binutils-gdb/gas/config/tc-h8300.c
Alan Modra fd67aa1129 Update year range in copyright notice of binutils files
Adds two new external authors to etc/update-copyright.py to cover
bfd/ax_tls.m4, and adds gprofng to dirs handled automatically, then
updates copyright messages as follows:

1) Update cgen/utils.scm emitted copyrights.
2) Run "etc/update-copyright.py --this-year" with an extra external
   author I haven't committed, 'Kalray SA.', to cover gas testsuite
   files (which should have their copyright message removed).
3) Build with --enable-maintainer-mode --enable-cgen-maint=yes.
4) Check out */po/*.pot which we don't update frequently.
2024-01-04 22:58:12 +10:30

2327 lines
55 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* tc-h8300.c -- Assemble code for the Renesas H8/300
Copyright (C) 1991-2024 Free Software Foundation, Inc.
This file is part of GAS, the GNU Assembler.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
02110-1301, USA. */
/* Written By Steve Chamberlain <sac@cygnus.com>. */
#include "as.h"
#include "subsegs.h"
#include "dwarf2dbg.h"
#define DEFINE_TABLE
#define h8_opcodes ops
#include "opcode/h8300.h"
#include "safe-ctype.h"
#include "elf/h8.h"
const char comment_chars[] = ";";
const char line_comment_chars[] = "#";
#ifdef TE_LINUX
const char line_separator_chars[] = "!";
#else
const char line_separator_chars[] = "";
#endif
static void sbranch (int);
static void h8300hmode (int);
static void h8300smode (int);
static void h8300hnmode (int);
static void h8300snmode (int);
static void h8300sxmode (int);
static void h8300sxnmode (int);
static void pint (int);
int Hmode;
int Smode;
int Nmode;
int SXmode;
static int default_mach = bfd_mach_h8300;
#define PSIZE (Hmode && !Nmode ? L_32 : L_16)
static int bsize = L_8; /* Default branch displacement. */
struct h8_instruction
{
int length;
int noperands;
int idx;
int size;
const struct h8_opcode *opcode;
};
static struct h8_instruction *h8_instructions;
static void
h8300hmode (int arg ATTRIBUTE_UNUSED)
{
Hmode = 1;
Smode = 0;
if (!bfd_set_arch_mach (stdoutput, bfd_arch_h8300, bfd_mach_h8300h))
as_warn (_("could not set architecture and machine"));
}
static void
h8300smode (int arg ATTRIBUTE_UNUSED)
{
Smode = 1;
Hmode = 1;
if (!bfd_set_arch_mach (stdoutput, bfd_arch_h8300, bfd_mach_h8300s))
as_warn (_("could not set architecture and machine"));
}
static void
h8300hnmode (int arg ATTRIBUTE_UNUSED)
{
Hmode = 1;
Smode = 0;
Nmode = 1;
if (!bfd_set_arch_mach (stdoutput, bfd_arch_h8300, bfd_mach_h8300hn))
as_warn (_("could not set architecture and machine"));
}
static void
h8300snmode (int arg ATTRIBUTE_UNUSED)
{
Smode = 1;
Hmode = 1;
Nmode = 1;
if (!bfd_set_arch_mach (stdoutput, bfd_arch_h8300, bfd_mach_h8300sn))
as_warn (_("could not set architecture and machine"));
}
static void
h8300sxmode (int arg ATTRIBUTE_UNUSED)
{
Smode = 1;
Hmode = 1;
SXmode = 1;
if (!bfd_set_arch_mach (stdoutput, bfd_arch_h8300, bfd_mach_h8300sx))
as_warn (_("could not set architecture and machine"));
}
static void
h8300sxnmode (int arg ATTRIBUTE_UNUSED)
{
Smode = 1;
Hmode = 1;
SXmode = 1;
Nmode = 1;
if (!bfd_set_arch_mach (stdoutput, bfd_arch_h8300, bfd_mach_h8300sxn))
as_warn (_("could not set architecture and machine"));
}
static void
sbranch (int size)
{
bsize = size;
}
static void
pint (int arg ATTRIBUTE_UNUSED)
{
cons (Hmode ? 4 : 2);
}
/* Like obj_elf_section, but issues a warning for new
sections which do not have an attribute specification. */
static void
h8300_elf_section (int push)
{
static const char * known_data_sections [] = { ".rodata", ".tdata", ".tbss" };
static const char * known_data_prefixes [] = { ".debug", ".zdebug", ".gnu.warning" };
char * saved_ilp = input_line_pointer;
const char * name;
name = obj_elf_section_name ();
if (name == NULL)
return;
if (* input_line_pointer != ','
&& bfd_get_section_by_name (stdoutput, name) == NULL)
{
signed int i;
/* Ignore this warning for well known data sections. */
for (i = ARRAY_SIZE (known_data_sections); i--;)
if (strcmp (name, known_data_sections[i]) == 0)
break;
if (i < 0)
for (i = ARRAY_SIZE (known_data_prefixes); i--;)
if (startswith (name, known_data_prefixes[i]))
break;
if (i < 0)
as_warn (_("new section '%s' defined without attributes - this might cause problems"), name);
}
/* FIXME: We ought to free the memory allocated by obj_elf_section_name()
for 'name', but we do not know if it was taken from the obstack, via
demand_copy_C_string(), or xmalloc()ed. */
input_line_pointer = saved_ilp;
obj_elf_section (push);
}
/* This table describes all the machine specific pseudo-ops the assembler
has to support. The fields are:
pseudo-op name without dot
function to call to execute this pseudo-op
Integer arg to pass to the function. */
const pseudo_typeS md_pseudo_table[] =
{
{"h8300h", h8300hmode, 0},
{"h8300hn", h8300hnmode, 0},
{"h8300s", h8300smode, 0},
{"h8300sn", h8300snmode, 0},
{"h8300sx", h8300sxmode, 0},
{"h8300sxn", h8300sxnmode, 0},
{"sbranch", sbranch, L_8},
{"lbranch", sbranch, L_16},
{"int", pint, 0},
{"data.b", cons, 1},
{"data.w", cons, 2},
{"data.l", cons, 4},
{"form", listing_psize, 0},
{"heading", listing_title, 0},
{"import", s_ignore, 0},
{"page", listing_eject, 0},
{"program", s_ignore, 0},
{"section", h8300_elf_section, 0},
{"section.s", h8300_elf_section, 0},
{"sect", h8300_elf_section, 0},
{"sect.s", h8300_elf_section, 0},
{0, 0, 0}
};
const char EXP_CHARS[] = "eE";
/* Chars that mean this number is a floating point constant
As in 0f12.456
or 0d1.2345e12. */
const char FLT_CHARS[] = "rRsSfFdDxXpP";
static htab_t opcode_hash_control; /* Opcode mnemonics. */
/* This function is called once, at assembler startup time. This
should set up all the tables, etc. that the MD part of the assembler
needs. */
void
md_begin (void)
{
unsigned int nopcodes;
struct h8_opcode *p, *p1;
struct h8_instruction *pi;
int idx = 0;
if (!bfd_set_arch_mach (stdoutput, bfd_arch_h8300, default_mach))
as_warn (_("could not set architecture and machine"));
opcode_hash_control = str_htab_create ();
nopcodes = sizeof (h8_opcodes) / sizeof (struct h8_opcode);
h8_instructions = XNEWVEC (struct h8_instruction, nopcodes);
pi = h8_instructions;
p1 = h8_opcodes;
/* We do a minimum amount of sorting on the opcode table; this is to
make it easy to describe the mova instructions without unnecessary
code duplication.
