mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-18 12:24:38 +08:00
502e8a8430
* symtab.cc (Symbol_table::sized_write_globals): Subtract section starting address for relocatable link. * testsuite/Makefile.am (script_test_11): New test. * testsuite/Makefile.in: Regenerate. * testsuite/script_test_11.c: New source file. * testsuite/script_test_11.t: New linker script.
3658 lines
106 KiB
C++
3658 lines
106 KiB
C++
// symtab.cc -- the gold symbol table
|
|
|
|
// Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
|
|
// Written by Ian Lance Taylor <iant@google.com>.
|
|
|
|
// This file is part of gold.
|
|
|
|
// This program is free software; you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program; if not, write to the Free Software
|
|
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
|
|
// MA 02110-1301, USA.
|
|
|
|
#include "gold.h"
|
|
|
|
#include <cstring>
|
|
#include <stdint.h>
|
|
#include <algorithm>
|
|
#include <set>
|
|
#include <string>
|
|
#include <utility>
|
|
#include "demangle.h"
|
|
|
|
#include "gc.h"
|
|
#include "object.h"
|
|
#include "dwarf_reader.h"
|
|
#include "dynobj.h"
|
|
#include "output.h"
|
|
#include "target.h"
|
|
#include "workqueue.h"
|
|
#include "symtab.h"
|
|
#include "script.h"
|
|
#include "plugin.h"
|
|
#include "incremental.h"
|
|
|
|
namespace gold
|
|
{
|
|
|
|
// Class Symbol.
|
|
|
|
// Initialize fields in Symbol. This initializes everything except u_
|
|
// and source_.
|
|
|
|
void
|
|
Symbol::init_fields(const char* name, const char* version,
|
|
elfcpp::STT type, elfcpp::STB binding,
|
|
elfcpp::STV visibility, unsigned char nonvis)
|
|
{
|
|
this->name_ = name;
|
|
this->version_ = version;
|
|
this->symtab_index_ = 0;
|
|
this->dynsym_index_ = 0;
|
|
this->got_offsets_.init();
|
|
this->plt_offset_ = -1U;
|
|
this->type_ = type;
|
|
this->binding_ = binding;
|
|
this->visibility_ = visibility;
|
|
this->nonvis_ = nonvis;
|
|
this->is_def_ = false;
|
|
this->is_forwarder_ = false;
|
|
this->has_alias_ = false;
|
|
this->needs_dynsym_entry_ = false;
|
|
this->in_reg_ = false;
|
|
this->in_dyn_ = false;
|
|
this->has_warning_ = false;
|
|
this->is_copied_from_dynobj_ = false;
|
|
this->is_forced_local_ = false;
|
|
this->is_ordinary_shndx_ = false;
|
|
this->in_real_elf_ = false;
|
|
this->is_defined_in_discarded_section_ = false;
|
|
this->undef_binding_set_ = false;
|
|
this->undef_binding_weak_ = false;
|
|
this->is_predefined_ = false;
|
|
}
|
|
|
|
// Return the demangled version of the symbol's name, but only
|
|
// if the --demangle flag was set.
|
|
|
|
static std::string
|
|
demangle(const char* name)
|
|
{
|
|
if (!parameters->options().do_demangle())
|
|
return name;
|
|
|
|
// cplus_demangle allocates memory for the result it returns,
|
|
// and returns NULL if the name is already demangled.
|
|
char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
|
|
if (demangled_name == NULL)
|
|
return name;
|
|
|
|
std::string retval(demangled_name);
|
|
free(demangled_name);
|
|
return retval;
|
|
}
|
|
|
|
std::string
|
|
Symbol::demangled_name() const
|
|
{
|
|
return demangle(this->name());
|
|
}
|
|
|
|
// Initialize the fields in the base class Symbol for SYM in OBJECT.
|
|
|
|
template<int size, bool big_endian>
|
|
void
|
|
Symbol::init_base_object(const char* name, const char* version, Object* object,
|
|
const elfcpp::Sym<size, big_endian>& sym,
|
|
unsigned int st_shndx, bool is_ordinary)
|
|
{
|
|
this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
|
|
sym.get_st_visibility(), sym.get_st_nonvis());
|
|
this->u_.from_object.object = object;
|
|
this->u_.from_object.shndx = st_shndx;
|
|
this->is_ordinary_shndx_ = is_ordinary;
|
|
this->source_ = FROM_OBJECT;
|
|
this->in_reg_ = !object->is_dynamic();
|
|
this->in_dyn_ = object->is_dynamic();
|
|
this->in_real_elf_ = object->pluginobj() == NULL;
|
|
}
|
|
|
|
// Initialize the fields in the base class Symbol for a symbol defined
|
|
// in an Output_data.
|
|
|
|
void
|
|
Symbol::init_base_output_data(const char* name, const char* version,
|
|
Output_data* od, elfcpp::STT type,
|
|
elfcpp::STB binding, elfcpp::STV visibility,
|
|
unsigned char nonvis, bool offset_is_from_end,
|
|
bool is_predefined)
|
|
{
|
|
this->init_fields(name, version, type, binding, visibility, nonvis);
|
|
this->u_.in_output_data.output_data = od;
|
|
this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
|
|
this->source_ = IN_OUTPUT_DATA;
|
|
this->in_reg_ = true;
|
|
this->in_real_elf_ = true;
|
|
this->is_predefined_ = is_predefined;
|
|
}
|
|
|
|
// Initialize the fields in the base class Symbol for a symbol defined
|
|
// in an Output_segment.
