
{
sparc32_supply_gregset (&sparc32nbsd_gregmap, regcache, regnum, gregs);
/* Traditional NetBSD core files don't use multiple register sets.
Instead, the general-purpose and floating-point registers are
lumped together in a single section. */
if (len >= 212)
sparc32_supply_fpregset (&sparc32_bsd_fpregmap, regcache, regnum,
(const char *) gregs + 80);
}
static void
sparc32nbsd_supply_fpregset (const struct regset *regset,
struct regcache *regcache,
int regnum, const void *fpregs, size_t len)
{
sparc32_supply_fpregset (&sparc32_bsd_fpregmap, regcache, regnum, fpregs);
}
/* Signal trampolines. */
/* The following variables describe the location of an on-stack signal
trampoline. The current values correspond to the memory layout for
NetBSD 1.3 and up. These shouldn't be necessary for NetBSD 2.0 and
up, since NetBSD uses signal trampolines provided by libc now. */
static const CORE_ADDR sparc32nbsd_sigtramp_start = 0xeffffef0;
static const CORE_ADDR sparc32nbsd_sigtramp_end = 0xeffffff0;
static int
sparc32nbsd_pc_in_sigtramp (CORE_ADDR pc, const char *name)
{
if (pc >= sparc32nbsd_sigtramp_start && pc < sparc32nbsd_sigtramp_end)
return 1;
return nbsd_pc_in_sigtramp (pc, name);
}
trad_frame_saved_reg *
sparc32nbsd_sigcontext_saved_regs (struct frame_info *this_frame)
{
struct gdbarch *gdbarch = get_frame_arch (this_frame);
trad_frame_saved_reg *saved_regs;
CORE_ADDR addr, sigcontext_addr;
int regnum, delta;
ULONGEST psr;
saved_regs = trad_frame_alloc_saved_regs (this_frame);
/* We find the appropriate instance of `struct sigcontext' at a
fixed offset in the signal frame. */
addr = get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
sigcontext_addr = addr + 64 + 16;
/* The registers are saved in bits and pieces scattered all over the
place. The code below records their location on the assumption
that the part of the signal trampoline that saves the state has
been executed. */
saved_regs[SPARC_SP_REGNUM].set_addr (sigcontext_addr + 8);
saved_regs[SPARC32_PC_REGNUM].set_addr (sigcontext_addr + 12);
saved_regs[SPARC32_NPC_REGNUM].set_addr (sigcontext_addr + 16);
saved_regs[SPARC32_PSR_REGNUM].set_addr (sigcontext_addr + 20);
saved_regs[SPARC_G1_REGNUM].set_addr (sigcontext_addr + 24);
saved_regs[SPARC_O0_REGNUM].set_addr (sigcontext_addr + 28);
/* The remaining `global' registers and %y are saved in the `local'
registers. */
delta = SPARC_L0_REGNUM - SPARC_G0_REGNUM;
for (regnum = SPARC_G2_REGNUM; regnum <= SPARC_G7_REGNUM; regnum++)
saved_regs[regnum].set_realreg (regnum + delta);
saved_regs[SPARC32_Y_REGNUM].set_realreg (SPARC_L1_REGNUM);
/* The remaining `out' registers can be found in the current frame's
`in' registers. */
delta = SPARC_I0_REGNUM - SPARC_O0_REGNUM;
for (regnum = SPARC_O1_REGNUM; regnum <= SPARC_O5_REGNUM; regnum++)
saved_regs[regnum].set_realreg (regnum + delta);
saved_regs[SPARC_O7_REGNUM].set_realreg (SPARC_I7_REGNUM);
/* The `local' and `in' registers have been saved in the register
save area. */
addr = saved_regs[SPARC_SP_REGNUM].addr ();
addr = get_frame_memory_unsigned (this_frame, addr, 4);
for (regnum = SPARC_L0_REGNUM;
regnum <= SPARC_I7_REGNUM; regnum++, addr += 4)
saved_regs[regnum].set_addr (addr);
/* Handle StackGhost. */
{
ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
if (wcookie != 0)
{
ULONGEST i7;
addr = saved_regs[SPARC_I7_REGNUM].addr ();
i7 = get_frame_memory_unsigned (this_frame, addr, 4);
saved_regs[SPARC_I7_REGNUM].set_value (i7 ^ wcookie);
}
}
/* The floating-point registers are only saved if the EF bit in %prs
has been set. */
#define PSR_EF 0x00001000
addr = saved_regs[SPARC32_PSR_REGNUM].addr ();
psr = get_frame_memory_unsigned (this_frame, addr, 4);
if (psr & PSR_EF)
{
CORE_ADDR sp;
sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
saved_regs[SPARC32_FSR_REGNUM].set_addr (sp + 96);