Sorting only takes place inside blocks of instructions of the form
X/Y, so for example mova/b, mova/w and mova/l can be intermixed. */
while (p1)
{
struct h8_opcode *first_skipped = 0;
int len, cmplen = 0;
const char *src = p1->name;
char *dst, *buffer;
if (p1->name == 0)
break;
/* Strip off any . part when inserting the opcode and only enter
unique codes into the hash table. */
dst = buffer = notes_alloc (strlen (src) + 1);
while (*src)
{
if (*src == '.')
{
src++;
break;
}
if (*src == '/')
cmplen = src - p1->name + 1;
*dst++ = *src++;
}
*dst = 0;
len = dst - buffer;
if (cmplen == 0)
cmplen = len;
str_hash_insert (opcode_hash_control, buffer, pi, 0);
idx++;
for (p = p1; p->name; p++)
{
/* A negative TIME is used to indicate that we've added this opcode
already. */
if (p->time == -1)
continue;
if (strncmp (p->name, buffer, cmplen) != 0
|| (p->name[cmplen] != '\0' && p->name[cmplen] != '.'
&& p->name[cmplen - 1] != '/'))
{
if (first_skipped == 0)
first_skipped = p;
break;
}
if (strncmp (p->name, buffer, len) != 0)
{
if (first_skipped == 0)
first_skipped = p;
continue;
}
p->time = -1;
pi->size = p->name[len] == '.' ? p->name[len + 1] : 0;
pi->idx = idx;
/* Find the number of operands. */
pi->noperands = 0;
while (pi->noperands < 3 && p->args.nib[pi->noperands] != (op_type) E)
pi->noperands++;
/* Find the length of the opcode in bytes. */
pi->length = 0;
while (p->data.nib[pi->length * 2] != (op_type) E)
pi->length++;
pi->opcode = p;
pi++;
}
p1 = first_skipped;
}
/* Add entry for the NULL vector terminator. */
pi->length = 0;
pi->noperands = 0;
pi->idx = 0;
pi->size = 0;
pi->opcode = 0;
linkrelax = 1;
}
struct h8_op
{
op_type mode;
unsigned reg;
expressionS exp;
};
static void clever_message (const struct h8_instruction *, struct h8_op *);
static void fix_operand_size (struct h8_op *, int);
static void build_bytes (const struct h8_instruction *, struct h8_op *);
static void do_a_fix_imm (int, int, struct h8_op *, int, const struct h8_instruction *);
static void check_operand (struct h8_op *, unsigned int, const char *);
static const struct h8_instruction * get_specific (const struct h8_instruction *, struct h8_op *, int) ;
static char *get_operands (unsigned, char *, struct h8_op *);
static void get_operand (char **, struct h8_op *, int);
static int parse_reg (char *, op_type *, unsigned *, int);
static char *skip_colonthing (char *, int *);
static char *parse_exp (char *, struct h8_op *);
static int constant_fits_size_p (struct h8_op *, int, int);
/*
parse operands
WREG r0,r1,r2,r3,r4,r5,r6,r7,fp,sp
r0l,r0h,..r7l,r7h
@WREG
@WREG+
@-WREG
#const
ccr
*/
/* Try to parse a reg name. Return the number of chars consumed. */
static int
parse_reg (char *src, op_type *mode, unsigned int *reg, int direction)
{
char *end;
int len;
/* Cribbed from get_symbol_name. */
if (!is_name_beginner (*src) || *src == '\001')
return 0;
end = src + 1;
while ((is_part_of_name (*end) && *end != '.') || *end == '\001')
end++;
len = end - src;
if (len == 2 && TOLOWER (src[0]) == 's' && TOLOWER (src[1]) == 'p')
{
*mode = PSIZE | REG | direction;
*reg = 7;
return len;
}
if (len == 3 &&
TOLOWER (src[0]) == 'c' &&
TOLOWER (src[1]) == 'c' &&
TOLOWER (src[2]) == 'r')
{
*mode = CCR;
*reg = 0;
return len;
}
if (len == 3 &&
TOLOWER (src[0]) == 'e' &&
TOLOWER (src[1]) == 'x' &&
TOLOWER (src[2]) == 'r')
{
*mode = EXR;
*reg = 1;
return len;
}
if (len == 3 &&
TOLOWER (src[0]) == 'v' &&
TOLOWER (src[1]) == 'b' &&
TOLOWER (src[2]) == 'r')
{
*mode = VBR;
*reg = 6;
return len;
}
if (len == 3 &&
TOLOWER (src[0]) == 's' &&
TOLOWER (src[1]) == 'b' &&
TOLOWER (src[2]) == 'r')
{
*mode = SBR;
*reg = 7;
return len;
}
if (len == 2 && TOLOWER (src[0]) == 'f' && TOLOWER (src[1]) == 'p')
{
*mode = PSIZE | REG | direction;
*reg = 6;
return len;
}
if (len == 3 && TOLOWER (src[0]) == 'e' && TOLOWER (src[1]) == 'r' &&
src[2] >= '0' && src[2] <= '7')
{
*mode = L_32 | REG | direction;
*reg = src[2] - '0';
if (!Hmode)
as_warn (_("Reg not valid for H8/300"));
return len;
}
if (len == 2 && TOLOWER (src[0]) == 'e' && src[1] >= '0' && src[1] <= '7')
{
*mode = L_16 | REG | direction;
*reg = src[1] - '0' + 8;
if (!Hmode)
as_warn (_("Reg not valid for H8/300"));
return len;
}
if (TOLOWER (src[0]) == 'r')
{
if (src[1] >= '0' && src[1] <= '7')
{
if (len == 3 && TOLOWER (src[2]) == 'l')
{
*mode = L_8 | REG | direction;
*reg = (src[1] - '0') + 8;
return len;
}
if (len == 3 && TOLOWER (src[2]) == 'h')
{
*mode = L_8 | REG | direction;
*reg = (src[1] - '0');
return len;
}
if (len == 2)
{
*mode = L_16 | REG | direction;
*reg = (src[1] - '0');
return len;
}
}
}
return 0;
}
/* Parse an immediate or address-related constant and store it in OP.
