mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-12 12:16:04 +08:00
646d754d14
This commit builds on the previous series of commits to share the target description caching code between GDB and gdbserver for x86/Linux targets. The objective of this commit is to move the four functions (2 each of) i386_linux_read_description and amd64_linux_read_description into the gdb/arch/ directory and combine them so we have just a single copy of each. Then GDB, gdbserver, and the in-process-agent (IPA) will link against these shared functions. One curiosity with this patch is the function x86_linux_post_init_tdesc. On the gdbserver side the two functions amd64_linux_read_description and i386_linux_read_description have some functionality that is not present on the GDB side, there is some additional configuration that is performed as each target description is created, to setup the expedited registers. To support this I've added the function x86_linux_post_init_tdesc. This function is called from the two *_linux_read_description functions, but is implemented separately for GDB and gdbserver. An alternative approach that avoids adding x86_linux_post_init_tdesc would be to have x86_linux_tdesc_for_tid return a non-const target description, then in x86_target::low_arch_setup we could inspect the target description to figure out if it is 64-bit or not, and modify the target description as needed. In the end I think that adding the x86_linux_post_init_tdesc function is the simpler solution. The contents of gdbserver/linux-x86-low.cc have moved to gdb/arch/x86-linux-tdesc-features.c, and gdbserver/linux-x86-tdesc.h has moved to gdb/arch/x86-linux-tdesc-features.h, this change leads to some updates in the #includes in the gdbserver/ directory. This commit also changes how target descriptions are cached. Previously both GDB and gdbserver used static C-style arrays to act as the tdesc cache. This was fine, except for two problems. Either the C-style arrays would need to be placed in x86-linux-tdesc-features.c, which would allow us to use the x86_linux_*_tdesc_count_1() functions to size the arrays for us, or we'd need to hard code the array sizes using separate #defines, which we'd then have to keep in sync with the rest of the code in x86-linux-tdesc-features.c. Given both of these problems I decided a better solution would be to just switch to using a std::unordered_map to act as the cache. This will resize automatically, and we can use the xcr0 value as the key. At first inspection, using xcr0 might seem to be a problem; after all the {i386,amd64}_create_target_description functions take more than just the xcr0 value. However, this patch is only for x86/Linux targets, and for x86/Linux all of the other flags passed to the tdesc creation functions have constant values and so are irrelevant when we consider tdesc caching. For testing I've done the following: - Built on x86-64 GNU/Linux for all targets, and just for the native target, - Build on i386 GNU/Linux for all targets, and just for the native target, - Build on a 64-bit, non-x86 GNU/Linux for all targets, just for the native target, and for targets x86_64-*-linux and i386-*-linux. Approved-By: Felix Willgerodt <felix.willgerodt@intel.com>
1079 lines
36 KiB
C
1079 lines
36 KiB
C
/* Target-dependent code for GNU/Linux i386.
|
||
|
||
Copyright (C) 2000-2024 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "extract-store-integer.h"
|
||
#include "gdbcore.h"
|
||
#include "frame.h"
|
||
#include "value.h"
|
||
#include "regcache.h"
|
||
#include "regset.h"
|
||
#include "inferior.h"
|
||
#include "osabi.h"
|
||
#include "reggroups.h"
|
||
#include "dwarf2/frame.h"
|
||
#include "i386-tdep.h"
|
||
#include "i386-linux-tdep.h"
|
||
#include "linux-tdep.h"
|
||
#include "utils.h"
|
||
#include "glibc-tdep.h"
|
||
#include "solib-svr4.h"
|
||
#include "symtab.h"
|
||
#include "arch-utils.h"
|
||
#include "xml-syscall.h"
|
||
#include "infrun.h"
|
||
|
||
#include "i387-tdep.h"
|
||
#include "gdbsupport/x86-xstate.h"
|
||
#include "arch/i386-linux-tdesc.h"
|
||
#include "arch/x86-linux-tdesc.h"
|
||
|
||
/* The syscall's XML filename for i386. */
|
||
#define XML_SYSCALL_FILENAME_I386 "syscalls/i386-linux.xml"
|
||
|
||
#include "record-full.h"
|
||
#include "linux-record.h"
|
||
|
||
#include "arch/i386.h"
|
||
#include "target-descriptions.h"
|
||
|
||
/* Return non-zero, when the register is in the corresponding register
|
||
group. Put the LINUX_ORIG_EAX register in the system group. */
|
||
static int
|
||
i386_linux_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
|
||
const struct reggroup *group)
|
||
{
|
||
if (regnum == I386_LINUX_ORIG_EAX_REGNUM)
|
||
return (group == system_reggroup
|
||
|| group == save_reggroup
|
||
|| group == restore_reggroup);
|
||
return i386_register_reggroup_p (gdbarch, regnum, group);
|
||
}
|
||
|
||
|
||
/* Recognizing signal handler frames. */
|
||
|
||
/* GNU/Linux has two flavors of signals. Normal signal handlers, and
|
||
"realtime" (RT) signals. The RT signals can provide additional
|
||
information to the signal handler if the SA_SIGINFO flag is set
|
||
when establishing a signal handler using `sigaction'. It is not
|
||
unlikely that future versions of GNU/Linux will support SA_SIGINFO
|
||
for normal signals too. */
|
||
|
||
/* When the i386 Linux kernel calls a signal handler and the
|
||
SA_RESTORER flag isn't set, the return address points to a bit of
|
||
code on the stack. This function returns whether the PC appears to
|
||
be within this bit of code.
|
||
|
||
The instruction sequence for normal signals is
|
||
pop %eax
|
||
mov $0x77, %eax
|
||
int $0x80
|
||
or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.
|
||
|
||
Checking for the code sequence should be somewhat reliable, because
|
||
the effect is to call the system call sigreturn. This is unlikely
|
||
to occur anywhere other than in a signal trampoline.
|
||
|
||
It kind of sucks that we have to read memory from the process in
|
||
order to identify a signal trampoline, but there doesn't seem to be
|
||
any other way. Therefore we only do the memory reads if no
|
||
function name could be identified, which should be the case since
|
||
the code is on the stack.
|
||
|
||
Detection of signal trampolines for handlers that set the
|
||
SA_RESTORER flag is in general not possible. Unfortunately this is
|
||
what the GNU C Library has been doing for quite some time now.