for (regnum = SPARC_F0_REGNUM, addr = sp + 96 + 8;
regnum <= SPARC_F31_REGNUM; regnum++, addr += 4)
saved_regs[regnum].set_addr (addr);
}
return saved_regs;
}
static struct sparc_frame_cache *
sparc32nbsd_sigcontext_frame_cache (struct frame_info *this_frame,
void **this_cache)
{
struct sparc_frame_cache *cache;
CORE_ADDR addr;
if (*this_cache)
return (struct sparc_frame_cache *) *this_cache;
cache = sparc_frame_cache (this_frame, this_cache);
gdb_assert (cache == *this_cache);
/* If we couldn't find the frame's function, we're probably dealing
with an on-stack signal trampoline. */
if (cache->pc == 0)
{
cache->pc = sparc32nbsd_sigtramp_start;
/* Since we couldn't find the frame's function, the cache was
initialized under the assumption that we're frameless. */
sparc_record_save_insn (cache);
addr = get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
cache->base = addr;
}
cache->saved_regs = sparc32nbsd_sigcontext_saved_regs (this_frame);
return cache;
}
static void
sparc32nbsd_sigcontext_frame_this_id (struct frame_info *this_frame,
void **this_cache,
struct frame_id *this_id)
{
struct sparc_frame_cache *cache =
sparc32nbsd_sigcontext_frame_cache (this_frame, this_cache);
(*this_id) = frame_id_build (cache->base, cache->pc);
}
static struct value *
sparc32nbsd_sigcontext_frame_prev_register (struct frame_info *this_frame,
void **this_cache, int regnum)
{
struct sparc_frame_cache *cache =
sparc32nbsd_sigcontext_frame_cache (this_frame, this_cache);
return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
}
static int
sparc32nbsd_sigcontext_frame_sniffer (const struct frame_unwind *self,
struct frame_info *this_frame,
void **this_cache)
{
CORE_ADDR pc = get_frame_pc (this_frame);
const char *name;
find_pc_partial_function (pc, &name, NULL, NULL);
if (sparc32nbsd_pc_in_sigtramp (pc, name))
{
if (name == NULL || !startswith (name, "__sigtramp_sigcontext"))
return 1;
}
return 0;
}
static const struct frame_unwind sparc32nbsd_sigcontext_frame_unwind =
{
"sparc32 netbsd sigcontext",
SIGTRAMP_FRAME,
default_frame_unwind_stop_reason,
sparc32nbsd_sigcontext_frame_this_id,
sparc32nbsd_sigcontext_frame_prev_register,
NULL,
sparc32nbsd_sigcontext_frame_sniffer
};
/* Return the address of a system call's alternative return
address. */
CORE_ADDR
sparcnbsd_step_trap (struct frame_info *frame, unsigned long insn)
{
if ((X_I (insn) == 0 && X_RS1 (insn) == 0 && X_RS2 (insn) == 0)
|| (X_I (insn) == 1 && X_RS1 (insn) == 0 && (insn & 0x7f) == 0))
{
/* "New" system call. */
ULONGEST number = get_frame_register_unsigned (frame, SPARC_G1_REGNUM);
if (number & 0x400)
return get_frame_register_unsigned (frame, SPARC_G2_REGNUM);
if (number & 0x800)
return get_frame_register_unsigned (frame, SPARC_G7_REGNUM);
}
return 0;
}
static const struct regset sparc32nbsd_gregset =
{
NULL, sparc32nbsd_supply_gregset, NULL
};
static const struct regset sparc32nbsd_fpregset =
{
NULL, sparc32nbsd_supply_fpregset, NULL
};
void
sparc32nbsd_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
sparc_gdbarch_tdep *tdep = gdbarch_tdep<sparc_gdbarch_tdep> (gdbarch);
nbsd_init_abi (info, gdbarch);
/* NetBSD doesn't support the 128-bit `long double' from the psABI. */
set_gdbarch_long_double_bit (gdbarch, 64);
set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
tdep->gregset = &sparc32nbsd_gregset;
tdep->sizeof_gregset = 20 * 4;
tdep->fpregset = &sparc32nbsd_fpregset;
tdep->sizeof_fpregset = 33 * 4;
/* Make sure we can single-step "new" syscalls. */
tdep->step_trap = sparcnbsd_step_trap;
frame_unwind_append_unwinder (gdbarch, &sparc32nbsd_sigcontext_frame_unwind);
set_solib_svr4_fetch_link_map_offsets
(gdbarch, svr4_ilp32_fetch_link_map_offsets);
}
void _initialize_sparcnbsd_tdep ();
void
_initialize_sparcnbsd_tdep ()
{
gdbarch_register_osabi (bfd_arch_sparc, 0, GDB_OSABI_NETBSD,
sparc32nbsd_init_abi);
}