If the user also specifies the operand's size, store that size
in OP->MODE, otherwise leave it for later code to decide. */
static char *
parse_exp (char *src, struct h8_op *op)
{
char *save;
save = input_line_pointer;
input_line_pointer = src;
expression (&op->exp);
if (op->exp.X_op == O_absent)
as_bad (_("missing operand"));
src = input_line_pointer;
input_line_pointer = save;
return skip_colonthing (src, &op->mode);
}
/* If SRC starts with an explicit operand size, skip it and store the size
in *MODE. Leave *MODE unchanged otherwise. */
static char *
skip_colonthing (char *src, int *mode)
{
if (*src == ':')
{
src++;
*mode &= ~SIZE;
if (src[0] == '8' && !ISDIGIT (src[1]))
*mode |= L_8;
else if (src[0] == '2' && !ISDIGIT (src[1]))
*mode |= L_2;
else if (src[0] == '3' && !ISDIGIT (src[1]))
*mode |= L_3;
else if (src[0] == '4' && !ISDIGIT (src[1]))
*mode |= L_4;
else if (src[0] == '5' && !ISDIGIT (src[1]))
*mode |= L_5;
else if (src[0] == '2' && src[1] == '4' && !ISDIGIT (src[2]))
*mode |= L_24;
else if (src[0] == '3' && src[1] == '2' && !ISDIGIT (src[2]))
*mode |= L_32;
else if (src[0] == '1' && src[1] == '6' && !ISDIGIT (src[2]))
*mode |= L_16;
else
as_bad (_("invalid operand size requested"));
while (ISDIGIT (*src))
src++;
}
return src;
}
/* The many forms of operand:
Rn Register direct
@Rn Register indirect
@(exp[:16], Rn) Register indirect with displacement
@Rn+
@-Rn
@aa:8 absolute 8 bit
@aa:16 absolute 16 bit
@aa absolute 16 bit
#xx[:size] immediate data
@(exp:[8], pc) pc rel
@@aa[:8] memory indirect. */
static int
constant_fits_width_p (struct h8_op *operand, offsetT width)
{
offsetT num;
num = ((operand->exp.X_add_number & 0xffffffff) ^ 0x80000000) - 0x80000000;
return (num & ~width) == 0 || (num | width) == ~0;
}
static int
constant_fits_size_p (struct h8_op *operand, int size, int no_symbols)
{
offsetT num;
if (no_symbols
&& (operand->exp.X_add_symbol != 0 || operand->exp.X_op_symbol != 0))
return 0;
num = operand->exp.X_add_number & 0xffffffff;
switch (size)
{
case L_2:
return (num & ~3) == 0;
case L_3:
return (num & ~7) == 0;
case L_3NZ:
return num >= 1 && num < 8;
case L_4:
return (num & ~15) == 0;
case L_5:
return num >= 1 && num < 32;
case L_8:
num = (num ^ 0x80000000) - 0x80000000;
return (num & ~0xFF) == 0 || (num | 0x7F) == ~0;
case L_8U:
return (num & ~0xFF) == 0;
case L_16:
num = (num ^ 0x80000000) - 0x80000000;
return (num & ~0xFFFF) == 0 || (num | 0x7FFF) == ~0;
case L_16U:
return (num & ~0xFFFF) == 0;
case L_32:
return 1;
default:
abort ();
}
}
static void
get_operand (char **ptr, struct h8_op *op, int direction)
{
char *src = *ptr;
op_type mode;
unsigned int num;
unsigned int len;
op->mode = 0;
/* Check for '(' and ')' for instructions ldm and stm. */
if (src[0] == '(' && src[8] == ')')
++ src;
/* Gross. Gross. ldm and stm have a format not easily handled
by get_operand. We deal with it explicitly here. */
if (TOLOWER (src[0]) == 'e' && TOLOWER (src[1]) == 'r' &&
ISDIGIT (src[2]) && src[3] == '-' &&
TOLOWER (src[4]) == 'e' && TOLOWER (src[5]) == 'r' && ISDIGIT (src[6]))
{
int low, high;
low = src[2] - '0';
high = src[6] - '0';
/* Check register pair's validity as per tech note TN-H8*-193A/E
from Renesas for H8S and H8SX hardware manual. */
if ( !(low == 0 && (high == 1 || high == 2 || high == 3))
&& !(low == 1 && (high == 2 || high == 3 || high == 4) && SXmode)
&& !(low == 2 && (high == 3 || ((high == 4 || high == 5) && SXmode)))
&& !(low == 3 && (high == 4 || high == 5 || high == 6) && SXmode)
&& !(low == 4 && (high == 5 || high == 6))
&& !(low == 4 && high == 7 && SXmode)
&& !(low == 5 && (high == 6 || high == 7) && SXmode)
&& !(low == 6 && high == 7 && SXmode))
as_bad (_("Invalid register list for ldm/stm\n"));
/* Even sicker. We encode two registers into op->reg. One
for the low register to save, the other for the high
register to save; we also set the high bit in op->reg
so we know this is "very special". */
op->reg = 0x80000000 | (high << 8) | low;
op->mode = REG;
if (src[7] == ')')
*ptr = src + 8;
else
*ptr = src + 7;
return;
}
len = parse_reg (src, &op->mode, &op->reg, direction);
if (len)
{
src += len;
if (*src == '.')
{
int size = op->mode & SIZE;
switch (src[1])
{
case 'l': case 'L':
if (size != L_32)
as_warn (_("mismatch between register and suffix"));
op->mode = (op->mode & ~MODE) | LOWREG;
break;
case 'w': case 'W':
if (size != L_32 && size != L_16)
as_warn (_("mismatch between register and suffix"));
op->mode = (op->mode & ~MODE) | LOWREG;
op->mode = (op->mode & ~SIZE) | L_16;
break;
case 'b': case 'B':
op->mode = (op->mode & ~MODE) | LOWREG;
if (size != L_32 && size != L_8)
as_warn (_("mismatch between register and suffix"));
op->mode = (op->mode & ~MODE) | LOWREG;
op->mode = (op->mode & ~SIZE) | L_8;
break;
default:
as_warn (_("invalid suffix after register."));
break;
}
src += 2;
}
*ptr = src;
return;
}
if (*src == '@')
{
src++;
if (*src == '@')
{
*ptr = parse_exp (src + 1, op);
if (op->exp.X_add_number >= 0x100)
{
int divisor = 1;
op->mode = VECIND;
/* FIXME : 2? or 4? */
if (op->exp.X_add_number >= 0x400)
as_bad (_("address too high for vector table jmp/jsr"));
else if (op->exp.X_add_number >= 0x200)
divisor = 4;
else
divisor = 2;
op->exp.X_add_number = op->exp.X_add_number / divisor - 0x80;
}
else
op->mode = MEMIND;
return;
}
if (*src == '-' || *src == '+')
{
len = parse_reg (src + 1, &mode, &num, direction);
if (len == 0)
{
/* Oops, not a reg after all, must be ordinary exp. */
op->mode = ABS | direction;
*ptr = parse_exp (src, op);
return;
}
if (((mode & SIZE) != PSIZE)
/* For Normal mode accept 16 bit and 32 bit pointer registers. */
&& (!Nmode || ((mode & SIZE) != L_32)))
as_bad (_("Wrong size pointer register for architecture."));
op->mode = src[0] == '-' ? RDPREDEC : RDPREINC;
op->reg = num;
*ptr = src + 1 + len;
return;
}
if (*src == '(')
{
src++;
/* See if this is @(ERn.x, PC). */
len = parse_reg (src, &mode, &op->reg, direction);
if (len != 0 && (mode & MODE) == REG && src[len] == '.')
{
switch (TOLOWER (src[len + 1]))
{
case 'b':
mode = PCIDXB | direction;
break;
case 'w':
mode = PCIDXW | direction;
break;
case 'l':
mode = PCIDXL | direction;
break;
default:
mode = 0;
break;
}
if (mode
&& src[len + 2] == ','
&& TOLOWER (src[len + 3]) != 'p'
&& TOLOWER (src[len + 4]) != 'c'
&& src[len + 5] != ')')
{
*ptr = src + len + 6;
op->mode |= mode;
return;
}
/* Fall through into disp case - the grammar is somewhat
ambiguous, so we should try whether it's a DISP operand
after all ("ER3.L" might be a poorly named label...). */
}
/* Disp. */
/* Start off assuming a 16 bit offset. */
src = parse_exp (src, op);
if (*src == ')')
{
op->mode |= ABS | direction;
*ptr = src + 1;
return;
}
if (*src != ',')
{
as_bad (_("expected @(exp, reg16)"));
return;
}
src++;
len = parse_reg (src, &mode, &op->reg, direction);
if (len == 0 || (mode & MODE) != REG)
{
as_bad (_("expected @(exp, reg16)"));
return;
}
src += len;
if (src[0] == '.')