|
||
However, as of version 2.1.2, the GNU C Library uses signal
|
||
trampolines (named __restore and __restore_rt) that are identical
|
||
to the ones used by the kernel. Therefore, these trampolines are
|
||
supported too. */
|
||
|
||
#define LINUX_SIGTRAMP_INSN0 0x58 /* pop %eax */
|
||
#define LINUX_SIGTRAMP_OFFSET0 0
|
||
#define LINUX_SIGTRAMP_INSN1 0xb8 /* mov $NNNN, %eax */
|
||
#define LINUX_SIGTRAMP_OFFSET1 1
|
||
#define LINUX_SIGTRAMP_INSN2 0xcd /* int */
|
||
#define LINUX_SIGTRAMP_OFFSET2 6
|
||
|
||
static const gdb_byte linux_sigtramp_code[] =
|
||
{
|
||
LINUX_SIGTRAMP_INSN0, /* pop %eax */
|
||
LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00, /* mov $0x77, %eax */
|
||
LINUX_SIGTRAMP_INSN2, 0x80 /* int $0x80 */
|
||
};
|
||
|
||
#define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code)
|
||
|
||
/* If THIS_FRAME is a sigtramp routine, return the address of the
|
||
start of the routine. Otherwise, return 0. */
|
||
|
||
static CORE_ADDR
|
||
i386_linux_sigtramp_start (const frame_info_ptr &this_frame)
|
||
{
|
||
CORE_ADDR pc = get_frame_pc (this_frame);
|
||
gdb_byte buf[LINUX_SIGTRAMP_LEN];
|
||
|
||
/* We only recognize a signal trampoline if PC is at the start of
|
||
one of the three instructions. We optimize for finding the PC at
|
||
the start, as will be the case when the trampoline is not the
|
||
first frame on the stack. We assume that in the case where the
|
||
PC is not at the start of the instruction sequence, there will be
|
||
a few trailing readable bytes on the stack. */
|
||
|
||
if (!safe_frame_unwind_memory (this_frame, pc, buf))
|
||
return 0;
|
||
|
||
if (buf[0] != LINUX_SIGTRAMP_INSN0)
|
||
{
|
||
int adjust;
|
||
|
||
switch (buf[0])
|
||
{
|
||
case LINUX_SIGTRAMP_INSN1:
|
||
adjust = LINUX_SIGTRAMP_OFFSET1;
|
||
break;
|
||
case LINUX_SIGTRAMP_INSN2:
|
||
adjust = LINUX_SIGTRAMP_OFFSET2;
|
||
break;
|
||
default:
|
||
return 0;
|
||
}
|
||
|
||
pc -= adjust;
|
||
|
||
if (!safe_frame_unwind_memory (this_frame, pc, buf))
|
||
return 0;
|
||
}
|
||
|
||
if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0)
|
||
return 0;
|
||
|
||
return pc;
|
||
}
|
||
|
||
/* This function does the same for RT signals. Here the instruction
|
||
sequence is
|
||
mov $0xad, %eax
|
||
int $0x80
|
||
or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80.
|
||
|
||
The effect is to call the system call rt_sigreturn. */
|
||
|
||
#define LINUX_RT_SIGTRAMP_INSN0 0xb8 /* mov $NNNN, %eax */
|
||
#define LINUX_RT_SIGTRAMP_OFFSET0 0
|
||
#define LINUX_RT_SIGTRAMP_INSN1 0xcd /* int */
|
||
#define LINUX_RT_SIGTRAMP_OFFSET1 5
|
||
|
||
static const gdb_byte linux_rt_sigtramp_code[] =
|
||
{
|
||
LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00, /* mov $0xad, %eax */
|
||
LINUX_RT_SIGTRAMP_INSN1, 0x80 /* int $0x80 */
|
||
};
|
||
|
||
#define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code)
|
||
|
||
/* If THIS_FRAME is an RT sigtramp routine, return the address of the
|
||
start of the routine. Otherwise, return 0. */
|
||
|
||
static CORE_ADDR
|
||
i386_linux_rt_sigtramp_start (const frame_info_ptr &this_frame)
|
||
{
|
||
CORE_ADDR pc = get_frame_pc (this_frame);
|
||
gdb_byte buf[LINUX_RT_SIGTRAMP_LEN];
|
||
|
||
/* We only recognize a signal trampoline if PC is at the start of
|
||
one of the two instructions. We optimize for finding the PC at
|
||
the start, as will be the case when the trampoline is not the
|
||
first frame on the stack. We assume that in the case where the
|
||
PC is not at the start of the instruction sequence, there will be
|
||
a few trailing readable bytes on the stack. */
|
||
|
||
if (!safe_frame_unwind_memory (this_frame, pc, buf))
|
||
return 0;
|
||
|
||
if (buf[0] != LINUX_RT_SIGTRAMP_INSN0)
|
||
{
|
||
if (buf[0] != LINUX_RT_SIGTRAMP_INSN1)
|
||
return 0;
|
||
|
||
pc -= LINUX_RT_SIGTRAMP_OFFSET1;
|
||
|
||
if (!safe_frame_unwind_memory (this_frame, pc,
|
||
buf))
|
||
return 0;
|
||
}
|
||
|
||
if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0)
|
||
return 0;
|
||
|
||
return pc;
|
||
}
|
||
|
||
/* Return whether THIS_FRAME corresponds to a GNU/Linux sigtramp
|
||
routine. */
|
||
|
||
static int
|
||
i386_linux_sigtramp_p (const frame_info_ptr &this_frame)
|
||
{
|
||
CORE_ADDR pc = get_frame_pc (this_frame);
|
||
const char *name;
|
||
|
||
find_pc_partial_function (pc, &name, NULL, NULL);
|
||
|
||
/* If we have NAME, we can optimize the search. The trampolines are
|
||
named __restore and __restore_rt. However, they aren't dynamically
|
||
exported from the shared C library, so the trampoline may appear to
|
||
be part of the preceding function. This should always be sigaction,
|
||
__sigaction, or __libc_sigaction (all aliases to the same function). */
|
||
if (name == NULL || strstr (name, "sigaction") != NULL)
|
||
return (i386_linux_sigtramp_start (this_frame) != 0
|
||
|| i386_linux_rt_sigtramp_start (this_frame) != 0);
|
||
|
||
return (strcmp ("__restore", name) == 0
|
||
|| strcmp ("__restore_rt", name) == 0);
|
||
}
|
||
|
||
/* Return one if the PC of THIS_FRAME is in a signal trampoline which
|
||
may have DWARF-2 CFI. */
|
||
|
||
static int
|
||
i386_linux_dwarf_signal_frame_p (struct gdbarch *gdbarch,
|
||
const frame_info_ptr &this_frame)
|
||
{
|
||
CORE_ADDR pc = get_frame_pc (this_frame);
|
||
const char *name;
|
||
|
||
find_pc_partial_function (pc, &name, NULL, NULL);
|
||
|
||
/* If a vsyscall DSO is in use, the signal trampolines may have these
|
||
names. */
|
||
if (name && (strcmp (name, "__kernel_sigreturn") == 0
|
||
|| strcmp (name, "__kernel_rt_sigreturn") == 0))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Offset to struct sigcontext in ucontext, from <asm/ucontext.h>. */
|
||
#define I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET 20
|
||
|
||
/* Assuming THIS_FRAME is a GNU/Linux sigtramp routine, return the
|
||
address of the associated sigcontext structure. */
|
||
|
||
static CORE_ADDR
|
||
i386_linux_sigcontext_addr (const frame_info_ptr &this_frame)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
