binutils-gdb/gdb/block.c
Pedro Alves de63c46b54 Fix regresssion(internal-error) printing subprogram argument (PR gdb/22670)
At <https://sourceware.org/ml/gdb-patches/2017-12/msg00298.html>, Joel
wrote:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the following code which first declares a tagged type (the
equivalent of a class in Ada), and then a procedure which takes a
pointer (access) to this type's 'Class.

    package Pck is
       type Top_T is tagged record
          N : Integer := 1;
       end record;
       procedure Inspect (Obj: access Top_T'Class);
    end Pck;

Putting a breakpoint in that procedure and then running to it triggers
an internal error:

    (gdb) break inspect
    (gdb) continue
    Breakpoint 1, pck.inspect (obj=0x63e010
    /[...]/gdb/stack.c:621: internal-error: void print_frame_args(symbol*, frame_info*, int, ui_file*): Assertion `nsym != NULL' failed.

What's special about this subprogram is that it takes an access to
what we call a 'Class type, and for implementation reasons, the
compiler adds an extra argument named "objL". If you are curious why,
it allows the compiler for perform dynamic accessibility checks that
are mandated by the language.

If we look at the location where we get the internal error (in
stack.c), we find that we are looping over the symbol of each
parameter, and for each parameter, we do:

    /* We have to look up the symbol because arguments can have
       two entries (one a parameter, one a local) and the one we
       want is the local, which lookup_symbol will find for us.
    [...]
        nsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym),
                              b, VAR_DOMAIN, NULL).symbol;
        gdb_assert (nsym != NULL);

The lookup_symbol goes through the lookup structure, which means the
symbol's linkage name ("objL") gets transformed into a
lookup_name_info object (in block_lookup_symbol), before it gets fed
to the block symbol dictionary iterators.  This, in turn, triggers the
symbol matching by comparing the "lookup" name which, for Ada, means
among other things, lowercasing the given name to "objl".  It is this
transformation that causes the lookup find no matches, and therefore
trip this assertion.

Going back to the "offending" call to lookup_symbol in stack.c, what
we are trying to do, here, is do a lookup by linkage name.  So, I
think what we mean to be doing is a completely literal symbol lookup,
so maybe not even strcmp_iw, but actually just plain strcmp???

In the past, in practice, you could get that effect by doing a lookup
using the C language. But that doesn't work, because we still end up
somehow using Ada's lookup_name routine which transforms "objL".

So, ideally, as I hinted before, I think what we need is a way to
perform a literal lookup so that searches by linkage names like the
above can be performed.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

This commit fixes the problem by implementing something similar to
Joel's literal idea, but with some important differences.

I considered adding a symbol_name_match_type::LINKAGE and supporting
searching by linkage name for any language, but the problem with that
is that the dictionaries only work with SYMBOL_SEARCH_NAME, because
that's what is used for hashing.  We'd need separate dictionaries for
hashed linkage names.

So with the current symbol tables infrastructure, it's not literal
linkage names that we want to pass down, but instead literal _search_
names (SYMBOL_SEARCH_NAME, etc.).

However, psymbols have no overload/function parameter info in C++, so
a straight strcmp doesn't work properly for C++ name matching.

So what we do is be a little less aggressive then and add a new
symbol_name_match_type::SEARCH_SYMBOL instead that takes as input a
non-user-input search symbol, and then we skip any decoding/demangling
steps and make:

 - Ada treat that as a verbatim match,
 - other languages treat it as symbol_name_match_type::FULL.