{
switch (TOLOWER (src[1]))
{
case 'b':
op->mode |= INDEXB | direction;
break;
case 'w':
op->mode |= INDEXW | direction;
break;
case 'l':
op->mode |= INDEXL | direction;
break;
default:
as_bad (_("expected .L, .W or .B for register in indexed addressing mode"));
}
src += 2;
op->reg &= 7;
}
else
op->mode |= DISP | direction;
src = skip_colonthing (src, &op->mode);
if (*src != ')')
{
as_bad (_("expected @(exp, reg16)"));
return;
}
*ptr = src + 1;
return;
}
len = parse_reg (src, &mode, &num, direction);
if (len)
{
src += len;
if (*src == '+' || *src == '-')
{
if (((mode & SIZE) != PSIZE)
/* For Normal mode accept 16 bit and 32 bit pointer registers. */
&& (!Nmode || ((mode & SIZE) != L_32)))
as_bad (_("Wrong size pointer register for architecture."));
op->mode = *src == '+' ? RSPOSTINC : RSPOSTDEC;
op->reg = num;
src++;
*ptr = src;
return;
}
if (((mode & SIZE) != PSIZE)
/* For Normal mode accept 16 bit and 32 bit pointer registers. */
&& (!Nmode || ((mode & SIZE) != L_32)))
as_bad (_("Wrong size pointer register for architecture."));
op->mode = direction | IND | PSIZE;
op->reg = num;
*ptr = src;
return;
}
else
{
/* must be a symbol */
op->mode = ABS | direction;
*ptr = parse_exp (src, op);
return;
}
}
if (*src == '#')
{
op->mode = IMM;
*ptr = parse_exp (src + 1, op);
return;
}
else if (startswith (src, "mach") ||
startswith (src, "macl") ||
startswith (src, "MACH") ||
startswith (src, "MACL"))
{
op->reg = TOLOWER (src[3]) == 'l';
op->mode = MACREG;
*ptr = src + 4;
return;
}
else
{
op->mode = PCREL;
*ptr = parse_exp (src, op);
}
}
static char *
get_operands (unsigned int noperands, char *op_end, struct h8_op *operand)
{
char *ptr = op_end;
switch (noperands)
{
case 0:
break;
case 1:
ptr++;
get_operand (&ptr, operand + 0, SRC);
if (*ptr == ',')
{
ptr++;
get_operand (&ptr, operand + 1, DST);
}
break;
case 2:
ptr++;
get_operand (&ptr, operand + 0, SRC);
if (*ptr == ',')
ptr++;
get_operand (&ptr, operand + 1, DST);
break;
case 3:
ptr++;
get_operand (&ptr, operand + 0, SRC);
if (*ptr == ',')
ptr++;
get_operand (&ptr, operand + 1, DST);
if (*ptr == ',')
ptr++;
get_operand (&ptr, operand + 2, OP3);
break;
default:
abort ();
}
return ptr;
}
/* MOVA has special requirements. Rather than adding twice the amount of
addressing modes, we simply special case it a bit. */
static void
get_mova_operands (char *op_end, struct h8_op *operand)
{
char *ptr = op_end;
if (ptr[1] != '@' || ptr[2] != '(')
goto error;
ptr += 3;
operand[0].mode = 0;
ptr = parse_exp (ptr, &operand[0]);
if (*ptr !=',')
goto error;
ptr++;
get_operand (&ptr, operand + 1, DST);
if (*ptr =='.')
{
ptr++;
switch (*ptr++)
{
case 'b': case 'B':
operand[0].mode = (operand[0].mode & ~MODE) | INDEXB;
break;
case 'w': case 'W':
operand[0].mode = (operand[0].mode & ~MODE) | INDEXW;
break;
case 'l': case 'L':
operand[0].mode = (operand[0].mode & ~MODE) | INDEXL;
break;
default:
goto error;
}
}
else if ((operand[1].mode & MODE) == LOWREG)
{
switch (operand[1].mode & SIZE)
{
case L_8:
operand[0].mode = (operand[0].mode & ~MODE) | INDEXB;
break;
case L_16:
operand[0].mode = (operand[0].mode & ~MODE) | INDEXW;
break;
case L_32:
operand[0].mode = (operand[0].mode & ~MODE) | INDEXL;
break;
default:
goto error;
}
}
else
goto error;
if (*ptr++ != ')' || *ptr++ != ',')
goto error;
get_operand (&ptr, operand + 2, OP3);
/* See if we can use the short form of MOVA. */
if (((operand[1].mode & MODE) == REG || (operand[1].mode & MODE) == LOWREG)
&& (operand[2].mode & MODE) == REG
&& (operand[1].reg & 7) == (operand[2].reg & 7))
{
operand[1].mode = operand[2].mode = 0;
operand[0].reg = operand[2].reg & 7;
}
return;
error:
as_bad (_("expected valid addressing mode for mova: \"@(disp, ea.sz),ERn\""));
}
static void
get_rtsl_operands (char *ptr, struct h8_op *operand)
{
int mode, len, type = 0;
unsigned int num, num2;
ptr++;
if (*ptr == '(')
{
ptr++;
type = 1;
}
len = parse_reg (ptr, &mode, &num, SRC);
if (len == 0 || (mode & MODE) != REG)
{
as_bad (_("expected register"));
return;
}
ptr += len;
if (*ptr == '-')
{
len = parse_reg (++ptr, &mode, &num2, SRC);
if (len == 0 || (mode & MODE) != REG)
{
as_bad (_("expected register"));
return;
}
ptr += len;
/* CONST_xxx are used as placeholders in the opcode table. */
num = num2 - num;
if (num > 3)
{
as_bad (_("invalid register list"));
return;
}
}
else
num2 = num, num = 0;
if (type == 1 && *ptr++ != ')')
{
as_bad (_("expected closing paren"));
return;
}
operand[0].mode = RS32;
operand[1].mode = RD32;
operand[0].reg = num;
operand[1].reg = num2;
}
/* Passed a pointer to a list of opcodes which use different
addressing modes, return the opcode which matches the opcodes
provided. */
static const struct h8_instruction *
get_specific (const struct h8_instruction *instruction,
struct h8_op *operands, int size)
{
const struct h8_instruction *this_try = instruction;
const struct h8_instruction *found_other = 0, *found_mismatched = 0;
int found = 0;
int this_index = instruction->idx;
int noperands = 0;
/* There's only one ldm/stm and it's easier to just
get out quick for them. */
if (OP_KIND (instruction->opcode->how) == O_LDM
|| OP_KIND (instruction->opcode->how) == O_STM)
return this_try;
while (noperands < 3 && operands[noperands].mode != 0)
noperands++;
while (this_index == instruction->idx && !found)
{
int this_size;
found = 1;
this_try = instruction++;
this_size = this_try->opcode->how & SN;
if (this_try->noperands != noperands)
found = 0;
else if (this_try->noperands > 0)
{
int i;
for (i = 0; i < this_try->noperands && found; i++)
{
op_type op = this_try->opcode->args.nib[i];
int op_mode = op & MODE;
int op_size = op & SIZE;
int x = operands[i].mode;
int x_mode = x & MODE;
int x_size = x & SIZE;
if (op_mode == LOWREG && (x_mode == REG || x_mode == LOWREG))
{
if ((x_size == L_8 && (operands[i].reg & 8) == 0)
|| (x_size == L_16 && (operands[i].reg & 8) == 8))
as_warn (_("can't use high part of register in operand %d"), i);
if (x_size != op_size)
found = 0;
}
else if (op_mode == REG)
{
if (x_mode == LOWREG)
x_mode = REG;
if (x_mode != REG)
found = 0;
if (x_size == L_P)
x_size = (Hmode ? L_32 : L_16);
if (op_size == L_P)
op_size = (Hmode ? L_32 : L_16);
/* The size of the reg is v important. */
if (op_size != x_size)
found = 0;
}
else if (op_mode & CTRL) /* control register */
{
if (!(x_mode & CTRL))
found = 0;
switch (x_mode)