CORE_ADDR pc;
|
||
CORE_ADDR sp;
|
||
gdb_byte buf[4];
|
||
|
||
get_frame_register (this_frame, I386_ESP_REGNUM, buf);
|
||
sp = extract_unsigned_integer (buf, 4, byte_order);
|
||
|
||
pc = i386_linux_sigtramp_start (this_frame);
|
||
if (pc)
|
||
{
|
||
/* The sigcontext structure lives on the stack, right after
|
||
the signum argument. We determine the address of the
|
||
sigcontext structure by looking at the frame's stack
|
||
pointer. Keep in mind that the first instruction of the
|
||
sigtramp code is "pop %eax". If the PC is after this
|
||
instruction, adjust the returned value accordingly. */
|
||
if (pc == get_frame_pc (this_frame))
|
||
return sp + 4;
|
||
return sp;
|
||
}
|
||
|
||
pc = i386_linux_rt_sigtramp_start (this_frame);
|
||
if (pc)
|
||
{
|
||
CORE_ADDR ucontext_addr;
|
||
|
||
/* The sigcontext structure is part of the user context. A
|
||
pointer to the user context is passed as the third argument
|
||
to the signal handler. */
|
||
read_memory (sp + 8, buf, 4);
|
||
ucontext_addr = extract_unsigned_integer (buf, 4, byte_order);
|
||
return ucontext_addr + I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET;
|
||
}
|
||
|
||
error (_("Couldn't recognize signal trampoline."));
|
||
return 0;
|
||
}
|
||
|
||
/* Set the program counter for process PTID to PC. */
|
||
|
||
static void
|
||
i386_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
|
||
{
|
||
regcache_cooked_write_unsigned (regcache, I386_EIP_REGNUM, pc);
|
||
|
||
/* We must be careful with modifying the program counter. If we
|
||
just interrupted a system call, the kernel might try to restart
|
||
it when we resume the inferior. On restarting the system call,
|
||
the kernel will try backing up the program counter even though it
|
||
no longer points at the system call. This typically results in a
|
||
SIGSEGV or SIGILL. We can prevent this by writing `-1' in the
|
||
"orig_eax" pseudo-register.
|
||
|
||
Note that "orig_eax" is saved when setting up a dummy call frame.
|
||
This means that it is properly restored when that frame is
|
||
popped, and that the interrupted system call will be restarted
|
||
when we resume the inferior on return from a function call from
|
||
within GDB. In all other cases the system call will not be
|
||
restarted. */
|
||
regcache_cooked_write_unsigned (regcache, I386_LINUX_ORIG_EAX_REGNUM, -1);
|
||
}
|
||
|
||
/* Record all registers but IP register for process-record. */
|
||
|
||
static int
|
||
i386_all_but_ip_registers_record (struct regcache *regcache)
|
||
{
|
||
if (record_full_arch_list_add_reg (regcache, I386_EAX_REGNUM))
|
||
return -1;
|
||
if (record_full_arch_list_add_reg (regcache, I386_ECX_REGNUM))
|
||
return -1;
|
||
if (record_full_arch_list_add_reg (regcache, I386_EDX_REGNUM))
|
||
return -1;
|
||
if (record_full_arch_list_add_reg (regcache, I386_EBX_REGNUM))
|
||
return -1;
|
||
if (record_full_arch_list_add_reg (regcache, I386_ESP_REGNUM))
|
||
return -1;
|
||
if (record_full_arch_list_add_reg (regcache, I386_EBP_REGNUM))
|
||
return -1;
|
||
if (record_full_arch_list_add_reg (regcache, I386_ESI_REGNUM))
|
||
return -1;
|
||
if (record_full_arch_list_add_reg (regcache, I386_EDI_REGNUM))
|
||
return -1;
|
||
if (record_full_arch_list_add_reg (regcache, I386_EFLAGS_REGNUM))
|
||
return -1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* i386_canonicalize_syscall maps from the native i386 Linux set
|
||
of syscall ids into a canonical set of syscall ids used by
|
||
process record (a mostly trivial mapping, since the canonical
|
||
set was originally taken from the i386 set). */
|
||
|
||
static enum gdb_syscall
|
||
i386_canonicalize_syscall (int syscall)
|
||
{
|
||
enum { i386_syscall_max = 499 };
|
||
|
||
if (syscall <= i386_syscall_max)
|
||
return (enum gdb_syscall) syscall;
|
||
else
|
||
return gdb_sys_no_syscall;
|
||
}
|
||
|
||
/* Value of the sigcode in case of a boundary fault. */
|
||
|
||
#define SIG_CODE_BOUNDARY_FAULT 3
|
||
|
||
/* i386 GNU/Linux implementation of the report_signal_info
|
||
gdbarch hook. Displays information related to MPX bound
|
||
violations. */
|
||
void
|
||
i386_linux_report_signal_info (struct gdbarch *gdbarch, struct ui_out *uiout,
|
||
enum gdb_signal siggnal)
|
||
{
|
||
/* -Wmaybe-uninitialized */
|
||
CORE_ADDR lower_bound = 0, upper_bound = 0, access = 0;
|
||
int is_upper;
|
||
long sig_code = 0;
|
||
|
||
if (!i386_mpx_enabled () || siggnal != GDB_SIGNAL_SEGV)
|
||
return;
|
||
|
||
try
|
||
{
|
||
/* Sigcode evaluates if the actual segfault is a boundary violation. */
|
||
sig_code = parse_and_eval_long ("$_siginfo.si_code\n");
|
||
|
||
lower_bound
|
||
= parse_and_eval_long ("$_siginfo._sifields._sigfault._addr_bnd._lower");
|
||
upper_bound
|
||
= parse_and_eval_long ("$_siginfo._sifields._sigfault._addr_bnd._upper");
|
||
access
|
||
= parse_and_eval_long ("$_siginfo._sifields._sigfault.si_addr");
|
||
}
|
||
catch (const gdb_exception_error &exception)
|
||
{
|
||
return;
|
||
}
|
||
|
||
/* If this is not a boundary violation just return. */
|
||
if (sig_code != SIG_CODE_BOUNDARY_FAULT)
|
||
return;
|
||
|
||
is_upper = (access > upper_bound ? 1 : 0);
|
||
|
||
uiout->text ("\n");
|
||
if (is_upper)
|
||
uiout->field_string ("sigcode-meaning", _("Upper bound violation"));
|
||
else
|
||
uiout->field_string ("sigcode-meaning", _("Lower bound violation"));
|
||
|
||
uiout->text (_(" while accessing address "));
|
||
uiout->field_core_addr ("bound-access", gdbarch, access);
|
||
|
||
uiout->text (_("\nBounds: [lower = "));
|
||
uiout->field_core_addr ("lower-bound", gdbarch, lower_bound);
|
||
|
||
uiout->text (_(", upper = "));
|
||
uiout->field_core_addr ("upper-bound", gdbarch, upper_bound);
|
||
|
||
uiout->text (_("]"));
|
||
}
|
||
|
||
/* Parse the arguments of current system call instruction and record
|
||
the values of the registers and memory that will be changed into
|
||
"record_arch_list". This instruction is "int 0x80" (Linux
|
||
Kernel2.4) or "sysenter" (Linux Kernel 2.6).