This also fixes the new '"maint check-psymtabs" for Ada' testcase for
me (gdb.ada/maint_with_ada.exp).  I've not removed the kfail yet
because Joel still sees that testcase failing with this patch.
That'll be fixed in follow up patches.

gdb/ChangeLog:
2018-01-05  Pedro Alves  <palves@redhat.com>

	PR gdb/22670
	* ada-lang.c (literal_symbol_name_matcher): New function.
	(ada_get_symbol_name_matcher): Use it for
	symbol_name_match_type::SEARCH_NAME.
	* block.c (block_lookup_symbol): New parameter 'match_type'.  Pass
	it down instead of assuming symbol_name_match_type::FULL.
	* block.h (block_lookup_symbol): New parameter 'match_type'.
	* c-valprint.c (print_unpacked_pointer): Use
	lookup_symbol_search_name instead of lookup_symbol.
	* compile/compile-object-load.c (get_out_value_type): Pass down
	symbol_name_match_type::SEARCH_NAME.
	* cp-namespace.c (cp_basic_lookup_symbol): Pass down
	symbol_name_match_type::FULL.
	* cp-support.c (cp_get_symbol_name_matcher): Handle
	symbol_name_match_type::SEARCH_NAME.
	* infrun.c (insert_exception_resume_breakpoint): Use
	lookup_symbol_search_name.
	* p-valprint.c (pascal_val_print): Use lookup_symbol_search_name.
	* psymtab.c (maintenance_check_psymtabs): Use
	symbol_name_match_type::SEARCH_NAME and SYMBOL_SEARCH_NAME.
	* stack.c (print_frame_args): Use lookup_symbol_search_name and
	SYMBOL_SEARCH_NAME.
	* symtab.c (lookup_local_symbol): Don't demangle the lookup name
	if symbol_name_match_type::SEARCH_NAME.
	(lookup_symbol_in_language): Pass down
	symbol_name_match_type::FULL.
	(lookup_symbol_search_name): New.
	(lookup_language_this): Pass down
	symbol_name_match_type::SEARCH_NAME.
	(lookup_symbol_aux, lookup_local_symbol): New parameter
	'match_type'.  Pass it down.
	* symtab.h (symbol_name_match_type::SEARCH_NAME): New enumerator.
	(lookup_symbol_search_name): New declaration.
	(lookup_symbol_in_block): New 'match_type' parameter.

gdb/testsuite/ChangeLog:
2018-01-05  Joel Brobecker  <brobecker@adacore.com>

	PR gdb/22670
	* gdb.ada/access_tagged_param.exp: New file.
	* gdb.ada/access_tagged_param/foo.adb: New file.
2018-01-05 16:07:00 +00:00