{
case CCR:
if (op_mode != CCR &&
op_mode != CCR_EXR &&
op_mode != CC_EX_VB_SB)
found = 0;
break;
case EXR:
if (op_mode != EXR &&
op_mode != CCR_EXR &&
op_mode != CC_EX_VB_SB)
found = 0;
break;
case MACH:
if (op_mode != MACH &&
op_mode != MACREG)
found = 0;
break;
case MACL:
if (op_mode != MACL &&
op_mode != MACREG)
found = 0;
break;
case VBR:
if (op_mode != VBR &&
op_mode != VBR_SBR &&
op_mode != CC_EX_VB_SB)
found = 0;
break;
case SBR:
if (op_mode != SBR &&
op_mode != VBR_SBR &&
op_mode != CC_EX_VB_SB)
found = 0;
break;
}
}
else if ((op & ABSJMP) && (x_mode == ABS || x_mode == PCREL))
{
operands[i].mode &= ~MODE;
operands[i].mode |= ABSJMP;
/* But it may not be 24 bits long. */
if (x_mode == ABS && !Hmode)
{
operands[i].mode &= ~SIZE;
operands[i].mode |= L_16;
}
if ((operands[i].mode & SIZE) == L_32
&& (op_mode & SIZE) != L_32)
found = 0;
}
else if (x_mode == IMM && op_mode != IMM)
{
offsetT num = operands[i].exp.X_add_number & 0xffffffff;
if (op_mode == KBIT || op_mode == DBIT)
/* This is ok if the immediate value is sensible. */;
else if (op_mode == CONST_2)
found = num == 2;
else if (op_mode == CONST_4)
found = num == 4;
else if (op_mode == CONST_8)
found = num == 8;
else if (op_mode == CONST_16)
found = num == 16;
else
found = 0;
}
else if (op_mode == PCREL && op_mode == x_mode)
{
/* movsd, bsr/bc and bsr/bs only come in PCREL16 flavour:
If x_size is L_8, promote it. */
if (OP_KIND (this_try->opcode->how) == O_MOVSD
|| OP_KIND (this_try->opcode->how) == O_BSRBC
|| OP_KIND (this_try->opcode->how) == O_BSRBS)
if (x_size == L_8)
x_size = L_16;
/* The size of the displacement is important. */
if (op_size != x_size)
found = 0;
}
else if ((op_mode == DISP || op_mode == IMM || op_mode == ABS
|| op_mode == INDEXB || op_mode == INDEXW
|| op_mode == INDEXL)
&& op_mode == x_mode)
{
/* Promote a L_24 to L_32 if it makes us match. */
if (x_size == L_24 && op_size == L_32)
{
x &= ~SIZE;
x |= x_size = L_32;
}
if (((x_size == L_16 && op_size == L_16U)
|| (x_size == L_8 && op_size == L_8U)
|| (x_size == L_3 && op_size == L_3NZ))
/* We're deliberately more permissive for ABS modes. */
&& (op_mode == ABS
|| constant_fits_size_p (operands + i, op_size,
op & NO_SYMBOLS)))
x_size = op_size;
if (x_size != 0 && op_size != x_size)
found = 0;
else if (x_size == 0
&& ! constant_fits_size_p (operands + i, op_size,
op & NO_SYMBOLS))
found = 0;
}
else if (op_mode != x_mode)
{
found = 0;
}
}
}
if (found)
{
if ((this_try->opcode->available == AV_H8SX && ! SXmode)
|| (this_try->opcode->available == AV_H8S && ! Smode)
|| (this_try->opcode->available == AV_H8H && ! Hmode))
found = 0, found_other = this_try;
else if (this_size != size && (this_size != SN && size != SN))
found_mismatched = this_try, found = 0;
}
}
if (found)
return this_try;
if (found_other)
{
as_warn (_("Opcode `%s' with these operand types not available in %s mode"),
found_other->opcode->name,
(! Hmode && ! Smode ? "H8/300"
: SXmode ? "H8sx"
: Smode ? "H8/300S"
: "H8/300H"));
}
else if (found_mismatched)
{
as_warn (_("mismatch between opcode size and operand size"));
return found_mismatched;
}
return 0;
}
static void
check_operand (struct h8_op *operand, unsigned int width, const char *string)
{
if (operand->exp.X_add_symbol == 0
&& operand->exp.X_op_symbol == 0)
{
/* No symbol involved, let's look at offset, it's dangerous if
any of the high bits are not 0 or ff's, find out by oring or
anding with the width and seeing if the answer is 0 or all
fs. */
if (! constant_fits_width_p (operand, width))
{
if (width == 255
&& (operand->exp.X_add_number & 0xff00) == 0xff00)
{
/* Just ignore this one - which happens when trying to
fit a 16 bit address truncated into an 8 bit address
of something like bset. */
}
else if (strcmp (string, "@") == 0
&& width == 0xffff
&& (operand->exp.X_add_number & 0xff8000) == 0xff8000)
{
/* Just ignore this one - which happens when trying to
fit a 24 bit address truncated into a 16 bit address
of something like mov.w. */
}
else
{
as_warn (_("operand %s0x%lx out of range."), string,
(unsigned long) operand->exp.X_add_number);
}
}
}
}
/* RELAXMODE has one of 3 values:
0 Output a "normal" reloc, no relaxing possible for this insn/reloc
1 Output a relaxable 24bit absolute mov.w address relocation
(may relax into a 16bit absolute address).
2 Output a relaxable 16/24 absolute mov.b address relocation
(may relax into an 8bit absolute address). */
static void
do_a_fix_imm (int offset, int nibble, struct h8_op *operand, int relaxmode, const struct h8_instruction *this_try)
{
int idx;
int size;
int where;
char *bytes = frag_now->fr_literal + offset;
const char *t = ((operand->mode & MODE) == IMM) ? "#" : "@";
if (operand->exp.X_add_symbol == 0)
{
switch (operand->mode & SIZE)
{
case L_2:
check_operand (operand, 0x3, t);
bytes[0] |= (operand->exp.X_add_number & 3) << (nibble ? 0 : 4);
break;
case L_3:
case L_3NZ:
check_operand (operand, 0x7, t);
bytes[0] |= (operand->exp.X_add_number & 7) << (nibble ? 0 : 4);
break;
case L_4:
check_operand (operand, 0xF, t);
bytes[0] |= (operand->exp.X_add_number & 15) << (nibble ? 0 : 4);
break;
case L_5:
check_operand (operand, 0x1F, t);
bytes[0] |= operand->exp.X_add_number & 31;
break;
case L_8:
case L_8U:
check_operand (operand, 0xff, t);
bytes[0] |= operand->exp.X_add_number;
break;
case L_16:
case L_16U:
check_operand (operand, 0xffff, t);
bytes[0] |= operand->exp.X_add_number >> 8;
bytes[1] |= operand->exp.X_add_number >> 0;
/* MOVA needs both relocs to relax the second operand properly. */
if (relaxmode != 0
&& (OP_KIND(this_try->opcode->how) == O_MOVAB
|| OP_KIND(this_try->opcode->how) == O_MOVAW
|| OP_KIND(this_try->opcode->how) == O_MOVAL))
{
idx = BFD_RELOC_16;
fix_new_exp (frag_now, offset, 2, &operand->exp, 0, idx);
}
break;
case L_24:
check_operand (operand, 0xffffff, t);
bytes[0] |= operand->exp.X_add_number >> 16;
bytes[1] |= operand->exp.X_add_number >> 8;
bytes[2] |= operand->exp.X_add_number >> 0;
break;
case L_32:
/* This should be done with bfd. */
bytes[0] |= operand->exp.X_add_number >> 24;
bytes[1] |= operand->exp.X_add_number >> 16;
bytes[2] |= operand->exp.X_add_number >> 8;
bytes[3] |= operand->exp.X_add_number >> 0;
if (relaxmode != 0)
{
if ((operand->mode & MODE) == DISP && relaxmode == 1)
idx = BFD_RELOC_H8_DISP32A16;
else
idx = (relaxmode == 2) ? R_MOV24B1 : R_MOVL1;