|
||
|
||
Return -1 if something wrong. */
|
||
|
||
static struct linux_record_tdep i386_linux_record_tdep;
|
||
|
||
static int
|
||
i386_linux_intx80_sysenter_syscall_record (struct regcache *regcache)
|
||
{
|
||
int ret;
|
||
LONGEST syscall_native;
|
||
enum gdb_syscall syscall_gdb;
|
||
|
||
regcache_raw_read_signed (regcache, I386_EAX_REGNUM, &syscall_native);
|
||
|
||
syscall_gdb = i386_canonicalize_syscall (syscall_native);
|
||
|
||
if (syscall_gdb < 0)
|
||
{
|
||
gdb_printf (gdb_stderr,
|
||
_("Process record and replay target doesn't "
|
||
"support syscall number %s\n"),
|
||
plongest (syscall_native));
|
||
return -1;
|
||
}
|
||
|
||
if (syscall_gdb == gdb_sys_sigreturn
|
||
|| syscall_gdb == gdb_sys_rt_sigreturn)
|
||
{
|
||
if (i386_all_but_ip_registers_record (regcache))
|
||
return -1;
|
||
return 0;
|
||
}
|
||
|
||
ret = record_linux_system_call (syscall_gdb, regcache,
|
||
&i386_linux_record_tdep);
|
||
if (ret)
|
||
return ret;
|
||
|
||
/* Record the return value of the system call. */
|
||
if (record_full_arch_list_add_reg (regcache, I386_EAX_REGNUM))
|
||
return -1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
#define I386_LINUX_xstate 270
|
||
#define I386_LINUX_frame_size 732
|
||
|
||
static int
|
||
i386_linux_record_signal (struct gdbarch *gdbarch,
|
||
struct regcache *regcache,
|
||
enum gdb_signal signal)
|
||
{
|
||
ULONGEST esp;
|
||
|
||
if (i386_all_but_ip_registers_record (regcache))
|
||
return -1;
|
||
|
||
if (record_full_arch_list_add_reg (regcache, I386_EIP_REGNUM))
|
||
return -1;
|
||
|
||
/* Record the change in the stack. */
|
||
regcache_raw_read_unsigned (regcache, I386_ESP_REGNUM, &esp);
|
||
/* This is for xstate.
|
||
sp -= sizeof (struct _fpstate); */
|
||
esp -= I386_LINUX_xstate;
|
||
/* This is for frame_size.
|
||
sp -= sizeof (struct rt_sigframe); */
|
||
esp -= I386_LINUX_frame_size;
|
||
if (record_full_arch_list_add_mem (esp,
|
||
I386_LINUX_xstate + I386_LINUX_frame_size))
|
||
return -1;
|
||
|
||
if (record_full_arch_list_add_end ())
|
||
return -1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Core of the implementation for gdbarch get_syscall_number. Get pending
|
||
syscall number from REGCACHE. If there is no pending syscall -1 will be
|
||
returned. Pending syscall means ptrace has stepped into the syscall but
|
||
another ptrace call will step out. PC is right after the int $0x80
|
||
/ syscall / sysenter instruction in both cases, PC does not change during
|
||
the second ptrace step. */
|
||
|
||
static LONGEST
|
||
i386_linux_get_syscall_number_from_regcache (struct regcache *regcache)
|
||
{
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
/* The content of a register. */
|
||
gdb_byte buf[4];
|
||
/* The result. */
|
||
LONGEST ret;
|
||
|
||
/* Getting the system call number from the register.
|
||
When dealing with x86 architecture, this information
|
||
is stored at %eax register. */
|
||
regcache->cooked_read (I386_LINUX_ORIG_EAX_REGNUM, buf);
|
||
|
||
ret = extract_signed_integer (buf, byte_order);
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Wrapper for i386_linux_get_syscall_number_from_regcache to make it
|
||
compatible with gdbarch get_syscall_number method prototype. */
|
||
|
||
static LONGEST
|
||
i386_linux_get_syscall_number (struct gdbarch *gdbarch,
|
||
thread_info *thread)
|
||
{
|
||
struct regcache *regcache = get_thread_regcache (thread);
|
||
|
||
return i386_linux_get_syscall_number_from_regcache (regcache);
|
||
}
|
||
|
||
/* The register sets used in GNU/Linux ELF core-dumps are identical to
|
||
the register sets in `struct user' that are used for a.out
|
||
core-dumps. These are also used by ptrace(2). The corresponding
|
||
types are `elf_gregset_t' for the general-purpose registers (with
|
||
`elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
|
||
for the floating-point registers.