814 lines
22 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Block-related functions for the GNU debugger, GDB.
Copyright (C) 2003-2018 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "block.h"
#include "symtab.h"
#include "symfile.h"
#include "gdb_obstack.h"
#include "cp-support.h"
#include "addrmap.h"
#include "gdbtypes.h"
#include "objfiles.h"
/* This is used by struct block to store namespace-related info for
C++ files, namely using declarations and the current namespace in
scope. */
struct block_namespace_info
{
const char *scope;
struct using_direct *using_decl;
};
static void block_initialize_namespace (struct block *block,
struct obstack *obstack);
/* See block.h. */
struct objfile *
block_objfile (const struct block *block)
{
const struct global_block *global_block;
if (BLOCK_FUNCTION (block) != NULL)
return symbol_objfile (BLOCK_FUNCTION (block));
global_block = (struct global_block *) block_global_block (block);
return COMPUNIT_OBJFILE (global_block->compunit_symtab);
}
/* See block. */
struct gdbarch *
block_gdbarch (const struct block *block)
{
if (BLOCK_FUNCTION (block) != NULL)
return symbol_arch (BLOCK_FUNCTION (block));
return get_objfile_arch (block_objfile (block));
}
/* Return Nonzero if block a is lexically nested within block b,
or if a and b have the same pc range.
Return zero otherwise. */
int
contained_in (const struct block *a, const struct block *b)
{
if (!a || !b)
return 0;
do
{
if (a == b)
return 1;
/* If A is a function block, then A cannot be contained in B,
except if A was inlined. */
if (BLOCK_FUNCTION (a) != NULL && !block_inlined_p (a))
return 0;
a = BLOCK_SUPERBLOCK (a);
}
while (a != NULL);
return 0;
}
/* Return the symbol for the function which contains a specified
lexical block, described by a struct block BL. The return value
will not be an inlined function; the containing function will be
returned instead. */
struct symbol *
block_linkage_function (const struct block *bl)
{
while ((BLOCK_FUNCTION (bl) == NULL || block_inlined_p (bl))
&& BLOCK_SUPERBLOCK (bl) != NULL)
bl = BLOCK_SUPERBLOCK (bl);
return BLOCK_FUNCTION (bl);
}
/* Return the symbol for the function which contains a specified
block, described by a struct block BL. The return value will be
the closest enclosing function, which might be an inline
function. */
struct symbol *
block_containing_function (const struct block *bl)
{
while (BLOCK_FUNCTION (bl) == NULL && BLOCK_SUPERBLOCK (bl) != NULL)
bl = BLOCK_SUPERBLOCK (bl);
return BLOCK_FUNCTION (bl);
}
/* Return one if BL represents an inlined function. */
int
block_inlined_p (const struct block *bl)
{
return BLOCK_FUNCTION (bl) != NULL && SYMBOL_INLINED (BLOCK_FUNCTION (bl));
}
/* A helper function that checks whether PC is in the blockvector BL.
It returns the containing block if there is one, or else NULL. */
static struct block *
find_block_in_blockvector (const struct blockvector *bl, CORE_ADDR pc)
{
struct block *b;
int bot, top, half;
/* If we have an addrmap mapping code addresses to blocks, then use
that. */
if (BLOCKVECTOR_MAP (bl))
return (struct block *) addrmap_find (BLOCKVECTOR_MAP (bl), pc);
/* Otherwise, use binary search to find the last block that starts
before PC.
Note: GLOBAL_BLOCK is block 0, STATIC_BLOCK is block 1.
They both have the same START,END values.
Historically this code would choose STATIC_BLOCK over GLOBAL_BLOCK but the
fact that this choice was made was subtle, now we make it explicit. */
gdb_assert (BLOCKVECTOR_NBLOCKS (bl) >= 2);
bot = STATIC_BLOCK;
top = BLOCKVECTOR_NBLOCKS (bl);
while (top - bot > 1)
{
half = (top - bot + 1) >> 1;
b = BLOCKVECTOR_BLOCK (bl, bot + half);
if (BLOCK_START (b) <= pc)
bot += half;
else
top = bot + half;
}
/* Now search backward for a block that ends after PC. */
while (bot >= STATIC_BLOCK)
{
b = BLOCKVECTOR_BLOCK (bl, bot);
if (BLOCK_END (b) > pc)
return b;
bot--;
}
return NULL;
}
/* Return the blockvector immediately containing the innermost lexical