fix_new_exp (frag_now, offset, 4, &operand->exp, 0, idx);
}
break;
}
}
else
{
switch (operand->mode & SIZE)
{
case L_24:
case L_32:
size = 4;
where = (operand->mode & SIZE) == L_24 ? -1 : 0;
if ((operand->mode & MODE) == DISP && relaxmode == 1)
idx = BFD_RELOC_H8_DISP32A16;
else if (relaxmode == 2)
idx = R_MOV24B1;
else if (relaxmode == 1)
idx = R_MOVL1;
else
idx = R_RELLONG;
break;
default:
as_bad (_("Can't work out size of operand.\n"));
/* Fall through. */
case L_16:
case L_16U:
size = 2;
where = 0;
if (relaxmode == 2)
idx = R_MOV16B1;
else
idx = R_RELWORD;
operand->exp.X_add_number =
((operand->exp.X_add_number & 0xffff) ^ 0x8000) - 0x8000;
operand->exp.X_add_number |= (bytes[0] << 8) | bytes[1];
break;
case L_8:
size = 1;
where = 0;
idx = R_RELBYTE;
operand->exp.X_add_number =
((operand->exp.X_add_number & 0xff) ^ 0x80) - 0x80;
operand->exp.X_add_number |= bytes[0];
}
fix_new_exp (frag_now,
offset + where,
size,
&operand->exp,
0,
idx);
}
}
/* Now we know what sort of opcodes it is, let's build the bytes. */
static void
build_bytes (const struct h8_instruction *this_try, struct h8_op *operand)
{
int i;
char *output = frag_more (this_try->length);
const op_type *nibble_ptr = this_try->opcode->data.nib;
op_type c;
unsigned int nibble_count = 0;
int op_at[3];
int nib = 0;
int movb = 0;
char asnibbles[100];
char *p = asnibbles;
int high, low;
if (!Hmode && this_try->opcode->available != AV_H8)
as_warn (_("Opcode `%s' with these operand types not available in H8/300 mode"),
this_try->opcode->name);
else if (!Smode
&& this_try->opcode->available != AV_H8
&& this_try->opcode->available != AV_H8H)
as_warn (_("Opcode `%s' with these operand types not available in H8/300H mode"),
this_try->opcode->name);
else if (!SXmode
&& this_try->opcode->available != AV_H8
&& this_try->opcode->available != AV_H8H
&& this_try->opcode->available != AV_H8S)
as_warn (_("Opcode `%s' with these operand types not available in H8/300S mode"),
this_try->opcode->name);
while (*nibble_ptr != (op_type) E)
{
int d;
nib = 0;
c = *nibble_ptr++;
d = (c & OP3) == OP3 ? 2 : (c & DST) == DST ? 1 : 0;
if (c < 16)
nib = c;
else
{
int c2 = c & MODE;
if (c2 == REG || c2 == LOWREG
|| c2 == IND || c2 == PREINC || c2 == PREDEC
|| c2 == POSTINC || c2 == POSTDEC)
{
nib = operand[d].reg;
if (c2 == LOWREG)
nib &= 7;
}
else if (c & CTRL) /* Control reg operand. */
nib = operand[d].reg;
else if ((c & DISPREG) == (DISPREG))
{
nib = operand[d].reg;
}
else if (c2 == ABS)
{
operand[d].mode = c;
op_at[d] = nibble_count;
nib = 0;
}
else if (c2 == IMM || c2 == PCREL || c2 == ABS
|| (c & ABSJMP) || c2 == DISP)
{
operand[d].mode = c;
op_at[d] = nibble_count;
nib = 0;
}
else if ((c & IGNORE) || (c & DATA))
nib = 0;
else if (c2 == DBIT)
{
switch (operand[0].exp.X_add_number)
{
case 1:
nib = c;
break;
case 2:
nib = 0x8 | c;
break;
default:
as_bad (_("Need #1 or #2 here"));
}
}
else if (c2 == KBIT)
{
switch (operand[0].exp.X_add_number)
{
case 1:
nib = 0;
break;
case 2:
nib = 8;
break;
case 4:
if (!Hmode)
as_warn (_("#4 not valid on H8/300."));
nib = 9;
break;
default:
as_bad (_("Need #1 or #2 here"));
break;
}
/* Stop it making a fix. */
operand[0].mode = 0;
}
if (c & MEMRELAX)
operand[d].mode |= MEMRELAX;
if (c & B31)
nib |= 0x8;
if (c & B21)
nib |= 0x4;
if (c & B11)
nib |= 0x2;
if (c & B01)
nib |= 0x1;
if (c2 == MACREG)
{
if (operand[0].mode == MACREG)
/* stmac has mac[hl] as the first operand. */
nib = 2 + operand[0].reg;
else
/* ldmac has mac[hl] as the second operand. */
nib = 2 + operand[1].reg;
}
}
nibble_count++;
*p++ = nib;
}
/* Disgusting. Why, oh why didn't someone ask us for advice
on the assembler format. */
if (OP_KIND (this_try->opcode->how) == O_LDM)
{
high = (operand[1].reg >> 8) & 0xf;
low = (operand[1].reg) & 0xf;
asnibbles[2] = high - low;
asnibbles[7] = high;
}
else if (OP_KIND (this_try->opcode->how) == O_STM)
{
high = (operand[0].reg >> 8) & 0xf;
low = (operand[0].reg) & 0xf;
asnibbles[2] = high - low;
asnibbles[7] = low;
}
for (i = 0; i < this_try->length; i++)
output[i] = (asnibbles[i * 2] << 4) | asnibbles[i * 2 + 1];
/* Note if this is a mov.b or a bit manipulation instruction
there is a special relaxation which only applies. */
if ( this_try->opcode->how == O (O_MOV, SB)
|| this_try->opcode->how == O (O_BCLR, SB)
|| this_try->opcode->how == O (O_BAND, SB)
|| this_try->opcode->how == O (O_BIAND, SB)
|| this_try->opcode->how == O (O_BILD, SB)
|| this_try->opcode->how == O (O_BIOR, SB)
|| this_try->opcode->how == O (O_BIST, SB)
|| this_try->opcode->how == O (O_BIXOR, SB)
|| this_try->opcode->how == O (O_BLD, SB)
|| this_try->opcode->how == O (O_BNOT, SB)
|| this_try->opcode->how == O (O_BOR, SB)
|| this_try->opcode->how == O (O_BSET, SB)
|| this_try->opcode->how == O (O_BST, SB)
|| this_try->opcode->how == O (O_BTST, SB)
|| this_try->opcode->how == O (O_BXOR, SB))
movb = 1;
/* Output any fixes. */
for (i = 0; i < this_try->noperands; i++)
{
int x = operand[i].mode;
int x_mode = x & MODE;
if (x_mode == IMM || x_mode == DISP)
do_a_fix_imm (output - frag_now->fr_literal + op_at[i] / 2,
op_at[i] & 1, operand + i, (x & MEMRELAX) != 0,
this_try);
else if (x_mode == ABS)
do_a_fix_imm (output - frag_now->fr_literal + op_at[i] / 2,
op_at[i] & 1, operand + i,
(x & MEMRELAX) ? movb + 1 : 0,
this_try);
else if (x_mode == PCREL)
{
int size16 = (x & SIZE) == L_16;
int size = size16 ? 2 : 1;
int type = size16 ? R_PCRWORD : R_PCRBYTE;
fixS *fixP;
check_operand (operand + i, size16 ? 0x7fff : 0x7f, "@");
if (operand[i].exp.X_add_number & 1)
as_warn (_("branch operand has odd offset (%lx)\n"),
(unsigned long) operand->exp.X_add_number);
if (size16)
{
operand[i].exp.X_add_number =
((operand[i].exp.X_add_number & 0xffff) ^ 0x8000) - 0x8000;
}
else
{
operand[i].exp.X_add_number =
((operand[i].exp.X_add_number & 0xff) ^ 0x80) - 0x80;
}
/* For BRA/S. */
if (! size16)
operand[i].exp.X_add_number |= output[op_at[i] / 2];
fixP = fix_new_exp (frag_now,
output - frag_now->fr_literal + op_at[i] / 2,
size,
&operand[i].exp,
1,
type);
fixP->fx_signed = 1;
}
else if (x_mode == MEMIND)
{
check_operand (operand + i, 0xff, "@@");
fix_new_exp (frag_now,
output - frag_now->fr_literal + 1,
1,
&operand[i].exp,
0,
R_MEM_INDIRECT);
}
else if (x_mode == VECIND)
{
check_operand (operand + i, 0x7f, "@@");
/* FIXME: approximating the effect of "B31" here...