|
||
|
||
Those types used to be available under the names `gregset_t' and
|
||
`fpregset_t' too, and GDB used those names in the past. But those
|
||
names are now used for the register sets used in the `mcontext_t'
|
||
type, which have a different size and layout. */
|
||
|
||
/* Mapping between the general-purpose registers in `struct user'
|
||
format and GDB's register cache layout. */
|
||
|
||
/* From <sys/reg.h>. */
|
||
int i386_linux_gregset_reg_offset[] =
|
||
{
|
||
6 * 4, /* %eax */
|
||
1 * 4, /* %ecx */
|
||
2 * 4, /* %edx */
|
||
0 * 4, /* %ebx */
|
||
15 * 4, /* %esp */
|
||
5 * 4, /* %ebp */
|
||
3 * 4, /* %esi */
|
||
4 * 4, /* %edi */
|
||
12 * 4, /* %eip */
|
||
14 * 4, /* %eflags */
|
||
13 * 4, /* %cs */
|
||
16 * 4, /* %ss */
|
||
7 * 4, /* %ds */
|
||
8 * 4, /* %es */
|
||
9 * 4, /* %fs */
|
||
10 * 4, /* %gs */
|
||
-1, -1, -1, -1, -1, -1, -1, -1,
|
||
-1, -1, -1, -1, -1, -1, -1, -1,
|
||
-1, -1, -1, -1, -1, -1, -1, -1,
|
||
-1,
|
||
-1, -1, -1, -1, -1, -1, -1, -1,
|
||
-1, -1, -1, -1, /* MPX registers BND0 ... BND3. */
|
||
-1, -1, /* MPX registers BNDCFGU, BNDSTATUS. */
|
||
-1, -1, -1, -1, -1, -1, -1, -1, /* k0 ... k7 (AVX512) */
|
||
-1, -1, -1, -1, -1, -1, -1, -1, /* zmm0 ... zmm7 (AVX512) */
|
||
-1, /* PKRU register */
|
||
11 * 4, /* "orig_eax" */
|
||
};
|
||
|
||
/* Mapping between the general-purpose registers in `struct
|
||
sigcontext' format and GDB's register cache layout. */
|
||
|
||
/* From <asm/sigcontext.h>. */
|
||
static int i386_linux_sc_reg_offset[] =
|
||
{
|
||
11 * 4, /* %eax */
|
||
10 * 4, /* %ecx */
|
||
9 * 4, /* %edx */
|
||
8 * 4, /* %ebx */
|
||
7 * 4, /* %esp */
|
||
6 * 4, /* %ebp */
|
||
5 * 4, /* %esi */
|
||
4 * 4, /* %edi */
|
||
14 * 4, /* %eip */
|
||
16 * 4, /* %eflags */
|
||
15 * 4, /* %cs */
|
||
18 * 4, /* %ss */
|
||
3 * 4, /* %ds */
|
||
2 * 4, /* %es */
|
||
1 * 4, /* %fs */
|
||
0 * 4 /* %gs */
|
||
};
|
||
|
||
/* See i386-linux-tdep.h. */
|
||
|
||
uint64_t
|
||
i386_linux_core_read_xsave_info (bfd *abfd, x86_xsave_layout &layout)
|
||
{
|
||
asection *xstate = bfd_get_section_by_name (abfd, ".reg-xstate");
|
||
if (xstate == nullptr)
|
||
return 0;
|
||
|
||
/* Check extended state size. */
|
||
size_t size = bfd_section_size (xstate);
|
||
if (size < X86_XSTATE_AVX_SIZE)
|
||
return 0;
|
||
|
||
char contents[8];
|
||
if (! bfd_get_section_contents (abfd, xstate, contents,
|
||
I386_LINUX_XSAVE_XCR0_OFFSET, 8))
|
||
{
|
||
warning (_("Couldn't read `xcr0' bytes from "
|
||
"`.reg-xstate' section in core file."));
|
||
return 0;
|
||
}
|
||
|
||
uint64_t xcr0 = bfd_get_64 (abfd, contents);
|
||
|
||
if (!i387_guess_xsave_layout (xcr0, size, layout))
|
||
return 0;
|
||
|
||
return xcr0;
|
||
}
|
||
|
||
/* See i386-linux-tdep.h. */
|
||
|
||
bool
|
||
i386_linux_core_read_x86_xsave_layout (struct gdbarch *gdbarch,
|
||
x86_xsave_layout &layout)
|
||
{
|
||
return i386_linux_core_read_xsave_info (current_program_space->core_bfd (),
|
||
layout) != 0;
|
||
}
|
||
|
||
/* See arch/x86-linux-tdesc.h. */
|
||
|
||
void
|
||
x86_linux_post_init_tdesc (target_desc *tdesc, bool is_64bit)
|
||
{
|
||
/* Nothing. */
|
||
}
|
||
|
||
/* Get Linux/x86 target description from core dump. */
|
||
|
||
static const struct target_desc *
|
||
i386_linux_core_read_description (struct gdbarch *gdbarch,
|
||
struct target_ops *target,
|
||
bfd *abfd)
|
||
{
|
||
/* Linux/i386. */
|
||
x86_xsave_layout layout;
|
||
uint64_t xcr0 = i386_linux_core_read_xsave_info (abfd, layout);
|
||
|
||
if (xcr0 == 0)
|
||
{
|
||
if (bfd_get_section_by_name (abfd, ".reg-xfp") != nullptr)
|
||
xcr0 = X86_XSTATE_SSE_MASK;
|
||
else
|
||
xcr0 = X86_XSTATE_X87_MASK;
|
||
}
|
||
|
||
return i386_linux_read_description (xcr0);
|
||
}
|
||
|
||
/* Similar to i386_supply_fpregset, but use XSAVE extended state. */
|
||
|
||
static void
|
||
i386_linux_supply_xstateregset (const struct regset *regset,
|
||
struct regcache *regcache, int regnum,
|
||
const void *xstateregs, size_t len)
|
||
{
|
||
i387_supply_xsave (regcache, regnum, xstateregs);
|
||
}
|
||
|
||
struct type *
|
||
x86_linux_get_siginfo_type (struct gdbarch *gdbarch)
|
||
{
|
||
return linux_get_siginfo_type_with_fields (gdbarch, LINUX_SIGINFO_FIELD_ADDR_BND);
|
||
}
|
||
|
||
/* Similar to i386_collect_fpregset, but use XSAVE extended state. */
|
||
|
||
static void
|
||
i386_linux_collect_xstateregset (const struct regset *regset,
|
||
const struct regcache *regcache,
|
||
int regnum, void *xstateregs, size_t len)
|
||
{
|
||
i387_collect_xsave (regcache, regnum, xstateregs, 1);
|
||
}
|
||
|
||
/* Register set definitions. */
|
||
|
||
static const struct regset i386_linux_xstateregset =
|
||
{
|
||
NULL,
|
||
i386_linux_supply_xstateregset,
|
||
i386_linux_collect_xstateregset
|
||
};
|
||
|
||
/* Iterate over core file register note sections. */
|
||
|
||
static void
|
||
i386_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
|
||
iterate_over_regset_sections_cb *cb,
|
||
void *cb_data,
|
||
const struct regcache *regcache)
|
||
{
|
||
i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
|
||
|
||
cb (".reg", 68, 68, &i386_gregset, NULL, cb_data);
|
||
|
||
if (tdep->xsave_layout.sizeof_xsave != 0)
|
||
cb (".reg-xstate", tdep->xsave_layout.sizeof_xsave,
|
||
tdep->xsave_layout.sizeof_xsave, &i386_linux_xstateregset,
|
||
"XSAVE extended state", cb_data);
|
||
else if (tdep->xcr0 & X86_XSTATE_SSE)
|
||
cb (".reg-xfp", 512, 512, &i386_fpregset, "extended floating-point",
|
||
cb_data);
|
||
else
|
||
cb (".reg2", 108, 108, &i386_fpregset, NULL, cb_data);
|
||
}
|
||
|
||
/* Linux kernel shows PC value after the 'int $0x80' instruction even if
|
||
inferior is still inside the syscall. On next PTRACE_SINGLESTEP it will
|
||
finish the syscall but PC will not change.
