binutils-gdb/sim/common/sim-endian.c
Mike Frysinger 6df01ab8ab sim: switch config.h usage to defs.h
The defs.h header will take care of including the various config.h
headers.  For now, it's just config.h, but we'll add more when we
integrate gnulib in.

This header should be used instead of config.h, and should be the
first include in every .c file.  We won't rely on the old behavior
where we expected files to include the port's sim-main.h which then
includes the common sim-basics.h which then includes config.h.  We
have a ton of code that includes things before sim-main.h, and it
sometimes needs to be that way.  Creating a dedicated header avoids
the ordering mess and implicit inclusion that shows up otherwise.
2021-05-16 22:38:41 -04:00

132 lines
2.8 KiB
C

/* The common simulator framework for GDB, the GNU Debugger.
Copyright 2002-2021 Free Software Foundation, Inc.
Contributed by Andrew Cagney and Red Hat.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#ifndef _SIM_ENDIAN_C_
#define _SIM_ENDIAN_C_
/* This must come before any other includes. */
#include "defs.h"
#include "sim-basics.h"
#include "sim-assert.h"
#if !defined(_SWAP_1)
#define _SWAP_1(SET,RAW) SET (RAW)
#endif
#if !defined(_SWAP_2) && (HOST_BYTE_ORDER == BFD_ENDIAN_LITTLE) && defined(htons)
#define _SWAP_2(SET,RAW) SET htons (RAW)
#endif
#ifndef _SWAP_2
#define _SWAP_2(SET,RAW) SET (((RAW) >> 8) | ((RAW) << 8))
#endif
#if !defined(_SWAP_4) && (HOST_BYTE_ORDER == BFD_ENDIAN_LITTLE) && defined(htonl)
#define _SWAP_4(SET,RAW) SET htonl (RAW)
#endif
#ifndef _SWAP_4
#define _SWAP_4(SET,RAW) SET (((RAW) << 24) | (((RAW) & 0xff00) << 8) | (((RAW) & 0xff0000) >> 8) | ((RAW) >> 24))
#endif
#ifndef _SWAP_8
#define _SWAP_8(SET,RAW) \
union { unsigned_8 dword; unsigned_4 words[2]; } in, out; \
in.dword = RAW; \
_SWAP_4 (out.words[0] =, in.words[1]); \
_SWAP_4 (out.words[1] =, in.words[0]); \
SET out.dword;
#endif
#ifndef _SWAP_16
#define _SWAP_16(SET,RAW) \
union { unsigned_16 word; unsigned_4 words[4]; } in, out; \
in.word = (RAW); \
_SWAP_4 (out.words[0] =, in.words[3]); \
_SWAP_4 (out.words[1] =, in.words[2]); \
_SWAP_4 (out.words[2] =, in.words[1]); \
_SWAP_4 (out.words[3] =, in.words[0]); \
SET out.word;
#endif
#define N 1
#include "sim-n-endian.h"
#undef N
#define N 2
#include "sim-n-endian.h"
#undef N
#define N 4
#include "sim-n-endian.h"
#undef N
#define N 8
#include "sim-n-endian.h"
#undef N
#define N 16
#include "sim-n-endian.h"
#undef N
INLINE_SIM_ENDIAN\
(unsigned_8)
sim_endian_split_16 (unsigned_16 word, int w)
{
if (HOST_BYTE_ORDER == BFD_ENDIAN_LITTLE)
{
return word.a[1 - w];
}
else
{
return word.a[w];
}
}
INLINE_SIM_ENDIAN\
(unsigned_16)
sim_endian_join_16 (unsigned_8 h, unsigned_8 l)
{
unsigned_16 word;
if (HOST_BYTE_ORDER == BFD_ENDIAN_LITTLE)
{
word.a[0] = l;
word.a[1] = h;
}
else
{
word.a[0] = h;
word.a[1] = l;
}
return word;
}
#endif /* _SIM_ENDIAN_C_ */