This is very hackish, and ought to be done a better way. */
operand[i].exp.X_add_number |= 0x80;
fix_new_exp (frag_now,
output - frag_now->fr_literal + 1,
1,
&operand[i].exp,
0,
R_MEM_INDIRECT);
}
else if (x & ABSJMP)
{
int where = 0;
bfd_reloc_code_real_type reloc_type = R_JMPL1;
/* To be compatible with the proposed H8 ELF format, we
want the relocation's offset to point to the first byte
that will be modified, not to the start of the instruction. */
if ((operand->mode & SIZE) == L_32)
{
where = 2;
reloc_type = R_RELLONG;
}
else
where = 1;
/* This jmp may be a jump or a branch. */
check_operand (operand + i,
SXmode ? 0xffffffff : Hmode ? 0xffffff : 0xffff,
"@");
if (operand[i].exp.X_add_number & 1)
as_warn (_("branch operand has odd offset (%lx)\n"),
(unsigned long) operand->exp.X_add_number);
if (!Hmode)
operand[i].exp.X_add_number =
((operand[i].exp.X_add_number & 0xffff) ^ 0x8000) - 0x8000;
fix_new_exp (frag_now,
output - frag_now->fr_literal + where,
4,
&operand[i].exp,
0,
reloc_type);
}
}
}
/* Try to give an intelligent error message for common and simple to
detect errors. */
static void
clever_message (const struct h8_instruction *instruction,
struct h8_op *operand)
{
/* Find out if there was more than one possible opcode. */
if ((instruction + 1)->idx != instruction->idx)
{
int argn;
/* Only one opcode of this flavour, try to guess which operand
didn't match. */
for (argn = 0; argn < instruction->noperands; argn++)
{
switch (instruction->opcode->args.nib[argn])
{
case RD16:
if (operand[argn].mode != RD16)
{
as_bad (_("destination operand must be 16 bit register"));
return;
}
break;
case RS8:
if (operand[argn].mode != RS8)
{
as_bad (_("source operand must be 8 bit register"));
return;
}
break;
case ABS16DST:
if (operand[argn].mode != ABS16DST)
{
as_bad (_("destination operand must be 16bit absolute address"));
return;
}
break;
case RD8:
if (operand[argn].mode != RD8)
{
as_bad (_("destination operand must be 8 bit register"));
return;
}
break;
case ABS16SRC:
if (operand[argn].mode != ABS16SRC)
{
as_bad (_("source operand must be 16bit absolute address"));
return;
}
break;
}
}
}
as_bad (_("invalid operands"));
}
/* If OPERAND is part of an address, adjust its size and value given
that it addresses SIZE bytes.
This function decides how big non-immediate constants are when no
size was explicitly given. It also scales down the assembly-level
displacement in an @(d:2,ERn) operand. */
static void
fix_operand_size (struct h8_op *operand, int size)
{
if (SXmode && (operand->mode & MODE) == DISP)
{
/* If the user didn't specify an operand width, see if we
can use @(d:2,ERn). */
if ((operand->mode & SIZE) == 0
&& operand->exp.X_add_symbol == 0
&& operand->exp.X_op_symbol == 0
&& (operand->exp.X_add_number == size
|| operand->exp.X_add_number == size * 2
|| operand->exp.X_add_number == size * 3))
operand->mode |= L_2;
/* Scale down the displacement in an @(d:2,ERn) operand.
X_add_number then contains the desired field value. */
if ((operand->mode & SIZE) == L_2)
{
if (operand->exp.X_add_number % size != 0)
as_warn (_("operand/size mis-match"));
operand->exp.X_add_number /= size;
}
}
if ((operand->mode & SIZE) == 0)
switch (operand->mode & MODE)
{
case DISP:
case INDEXB:
case INDEXW:
case INDEXL:
case ABS:
/* Pick a 24-bit address unless we know that a 16-bit address
is safe. get_specific() will relax L_24 into L_32 where
necessary. */
if (Hmode
&& !Nmode
&& ((((addressT) operand->exp.X_add_number + 0x8000)
& 0xffffffff) > 0xffff
|| operand->exp.X_add_symbol != 0
|| operand->exp.X_op_symbol != 0))
operand->mode |= L_24;
else
operand->mode |= L_16;
break;
case PCREL:
if ((((addressT) operand->exp.X_add_number + 0x80)
& 0xffffffff) <= 0xff)
{
if (operand->exp.X_add_symbol != NULL)
operand->mode |= bsize;
else
operand->mode |= L_8;
}
else
operand->mode |= L_16;
break;
}
}
/* This is the guts of the machine-dependent assembler. STR points to
a machine dependent instruction. This function is supposed to emit
the frags/bytes it assembles. */
void
md_assemble (char *str)
{
char *op_start;
char *op_end;
struct h8_op operand[3];
const struct h8_instruction *instruction;
const struct h8_instruction *prev_instruction;
char *dot = 0;
char *slash = 0;
char c;
int size, i;
/* Drop leading whitespace. */
while (*str == ' ')
str++;
/* Find the op code end. */
for (op_start = op_end = str;
*op_end != 0 && *op_end != ' ';
op_end++)
{
if (*op_end == '.')
{
dot = op_end + 1;
*op_end = 0;
op_end += 2;
break;
}
else if (*op_end == '/' && ! slash)
slash = op_end;
}
if (op_end == op_start)
{
as_bad (_("can't find opcode "));
}
c = *op_end;
*op_end = 0;
/* The assembler stops scanning the opcode at slashes, so it fails
to make characters following them lower case. Fix them. */
if (slash)
while (*++slash)
*slash = TOLOWER (*slash);
instruction = (const struct h8_instruction *)
str_hash_find (opcode_hash_control, op_start);
if (instruction == NULL)
{
as_bad (_("unknown opcode"));
return;
}
/* We used to set input_line_pointer to the result of get_operands,
but that is wrong. Our caller assumes we don't change it. */
operand[0].mode = 0;
operand[1].mode = 0;
operand[2].mode = 0;
if (OP_KIND (instruction->opcode->how) == O_MOVAB
|| OP_KIND (instruction->opcode->how) == O_MOVAW
|| OP_KIND (instruction->opcode->how) == O_MOVAL)
get_mova_operands (op_end, operand);
else if (OP_KIND (instruction->opcode->how) == O_RTEL
|| OP_KIND (instruction->opcode->how) == O_RTSL)
get_rtsl_operands (op_end, operand);
else
get_operands (instruction->noperands, op_end, operand);
*op_end = c;
prev_instruction = instruction;
/* Now we have operands from instruction.