|
||
|
||
Some vDSOs contain 'int $0x80; ret' and during stepping out of the syscall
|
||
i386_displaced_step_fixup would keep PC at the displaced pad location.
|
||
As PC is pointing to the 'ret' instruction before the step
|
||
i386_displaced_step_fixup would expect inferior has just executed that 'ret'
|
||
and PC should not be adjusted. In reality it finished syscall instead and
|
||
PC should get relocated back to its vDSO address. Hide the 'ret'
|
||
instruction by 'nop' so that i386_displaced_step_fixup is not confused.
|
||
|
||
It is not fully correct as the bytes in struct
|
||
displaced_step_copy_insn_closure will not match the inferior code. But we
|
||
would need some new flag in displaced_step_copy_insn_closure otherwise to
|
||
keep the state that syscall is finishing for the later
|
||
i386_displaced_step_fixup execution as the syscall execution is already no
|
||
longer detectable there. The new flag field would mean i386-linux-tdep.c
|
||
needs to wrap all the displacement methods of i386-tdep.c which does not seem
|
||
worth it. The same effect is achieved by patching that 'nop' instruction
|
||
there instead. */
|
||
|
||
static displaced_step_copy_insn_closure_up
|
||
i386_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
|
||
CORE_ADDR from, CORE_ADDR to,
|
||
struct regcache *regs)
|
||
{
|
||
displaced_step_copy_insn_closure_up closure_
|
||
= i386_displaced_step_copy_insn (gdbarch, from, to, regs);
|
||
|
||
if (i386_linux_get_syscall_number_from_regcache (regs) != -1)
|
||
{
|
||
/* The closure returned by i386_displaced_step_copy_insn is simply a
|
||
buffer with a copy of the instruction. */
|
||
i386_displaced_step_copy_insn_closure *closure
|
||
= (i386_displaced_step_copy_insn_closure *) closure_.get ();
|
||
|
||
/* Fake nop. */
|
||
closure->buf[0] = 0x90;
|
||
}
|
||
|
||
return closure_;
|
||
}
|
||
|
||
static void
|
||
i386_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
|
||
{
|
||
i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
|
||
const struct target_desc *tdesc = info.target_desc;
|
||
struct tdesc_arch_data *tdesc_data = info.tdesc_data;
|
||
const struct tdesc_feature *feature;
|
||
int valid_p;
|
||
|
||
gdb_assert (tdesc_data);
|
||
|
||
linux_init_abi (info, gdbarch, 1);
|
||
|
||
/* GNU/Linux uses ELF. */
|
||
i386_elf_init_abi (info, gdbarch);
|
||
|
||
/* Reserve a number for orig_eax. */
|
||
set_gdbarch_num_regs (gdbarch, I386_LINUX_NUM_REGS);
|
||
|
||
if (! tdesc_has_registers (tdesc))
|
||
tdesc = i386_linux_read_description (X86_XSTATE_SSE_MASK);
|
||
tdep->tdesc = tdesc;
|
||
|
||
feature = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.linux");
|
||
if (feature == NULL)
|
||
return;
|
||
|
||
valid_p = tdesc_numbered_register (feature, tdesc_data,
|
||
I386_LINUX_ORIG_EAX_REGNUM,
|
||
"orig_eax");
|
||
if (!valid_p)
|
||
return;
|
||
|
||
/* Add the %orig_eax register used for syscall restarting. */
|
||
set_gdbarch_write_pc (gdbarch, i386_linux_write_pc);
|
||
|
||
tdep->register_reggroup_p = i386_linux_register_reggroup_p;
|
||
|
||
tdep->gregset_reg_offset = i386_linux_gregset_reg_offset;
|
||
tdep->gregset_num_regs = ARRAY_SIZE (i386_linux_gregset_reg_offset);
|
||
tdep->sizeof_gregset = 17 * 4;
|
||
|
||
tdep->jb_pc_offset = 20; /* From <bits/setjmp.h>. */
|
||
|
||
tdep->sigtramp_p = i386_linux_sigtramp_p;
|
||
tdep->sigcontext_addr = i386_linux_sigcontext_addr;
|
||
tdep->sc_reg_offset = i386_linux_sc_reg_offset;
|
||
tdep->sc_num_regs = ARRAY_SIZE (i386_linux_sc_reg_offset);
|
||
|
||
tdep->xsave_xcr0_offset = I386_LINUX_XSAVE_XCR0_OFFSET;
|
||
set_gdbarch_core_read_x86_xsave_layout
|
||
(gdbarch, i386_linux_core_read_x86_xsave_layout);
|
||
|
||
set_gdbarch_process_record (gdbarch, i386_process_record);
|
||
set_gdbarch_process_record_signal (gdbarch, i386_linux_record_signal);
|
||
|
||
/* Initialize the i386_linux_record_tdep. */
|
||
/* These values are the size of the type that will be used in a system
|
||
call. They are obtained from Linux Kernel source. */
|
||
i386_linux_record_tdep.size_pointer
|
||
= gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
|
||
i386_linux_record_tdep.size__old_kernel_stat = 32;
|
||
i386_linux_record_tdep.size_tms = 16;
|
||
i386_linux_record_tdep.size_loff_t = 8;
|
||
i386_linux_record_tdep.size_flock = 16;
|
||
i386_linux_record_tdep.size_oldold_utsname = 45;
|
||
i386_linux_record_tdep.size_ustat = 20;
|
||
i386_linux_record_tdep.size_old_sigaction = 16;
|
||
i386_linux_record_tdep.size_old_sigset_t = 4;
|
||
i386_linux_record_tdep.size_rlimit = 8;
|
||
i386_linux_record_tdep.size_rusage = 72;
|
||