block containing the specified pc value and section, or 0 if there
is none. PBLOCK is a pointer to the block. If PBLOCK is NULL, we
don't pass this information back to the caller. */
const struct blockvector *
blockvector_for_pc_sect (CORE_ADDR pc, struct obj_section *section,
const struct block **pblock,
struct compunit_symtab *cust)
{
const struct blockvector *bl;
struct block *b;
if (cust == NULL)
{
/* First search all symtabs for one whose file contains our pc */
cust = find_pc_sect_compunit_symtab (pc, section);
if (cust == NULL)
return 0;
}
bl = COMPUNIT_BLOCKVECTOR (cust);
/* Then search that symtab for the smallest block that wins. */
b = find_block_in_blockvector (bl, pc);
if (b == NULL)
return NULL;
if (pblock)
*pblock = b;
return bl;
}
/* Return true if the blockvector BV contains PC, false otherwise. */
int
blockvector_contains_pc (const struct blockvector *bv, CORE_ADDR pc)
{
return find_block_in_blockvector (bv, pc) != NULL;
}
/* Return call_site for specified PC in GDBARCH. PC must match exactly, it
must be the next instruction after call (or after tail call jump). Throw
NO_ENTRY_VALUE_ERROR otherwise. This function never returns NULL. */
struct call_site *
call_site_for_pc (struct gdbarch *gdbarch, CORE_ADDR pc)
{
struct compunit_symtab *cust;
void **slot = NULL;
/* -1 as tail call PC can be already after the compilation unit range. */
cust = find_pc_compunit_symtab (pc - 1);
if (cust != NULL && COMPUNIT_CALL_SITE_HTAB (cust) != NULL)
slot = htab_find_slot (COMPUNIT_CALL_SITE_HTAB (cust), &pc, NO_INSERT);
if (slot == NULL)
{
struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (pc);
/* DW_TAG_gnu_call_site will be missing just if GCC could not determine
the call target. */
throw_error (NO_ENTRY_VALUE_ERROR,
_("DW_OP_entry_value resolving cannot find "
"DW_TAG_call_site %s in %s"),
paddress (gdbarch, pc),
(msym.minsym == NULL ? "???"
: MSYMBOL_PRINT_NAME (msym.minsym)));
}
return (struct call_site *) *slot;
}
/* Return the blockvector immediately containing the innermost lexical block
containing the specified pc value, or 0 if there is none.
Backward compatibility, no section. */
const struct blockvector *
blockvector_for_pc (CORE_ADDR pc, const struct block **pblock)
{
return blockvector_for_pc_sect (pc, find_pc_mapped_section (pc),
pblock, NULL);
}
/* Return the innermost lexical block containing the specified pc value
in the specified section, or 0 if there is none. */
const struct block *
block_for_pc_sect (CORE_ADDR pc, struct obj_section *section)
{
const struct blockvector *bl;
const struct block *b;
bl = blockvector_for_pc_sect (pc, section, &b, NULL);
if (bl)
return b;
return 0;
}
/* Return the innermost lexical block containing the specified pc value,
or 0 if there is none. Backward compatibility, no section. */
const struct block *
block_for_pc (CORE_ADDR pc)
{
return block_for_pc_sect (pc, find_pc_mapped_section (pc));
}
/* Now come some functions designed to deal with C++ namespace issues.
The accessors are safe to use even in the non-C++ case. */
/* This returns the namespace that BLOCK is enclosed in, or "" if it
isn't enclosed in a namespace at all. This travels the chain of
superblocks looking for a scope, if necessary. */
const char *
block_scope (const struct block *block)
{
for (; block != NULL; block = BLOCK_SUPERBLOCK (block))
{
if (BLOCK_NAMESPACE (block) != NULL
&& BLOCK_NAMESPACE (block)->scope != NULL)
return BLOCK_NAMESPACE (block)->scope;
}
return "";
}
/* Set BLOCK's scope member to SCOPE; if needed, allocate memory via
OBSTACK. (It won't make a copy of SCOPE, however, so that already
has to be allocated correctly.) */
void
block_set_scope (struct block *block, const char *scope,
struct obstack *obstack)
{
block_initialize_namespace (block, obstack);
BLOCK_NAMESPACE (block)->scope = scope;
}
/* This returns the using directives list associated with BLOCK, if
any. */
struct using_direct *
block_using (const struct block *block)
{
if (block == NULL || BLOCK_NAMESPACE (block) == NULL)