Let's check them out for ldm and stm. */
if (OP_KIND (instruction->opcode->how) == O_LDM)
{
/* The first operand must be @er7+, and the
second operand must be a register pair. */
if ((operand[0].mode != RSINC)
|| (operand[0].reg != 7)
|| ((operand[1].reg & 0x80000000) == 0))
as_bad (_("invalid operand in ldm"));
}
else if (OP_KIND (instruction->opcode->how) == O_STM)
{
/* The first operand must be a register pair,
and the second operand must be @-er7. */
if (((operand[0].reg & 0x80000000) == 0)
|| (operand[1].mode != RDDEC)
|| (operand[1].reg != 7))
as_bad (_("invalid operand in stm"));
}
size = SN;
if (dot)
{
switch (TOLOWER (*dot))
{
case 'b':
size = SB;
break;
case 'w':
size = SW;
break;
case 'l':
size = SL;
break;
}
}
if (OP_KIND (instruction->opcode->how) == O_MOVAB ||
OP_KIND (instruction->opcode->how) == O_MOVAW ||
OP_KIND (instruction->opcode->how) == O_MOVAL)
{
switch (operand[0].mode & MODE)
{
case INDEXB:
default:
fix_operand_size (&operand[1], 1);
break;
case INDEXW:
fix_operand_size (&operand[1], 2);
break;
case INDEXL:
fix_operand_size (&operand[1], 4);
break;
}
}
else
{
for (i = 0; i < 3 && operand[i].mode != 0; i++)
switch (size)
{
case SN:
case SB:
default:
fix_operand_size (&operand[i], 1);
break;
case SW:
fix_operand_size (&operand[i], 2);
break;
case SL:
fix_operand_size (&operand[i], 4);
break;
}
}
instruction = get_specific (instruction, operand, size);
if (instruction == 0)
{
/* Couldn't find an opcode which matched the operands. */
char *where = frag_more (2);
where[0] = 0x0;
where[1] = 0x0;
clever_message (prev_instruction, operand);
return;
}
build_bytes (instruction, operand);
dwarf2_emit_insn (instruction->length);
}
symbolS *
md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
{
return 0;
}
/* Various routines to kill one day. */
const char *
md_atof (int type, char *litP, int *sizeP)
{
return ieee_md_atof (type, litP, sizeP, true);
}
#define OPTION_H_TICK_HEX (OPTION_MD_BASE)
#define OPTION_MACH (OPTION_MD_BASE+1)
const char *md_shortopts = "";
struct option md_longopts[] =
{
{ "h-tick-hex", no_argument, NULL, OPTION_H_TICK_HEX },
{ "mach", required_argument, NULL, OPTION_MACH },
{NULL, no_argument, NULL, 0}
};
size_t md_longopts_size = sizeof (md_longopts);
struct mach_func
{
const char *name;
void (*func) (void);
};
static void
mach_h8300h (void)
{
Hmode = 1;
Smode = 0;
Nmode = 0;
SXmode = 0;
default_mach = bfd_mach_h8300h;
}
static void
mach_h8300hn (void)
{
Hmode = 1;
Smode = 0;
Nmode = 1;
SXmode = 0;
default_mach = bfd_mach_h8300hn;
}
static void
mach_h8300s (void)
{
Hmode = 1;
Smode = 1;
Nmode = 0;
SXmode = 0;
default_mach = bfd_mach_h8300s;
}
static void
mach_h8300sn (void)
{
Hmode = 1;
Smode = 1;
Nmode = 1;
SXmode = 0;
default_mach = bfd_mach_h8300sn;
}
static void
mach_h8300sx (void)
{
Hmode = 1;
Smode = 1;
Nmode = 0;
SXmode = 1;
default_mach = bfd_mach_h8300sx;
}
static void
mach_h8300sxn (void)
{
Hmode = 1;
Smode = 1;
Nmode = 1;
SXmode = 1;
default_mach = bfd_mach_h8300sxn;
}
const struct mach_func mach_table[] =
{
{"h8300h", mach_h8300h},
{"h8300hn", mach_h8300hn},
{"h8300s", mach_h8300s},
{"h8300sn", mach_h8300sn},
{"h8300sx", mach_h8300sx},
{"h8300sxn", mach_h8300sxn}
};
int
md_parse_option (int c ATTRIBUTE_UNUSED, const char *arg ATTRIBUTE_UNUSED)
{
unsigned int i;
switch (c)
{
case OPTION_H_TICK_HEX:
enable_h_tick_hex = 1;
break;
case OPTION_MACH:
for (i = 0; i < sizeof(mach_table) / sizeof(struct mach_func); i++)
{
if (strcasecmp (arg, mach_table[i].name) == 0)
{
mach_table[i].func();
break;
}
}
if (i >= sizeof(mach_table) / sizeof(struct mach_func))
as_bad (_("Invalid argument to --mach option: %s"), arg);
break;
default:
return 0;
}
return 1;
}
void
md_show_usage (FILE *stream)
{
fprintf (stream, _(" H8300-specific assembler options:\n"));
fprintf (stream, _("\
-mach=<name> Set the H8300 machine type to one of:\n\
h8300h, h8300hn, h8300s, h8300sn, h8300sx, h8300sxn\n"));
fprintf (stream, _("\
-h-tick-hex Support H'00 style hex constants\n"));
}
void tc_aout_fix_to_chars (void);
void
tc_aout_fix_to_chars (void)
{
printf (_("call to tc_aout_fix_to_chars \n"));
abort ();
}
void
md_convert_frag (bfd *headers ATTRIBUTE_UNUSED,
segT seg ATTRIBUTE_UNUSED,
fragS *fragP ATTRIBUTE_UNUSED)
{
printf (_("call to md_convert_frag \n"));
abort ();
}
valueT
md_section_align (segT segment, valueT size)
{
int align = bfd_section_alignment (segment);
return ((size + (1 << align) - 1) & (-1U << align));
}
void
md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
{
char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
long val = *valP;
switch (fixP->fx_size)
{
case 1:
*buf++ = val;
break;
case 2:
*buf++ = (val >> 8);
*buf++ = val;
break;
case 4:
*buf++ = (val >> 24);
*buf++ = (val >> 16);
*buf++ = (val >> 8);
*buf++ = val;
break;
case 8:
/* This can arise when the .quad or .8byte pseudo-ops are used.
Returning here (without setting fx_done) will cause the code
to attempt to generate a reloc which will then fail with the
slightly more helpful error message: "Cannot represent
relocation type BFD_RELOC_64". */
return;
default:
abort ();
}
if (fixP->fx_addsy == NULL && fixP->fx_pcrel == 0)
fixP->fx_done = 1;
}
int
md_estimate_size_before_relax (fragS *fragP ATTRIBUTE_UNUSED,
segT segment_type ATTRIBUTE_UNUSED)
{
printf (_("call to md_estimate_size_before_relax \n"));
abort ();
}
/* Put number into target byte order. */
void
md_number_to_chars (char *ptr, valueT use, int nbytes)
{
number_to_chars_bigendian (ptr, use, nbytes);
}
long
md_pcrel_from (fixS *fixp)
{
as_bad_where (fixp->fx_file, fixp->fx_line,
_("Unexpected reference to a symbol in a non-code section"));
return 0;
}
arelent *
tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
{
arelent *rel;
bfd_reloc_code_real_type r_type;
if (fixp->fx_addsy && fixp->fx_subsy)
{
if ((S_GET_SEGMENT (fixp->fx_addsy) != S_GET_SEGMENT (fixp->fx_subsy))
|| S_GET_SEGMENT (fixp->fx_addsy) == undefined_section)
{
as_bad_subtract (fixp);
return NULL;
}
}
rel = XNEW (arelent);
rel->sym_ptr_ptr = XNEW (asymbol *);
*rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
rel->addend = fixp->fx_offset;
r_type = fixp->fx_r_type;
#define DEBUG 0
#if DEBUG
fprintf (stderr, "%s\n", bfd_get_reloc_code_name (r_type));
fflush (stderr);
#endif
rel->howto = bfd_reloc_type_lookup (stdoutput, r_type);
if (rel->howto == NULL)
{
as_bad_where (fixp->fx_file, fixp->fx_line,
_("Cannot represent relocation type %s"),
bfd_get_reloc_code_name (r_type));
return NULL;
}
return rel;
}