i386_linux_record_tdep.size_timeval = 8;
|
||
i386_linux_record_tdep.size_timezone = 8;
|
||
i386_linux_record_tdep.size_old_gid_t = 2;
|
||
i386_linux_record_tdep.size_old_uid_t = 2;
|
||
i386_linux_record_tdep.size_fd_set = 128;
|
||
i386_linux_record_tdep.size_old_dirent = 268;
|
||
i386_linux_record_tdep.size_statfs = 64;
|
||
i386_linux_record_tdep.size_statfs64 = 84;
|
||
i386_linux_record_tdep.size_sockaddr = 16;
|
||
i386_linux_record_tdep.size_int
|
||
= gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT;
|
||
i386_linux_record_tdep.size_long
|
||
= gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
|
||
i386_linux_record_tdep.size_ulong
|
||
= gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
|
||
i386_linux_record_tdep.size_msghdr = 28;
|
||
i386_linux_record_tdep.size_itimerval = 16;
|
||
i386_linux_record_tdep.size_stat = 88;
|
||
i386_linux_record_tdep.size_old_utsname = 325;
|
||
i386_linux_record_tdep.size_sysinfo = 64;
|
||
i386_linux_record_tdep.size_msqid_ds = 88;
|
||
i386_linux_record_tdep.size_shmid_ds = 84;
|
||
i386_linux_record_tdep.size_new_utsname = 390;
|
||
i386_linux_record_tdep.size_timex = 128;
|
||
i386_linux_record_tdep.size_mem_dqinfo = 24;
|
||
i386_linux_record_tdep.size_if_dqblk = 68;
|
||
i386_linux_record_tdep.size_fs_quota_stat = 68;
|
||
i386_linux_record_tdep.size_timespec = 8;
|
||
i386_linux_record_tdep.size_pollfd = 8;
|
||
i386_linux_record_tdep.size_NFS_FHSIZE = 32;
|
||
i386_linux_record_tdep.size_knfsd_fh = 132;
|
||
i386_linux_record_tdep.size_TASK_COMM_LEN = 16;
|
||
i386_linux_record_tdep.size_sigaction = 20;
|
||
i386_linux_record_tdep.size_sigset_t = 8;
|
||
i386_linux_record_tdep.size_siginfo_t = 128;
|
||
i386_linux_record_tdep.size_cap_user_data_t = 12;
|
||
i386_linux_record_tdep.size_stack_t = 12;
|
||
i386_linux_record_tdep.size_off_t = i386_linux_record_tdep.size_long;
|
||
i386_linux_record_tdep.size_stat64 = 96;
|
||
i386_linux_record_tdep.size_gid_t = 4;
|
||
i386_linux_record_tdep.size_uid_t = 4;
|
||
i386_linux_record_tdep.size_PAGE_SIZE = 4096;
|
||
i386_linux_record_tdep.size_flock64 = 24;
|
||
i386_linux_record_tdep.size_user_desc = 16;
|
||
i386_linux_record_tdep.size_io_event = 32;
|
||
i386_linux_record_tdep.size_iocb = 64;
|
||
i386_linux_record_tdep.size_epoll_event = 12;
|
||
i386_linux_record_tdep.size_itimerspec
|
||
= i386_linux_record_tdep.size_timespec * 2;
|
||
i386_linux_record_tdep.size_mq_attr = 32;
|
||
i386_linux_record_tdep.size_termios = 36;
|
||
i386_linux_record_tdep.size_termios2 = 44;
|
||
i386_linux_record_tdep.size_pid_t = 4;
|
||
i386_linux_record_tdep.size_winsize = 8;
|
||
i386_linux_record_tdep.size_serial_struct = 60;
|
||
i386_linux_record_tdep.size_serial_icounter_struct = 80;
|
||
i386_linux_record_tdep.size_hayes_esp_config = 12;
|
||
i386_linux_record_tdep.size_size_t = 4;
|
||
i386_linux_record_tdep.size_iovec = 8;
|
||
i386_linux_record_tdep.size_time_t = 4;
|
||
|
||
/* These values are the second argument of system call "sys_ioctl".
|
||
They are obtained from Linux Kernel source. */
|
||
i386_linux_record_tdep.ioctl_TCGETS = 0x5401;
|
||
i386_linux_record_tdep.ioctl_TCSETS = 0x5402;
|
||
i386_linux_record_tdep.ioctl_TCSETSW = 0x5403;
|
||
i386_linux_record_tdep.ioctl_TCSETSF = 0x5404;
|
||
i386_linux_record_tdep.ioctl_TCGETA = 0x5405;
|
||
i386_linux_record_tdep.ioctl_TCSETA = 0x5406;
|
||
i386_linux_record_tdep.ioctl_TCSETAW = 0x5407;
|
||
i386_linux_record_tdep.ioctl_TCSETAF = 0x5408;
|
||
i386_linux_record_tdep.ioctl_TCSBRK = 0x5409;
|
||
i386_linux_record_tdep.ioctl_TCXONC = 0x540A;
|
||
i386_linux_record_tdep.ioctl_TCFLSH = 0x540B;
|
||
i386_linux_record_tdep.ioctl_TIOCEXCL = 0x540C;
|
||
i386_linux_record_tdep.ioctl_TIOCNXCL = 0x540D;
|
||
i386_linux_record_tdep.ioctl_TIOCSCTTY = 0x540E;
|
||
i386_linux_record_tdep.ioctl_TIOCGPGRP = 0x540F;
|
||
i386_linux_record_tdep.ioctl_TIOCSPGRP = 0x5410;
|
||
i386_linux_record_tdep.ioctl_TIOCOUTQ = 0x5411;
|
||
i386_linux_record_tdep.ioctl_TIOCSTI = 0x5412;
|
||
i386_linux_record_tdep.ioctl_TIOCGWINSZ = 0x5413;
|
||
i386_linux_record_tdep.ioctl_TIOCSWINSZ = 0x5414;
|
||
i386_linux_record_tdep.ioctl_TIOCMGET = 0x5415;
|
||
i386_linux_record_tdep.ioctl_TIOCMBIS = 0x5416;
|
||
i386_linux_record_tdep.ioctl_TIOCMBIC = 0x5417;
|
||
i386_linux_record_tdep.ioctl_TIOCMSET = 0x5418;
|
||
i386_linux_record_tdep.ioctl_TIOCGSOFTCAR = 0x5419;
|
||
i386_linux_record_tdep.ioctl_TIOCSSOFTCAR = 0x541A;
|
||
i386_linux_record_tdep.ioctl_FIONREAD = 0x541B;
|
||
i386_linux_record_tdep.ioctl_TIOCINQ = i386_linux_record_tdep.ioctl_FIONREAD;
|
||
i386_linux_record_tdep.ioctl_TIOCLINUX = 0x541C;
|
||