return NULL;
else
return BLOCK_NAMESPACE (block)->using_decl;
}
/* Set BLOCK's using member to USING; if needed, allocate memory via
OBSTACK. (It won't make a copy of USING, however, so that already
has to be allocated correctly.) */
void
block_set_using (struct block *block,
struct using_direct *using_decl,
struct obstack *obstack)
{
block_initialize_namespace (block, obstack);
BLOCK_NAMESPACE (block)->using_decl = using_decl;
}
/* If BLOCK_NAMESPACE (block) is NULL, allocate it via OBSTACK and
ititialize its members to zero. */
static void
block_initialize_namespace (struct block *block, struct obstack *obstack)
{
if (BLOCK_NAMESPACE (block) == NULL)
{
BLOCK_NAMESPACE (block) = XOBNEW (obstack, struct block_namespace_info);
BLOCK_NAMESPACE (block)->scope = NULL;
BLOCK_NAMESPACE (block)->using_decl = NULL;
}
}
/* Return the static block associated to BLOCK. Return NULL if block
is NULL or if block is a global block. */
const struct block *
block_static_block (const struct block *block)
{
if (block == NULL || BLOCK_SUPERBLOCK (block) == NULL)
return NULL;
while (BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) != NULL)
block = BLOCK_SUPERBLOCK (block);
return block;
}
/* Return the static block associated to BLOCK. Return NULL if block
is NULL. */
const struct block *
block_global_block (const struct block *block)
{
if (block == NULL)
return NULL;
while (BLOCK_SUPERBLOCK (block) != NULL)
block = BLOCK_SUPERBLOCK (block);
return block;
}
/* Allocate a block on OBSTACK, and initialize its elements to
zero/NULL. This is useful for creating "dummy" blocks that don't
correspond to actual source files.
Warning: it sets the block's BLOCK_DICT to NULL, which isn't a
valid value. If you really don't want the block to have a
dictionary, then you should subsequently set its BLOCK_DICT to
dict_create_linear (obstack, NULL). */
struct block *
allocate_block (struct obstack *obstack)
{
struct block *bl = OBSTACK_ZALLOC (obstack, struct block);
return bl;
}
/* Allocate a global block. */
struct block *
allocate_global_block (struct obstack *obstack)
{
struct global_block *bl = OBSTACK_ZALLOC (obstack, struct global_block);
return &bl->block;
}
/* Set the compunit of the global block. */
void
set_block_compunit_symtab (struct block *block, struct compunit_symtab *cu)
{
struct global_block *gb;
gdb_assert (BLOCK_SUPERBLOCK (block) == NULL);
gb = (struct global_block *) block;
gdb_assert (gb->compunit_symtab == NULL);
gb->compunit_symtab = cu;
}
/* See block.h. */
struct dynamic_prop *
block_static_link (const struct block *block)
{
struct objfile *objfile = block_objfile (block);
/* Only objfile-owned blocks that materialize top function scopes can have
static links. */
if (objfile == NULL || BLOCK_FUNCTION (block) == NULL)
return NULL;
return (struct dynamic_prop *) objfile_lookup_static_link (objfile, block);
}
/* Return the compunit of the global block. */
static struct compunit_symtab *
get_block_compunit_symtab (const struct block *block)
{
struct global_block *gb;
gdb_assert (BLOCK_SUPERBLOCK (block) == NULL);
gb = (struct global_block *) block;
gdb_assert (gb->compunit_symtab != NULL);
return gb->compunit_symtab;
}
/* Initialize a block iterator, either to iterate over a single block,
or, for static and global blocks, all the included symtabs as
well. */
static void
initialize_block_iterator (const struct block *block,
struct block_iterator *iter)
{
enum block_enum which;
struct compunit_symtab *cu;
iter->idx = -1;
if (BLOCK_SUPERBLOCK (block) == NULL)
{
which = GLOBAL_BLOCK;
cu = get_block_compunit_symtab (block);
}
else if (BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) == NULL)
{
which = STATIC_BLOCK;
cu = get_block_compunit_symtab (BLOCK_SUPERBLOCK (block));
}
else
{
iter->d.block = block;
/* A signal value meaning that we're iterating over a single
block. */
iter->which = FIRST_LOCAL_BLOCK;
return;
}
/* If this is an included symtab, find the canonical includer and
use it instead. */