i386_linux_record_tdep.ioctl_TIOCCONS = 0x541D;
|
||
i386_linux_record_tdep.ioctl_TIOCGSERIAL = 0x541E;
|
||
i386_linux_record_tdep.ioctl_TIOCSSERIAL = 0x541F;
|
||
i386_linux_record_tdep.ioctl_TIOCPKT = 0x5420;
|
||
i386_linux_record_tdep.ioctl_FIONBIO = 0x5421;
|
||
i386_linux_record_tdep.ioctl_TIOCNOTTY = 0x5422;
|
||
i386_linux_record_tdep.ioctl_TIOCSETD = 0x5423;
|
||
i386_linux_record_tdep.ioctl_TIOCGETD = 0x5424;
|
||
i386_linux_record_tdep.ioctl_TCSBRKP = 0x5425;
|
||
i386_linux_record_tdep.ioctl_TIOCTTYGSTRUCT = 0x5426;
|
||
i386_linux_record_tdep.ioctl_TIOCSBRK = 0x5427;
|
||
i386_linux_record_tdep.ioctl_TIOCCBRK = 0x5428;
|
||
i386_linux_record_tdep.ioctl_TIOCGSID = 0x5429;
|
||
i386_linux_record_tdep.ioctl_TCGETS2 = 0x802c542a;
|
||
i386_linux_record_tdep.ioctl_TCSETS2 = 0x402c542b;
|
||
i386_linux_record_tdep.ioctl_TCSETSW2 = 0x402c542c;
|
||
i386_linux_record_tdep.ioctl_TCSETSF2 = 0x402c542d;
|
||
i386_linux_record_tdep.ioctl_TIOCGPTN = 0x80045430;
|
||
i386_linux_record_tdep.ioctl_TIOCSPTLCK = 0x40045431;
|
||
i386_linux_record_tdep.ioctl_FIONCLEX = 0x5450;
|
||
i386_linux_record_tdep.ioctl_FIOCLEX = 0x5451;
|
||
i386_linux_record_tdep.ioctl_FIOASYNC = 0x5452;
|
||
i386_linux_record_tdep.ioctl_TIOCSERCONFIG = 0x5453;
|
||
i386_linux_record_tdep.ioctl_TIOCSERGWILD = 0x5454;
|
||
i386_linux_record_tdep.ioctl_TIOCSERSWILD = 0x5455;
|
||
i386_linux_record_tdep.ioctl_TIOCGLCKTRMIOS = 0x5456;
|
||
i386_linux_record_tdep.ioctl_TIOCSLCKTRMIOS = 0x5457;
|
||
i386_linux_record_tdep.ioctl_TIOCSERGSTRUCT = 0x5458;
|
||
i386_linux_record_tdep.ioctl_TIOCSERGETLSR = 0x5459;
|
||
i386_linux_record_tdep.ioctl_TIOCSERGETMULTI = 0x545A;
|
||
i386_linux_record_tdep.ioctl_TIOCSERSETMULTI = 0x545B;
|
||
i386_linux_record_tdep.ioctl_TIOCMIWAIT = 0x545C;
|
||
i386_linux_record_tdep.ioctl_TIOCGICOUNT = 0x545D;
|
||
i386_linux_record_tdep.ioctl_TIOCGHAYESESP = 0x545E;
|
||
i386_linux_record_tdep.ioctl_TIOCSHAYESESP = 0x545F;
|
||
i386_linux_record_tdep.ioctl_FIOQSIZE = 0x5460;
|
||
|
||
/* These values are the second argument of system call "sys_fcntl"
|
||
and "sys_fcntl64". They are obtained from Linux Kernel source. */
|
||
i386_linux_record_tdep.fcntl_F_GETLK = 5;
|
||
i386_linux_record_tdep.fcntl_F_GETLK64 = 12;
|
||
i386_linux_record_tdep.fcntl_F_SETLK64 = 13;
|
||
i386_linux_record_tdep.fcntl_F_SETLKW64 = 14;
|
||
|
||
i386_linux_record_tdep.arg1 = I386_EBX_REGNUM;
|
||
i386_linux_record_tdep.arg2 = I386_ECX_REGNUM;
|
||
i386_linux_record_tdep.arg3 = I386_EDX_REGNUM;
|
||
i386_linux_record_tdep.arg4 = I386_ESI_REGNUM;
|
||
i386_linux_record_tdep.arg5 = I386_EDI_REGNUM;
|
||
i386_linux_record_tdep.arg6 = I386_EBP_REGNUM;
|
||
|
||
tdep->i386_intx80_record = i386_linux_intx80_sysenter_syscall_record;
|
||
tdep->i386_sysenter_record = i386_linux_intx80_sysenter_syscall_record;
|
||
tdep->i386_syscall_record = i386_linux_intx80_sysenter_syscall_record;
|
||
|
||
/* N_FUN symbols in shared libraries have 0 for their values and need
|
||
to be relocated. */
|
||
set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
|
||
|
||
/* GNU/Linux uses SVR4-style shared libraries. */
|
||
set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
|
||
set_solib_svr4_fetch_link_map_offsets
|
||
(gdbarch, linux_ilp32_fetch_link_map_offsets);
|
||
|
||
/* GNU/Linux uses the dynamic linker included in the GNU C Library. */
|
||
set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
|
||
|
||
dwarf2_frame_set_signal_frame_p (gdbarch, i386_linux_dwarf_signal_frame_p);
|
||
|
||
/* Enable TLS support. */
|
||
set_gdbarch_fetch_tls_load_module_address (gdbarch,
|
||
svr4_fetch_objfile_link_map);
|
||
|
||
/* Core file support. */
|
||
set_gdbarch_iterate_over_regset_sections
|
||
(gdbarch, i386_linux_iterate_over_regset_sections);
|
||
set_gdbarch_core_read_description (gdbarch,
|
||
i386_linux_core_read_description);
|
||
|
||
/* Displaced stepping. */
|
||
set_gdbarch_displaced_step_copy_insn (gdbarch,
|
||
i386_linux_displaced_step_copy_insn);
|
||
set_gdbarch_displaced_step_fixup (gdbarch, i386_displaced_step_fixup);
|
||
|
||
/* Functions for 'catch syscall'. */
|
||
set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_I386);
|
||
set_gdbarch_get_syscall_number (gdbarch,
|
||
i386_linux_get_syscall_number);
|
||
|
||
set_gdbarch_get_siginfo_type (gdbarch, x86_linux_get_siginfo_type);
|
||
set_gdbarch_report_signal_info (gdbarch, i386_linux_report_signal_info);
|
||
}
|
||
|
||
void _initialize_i386_linux_tdep ();
|
||
void
|
||
_initialize_i386_linux_tdep ()
|
||
{
|
||
gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_LINUX,
|
||
i386_linux_init_abi);
|
||
}
|