while (cu->user != NULL)
cu = cu->user;
/* Putting this check here simplifies the logic of the iterator
functions. If there are no included symtabs, we only need to
search a single block, so we might as well just do that
directly. */
if (cu->includes == NULL)
{
iter->d.block = block;
/* A signal value meaning that we're iterating over a single
block. */
iter->which = FIRST_LOCAL_BLOCK;
}
else
{
iter->d.compunit_symtab = cu;
iter->which = which;
}
}
/* A helper function that finds the current compunit over whose static
or global block we should iterate. */
static struct compunit_symtab *
find_iterator_compunit_symtab (struct block_iterator *iterator)
{
if (iterator->idx == -1)
return iterator->d.compunit_symtab;
return iterator->d.compunit_symtab->includes[iterator->idx];
}
/* Perform a single step for a plain block iterator, iterating across
symbol tables as needed. Returns the next symbol, or NULL when
iteration is complete. */
static struct symbol *
block_iterator_step (struct block_iterator *iterator, int first)
{
struct symbol *sym;
gdb_assert (iterator->which != FIRST_LOCAL_BLOCK);
while (1)
{
if (first)
{
struct compunit_symtab *cust
= find_iterator_compunit_symtab (iterator);
const struct block *block;
/* Iteration is complete. */
if (cust == NULL)
return NULL;
block = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
iterator->which);
sym = dict_iterator_first (BLOCK_DICT (block), &iterator->dict_iter);
}
else
sym = dict_iterator_next (&iterator->dict_iter);
if (sym != NULL)
return sym;
/* We have finished iterating the appropriate block of one
symtab. Now advance to the next symtab and begin iteration
there. */
++iterator->idx;
first = 1;
}
}
/* See block.h. */
struct symbol *
block_iterator_first (const struct block *block,
struct block_iterator *iterator)
{
initialize_block_iterator (block, iterator);
if (iterator->which == FIRST_LOCAL_BLOCK)
return dict_iterator_first (block->dict, &iterator->dict_iter);
return block_iterator_step (iterator, 1);
}
/* See block.h. */
struct symbol *
block_iterator_next (struct block_iterator *iterator)
{
if (iterator->which == FIRST_LOCAL_BLOCK)
return dict_iterator_next (&iterator->dict_iter);
return block_iterator_step (iterator, 0);
}
/* Perform a single step for a "match" block iterator, iterating
across symbol tables as needed. Returns the next symbol, or NULL
when iteration is complete. */
static struct symbol *
block_iter_match_step (struct block_iterator *iterator,
const lookup_name_info &name,
int first)
{
struct symbol *sym;
gdb_assert (iterator->which != FIRST_LOCAL_BLOCK);
while (1)
{
if (first)
{
struct compunit_symtab *cust
= find_iterator_compunit_symtab (iterator);
const struct block *block;
/* Iteration is complete. */
if (cust == NULL)
return NULL;
block = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
iterator->which);
sym = dict_iter_match_first (BLOCK_DICT (block), name,
&iterator->dict_iter);
}
else
sym = dict_iter_match_next (name, &iterator->dict_iter);
if (sym != NULL)
return sym;
/* We have finished iterating the appropriate block of one
symtab. Now advance to the next symtab and begin iteration
there. */
++iterator->idx;
first = 1;
}
}
/* See block.h. */
struct symbol *
block_iter_match_first (const struct block *block,
const lookup_name_info &name,
struct block_iterator *iterator)
{
initialize_block_iterator (block, iterator);
if (iterator->which == FIRST_LOCAL_BLOCK)
return dict_iter_match_first (block->dict, name, &iterator->dict_iter);
return block_iter_match_step (iterator, name, 1);
}
/* See block.h. */
struct symbol *
block_iter_match_next (const lookup_name_info &name,
struct block_iterator *iterator)
{
if (iterator->which == FIRST_LOCAL_BLOCK)
return dict_iter_match_next (name, &iterator->dict_iter);
return block_iter_match_step (iterator, name, 0);
}
/* See block.h.
Note that if NAME is the demangled form of a C++ symbol, we will fail
to find a match during the binary search of the non-encoded names, but
for now we don't worry about the slight inefficiency of looking for
a match we'll never find, since it will go pretty quick. Once the
binary search terminates, we drop through and do a straight linear
search on the symbols. Each symbol which is marked as being a ObjC/C++
symbol (language_cplus or language_objc set) has both the encoded and
non-encoded names tested for a match. */
struct symbol *
block_lookup_symbol (const struct block *block, const char *name,
symbol_name_match_type match_type,
const domain_enum domain)
{
struct block_iterator iter;
struct symbol *sym;
lookup_name_info lookup_name (name, match_type);
if (!BLOCK_FUNCTION (block))
{
struct symbol *other = NULL;
ALL_BLOCK_SYMBOLS_WITH_NAME (block, lookup_name, iter, sym)
{
if (SYMBOL_DOMAIN (sym) == domain)
return sym;
/* This is a bit of a hack, but symbol_matches_domain might ignore
STRUCT vs VAR domain symbols. So if a matching symbol is found,
make sure there is no "better" matching symbol, i.e., one with
exactly the same domain. PR 16253. */
if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
SYMBOL_DOMAIN (sym), domain))
other = sym;
}
return other;
}
else
{
/* Note that parameter symbols do not always show up last in the
list; this loop makes sure to take anything else other than
parameter symbols first; it only uses parameter symbols as a
last resort. Note that this only takes up extra computation
time on a match.
It's hard to define types in the parameter list (at least in
C/C++) so we don't do the same PR 16253 hack here that is done
for the !BLOCK_FUNCTION case. */
struct symbol *sym_found = NULL;
ALL_BLOCK_SYMBOLS_WITH_NAME (block, lookup_name, iter, sym)
{
if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
SYMBOL_DOMAIN (sym), domain))
{
sym_found = sym;
if (!SYMBOL_IS_ARGUMENT (sym))
{
break;
}
}
}
return (sym_found); /* Will be NULL if not found. */
}
}
/* See block.h. */
struct symbol *
block_lookup_symbol_primary (const struct block *block, const char *name,
const domain_enum domain)
{
struct symbol *sym, *other;
struct dict_iterator dict_iter;
lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
/* Verify BLOCK is STATIC_BLOCK or GLOBAL_BLOCK. */
gdb_assert (BLOCK_SUPERBLOCK (block) == NULL
|| BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) == NULL);
other = NULL;
for (sym = dict_iter_match_first (block->dict, lookup_name, &dict_iter);
sym != NULL;
sym = dict_iter_match_next (lookup_name, &dict_iter))
{
if (SYMBOL_DOMAIN (sym) == domain)
return sym;
/* This is a bit of a hack, but symbol_matches_domain might ignore
STRUCT vs VAR domain symbols. So if a matching symbol is found,
make sure there is no "better" matching symbol, i.e., one with
exactly the same domain. PR 16253. */
if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
SYMBOL_DOMAIN (sym), domain))
other = sym;
}
return other;
}
/* See block.h. */
struct symbol *
block_find_symbol (const struct block *block, const char *name,
const domain_enum domain,
block_symbol_matcher_ftype *matcher, void *data)
{
struct block_iterator iter;
struct symbol *sym;
lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
/* Verify BLOCK is STATIC_BLOCK or GLOBAL_BLOCK. */
gdb_assert (BLOCK_SUPERBLOCK (block) == NULL
|| BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) == NULL);
ALL_BLOCK_SYMBOLS_WITH_NAME (block, lookup_name, iter, sym)
{
/* MATCHER is deliberately called second here so that it never sees
a non-domain-matching symbol. */
if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
SYMBOL_DOMAIN (sym), domain)
&& matcher (sym, data))
return sym;
}
return NULL;
}
/* See block.h. */
int
block_find_non_opaque_type (struct symbol *sym, void *data)
{
return !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym));
}
/* See block.h. */
int
block_find_non_opaque_type_preferred (struct symbol *sym, void *data)
{
struct symbol **best = (struct symbol **) data;
if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
return 1;
*best = sym;
return 0;
}