|
|
|
|
void
|
|
Symbol::init_base_output_segment(const char* name, const char* version,
|
|
Output_segment* os, elfcpp::STT type,
|
|
elfcpp::STB binding, elfcpp::STV visibility,
|
|
unsigned char nonvis,
|
|
Segment_offset_base offset_base,
|
|
bool is_predefined)
|
|
{
|
|
this->init_fields(name, version, type, binding, visibility, nonvis);
|
|
this->u_.in_output_segment.output_segment = os;
|
|
this->u_.in_output_segment.offset_base = offset_base;
|
|
this->source_ = IN_OUTPUT_SEGMENT;
|
|
this->in_reg_ = true;
|
|
this->in_real_elf_ = true;
|
|
this->is_predefined_ = is_predefined;
|
|
}
|
|
|
|
// Initialize the fields in the base class Symbol for a symbol defined
|
|
// as a constant.
|
|
|
|
void
|
|
Symbol::init_base_constant(const char* name, const char* version,
|
|
elfcpp::STT type, elfcpp::STB binding,
|
|
elfcpp::STV visibility, unsigned char nonvis,
|
|
bool is_predefined)
|
|
{
|
|
this->init_fields(name, version, type, binding, visibility, nonvis);
|
|
this->source_ = IS_CONSTANT;
|
|
this->in_reg_ = true;
|
|
this->in_real_elf_ = true;
|
|
this->is_predefined_ = is_predefined;
|
|
}
|
|
|
|
// Initialize the fields in the base class Symbol for an undefined
|
|
// symbol.
|
|
|
|
void
|
|
Symbol::init_base_undefined(const char* name, const char* version,
|
|
elfcpp::STT type, elfcpp::STB binding,
|
|
elfcpp::STV visibility, unsigned char nonvis)
|
|
{
|
|
this->init_fields(name, version, type, binding, visibility, nonvis);
|
|
this->dynsym_index_ = -1U;
|
|
this->source_ = IS_UNDEFINED;
|
|
this->in_reg_ = true;
|
|
this->in_real_elf_ = true;
|
|
}
|
|
|
|
// Allocate a common symbol in the base.
|
|
|
|
void
|
|
Symbol::allocate_base_common(Output_data* od)
|
|
{
|
|
gold_assert(this->is_common());
|
|
this->source_ = IN_OUTPUT_DATA;
|
|
this->u_.in_output_data.output_data = od;
|
|
this->u_.in_output_data.offset_is_from_end = false;
|
|
}
|
|
|
|
// Initialize the fields in Sized_symbol for SYM in OBJECT.
|
|
|
|
template<int size>
|
|
template<bool big_endian>
|
|
void
|
|
Sized_symbol<size>::init_object(const char* name, const char* version,
|
|
Object* object,
|
|
const elfcpp::Sym<size, big_endian>& sym,
|
|
unsigned int st_shndx, bool is_ordinary)
|
|
{
|
|
this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
|
|
this->value_ = sym.get_st_value();
|
|
this->symsize_ = sym.get_st_size();
|
|
}
|
|
|
|
// Initialize the fields in Sized_symbol for a symbol defined in an
|
|
// Output_data.
|
|
|
|
template<int size>
|
|
void
|
|
Sized_symbol<size>::init_output_data(const char* name, const char* version,
|
|
Output_data* od, Value_type value,
|
|
Size_type symsize, elfcpp::STT type,
|
|
elfcpp::STB binding,
|
|
elfcpp::STV visibility,
|
|
unsigned char nonvis,
|
|
bool offset_is_from_end,
|
|
bool is_predefined)
|
|
{
|
|
this->init_base_output_data(name, version, od, type, binding, visibility,
|
|
nonvis, offset_is_from_end, is_predefined);
|
|
this->value_ = value;
|
|
this->symsize_ = symsize;
|
|
}
|
|
|
|
// Initialize the fields in Sized_symbol for a symbol defined in an
|
|
// Output_segment.
|
|
|
|
template<int size>
|
|
void
|
|
Sized_symbol<size>::init_output_segment(const char* name, const char* version,
|
|
Output_segment* os, Value_type value,
|
|
Size_type symsize, elfcpp::STT type,
|
|
elfcpp::STB binding,
|
|
elfcpp::STV visibility,
|
|
unsigned char nonvis,
|
|
Segment_offset_base offset_base,
|
|
bool is_predefined)
|
|
{
|
|
this->init_base_output_segment(name, version, os, type, binding, visibility,
|
|
nonvis, offset_base, is_predefined);
|
|
this->value_ = value;
|
|
this->symsize_ = symsize;
|
|
}
|
|
|
|
// Initialize the fields in Sized_symbol for a symbol defined as a
|
|
// constant.
|
|
|
|
template<int size>
|
|
void
|
|
Sized_symbol<size>::init_constant(const char* name, const char* version,
|
|
Value_type value, Size_type symsize,
|
|
elfcpp::STT type, elfcpp::STB binding,
|
|
elfcpp::STV visibility, unsigned char nonvis,
|
|
bool is_predefined)
|
|
{
|
|
this->init_base_constant(name, version, type, binding, visibility, nonvis,
|
|
is_predefined);
|
|
this->value_ = value;
|
|
this->symsize_ = symsize;
|
|
}
|
|
|
|
// Initialize the fields in Sized_symbol for an undefined symbol.
|
|
|
|
template<int size>
|
|
void
|
|
Sized_symbol<size>::init_undefined(const char* name, const char* version,
|
|
elfcpp::STT type, elfcpp::STB binding,
|
|
elfcpp::STV visibility, unsigned char nonvis)
|
|
{
|
|
this->init_base_undefined(name, version, type, binding, visibility, nonvis);
|
|
this->value_ = 0;
|
|
this->symsize_ = 0;
|
|
}
|
|
|
|
// Return an allocated string holding the symbol's name as
|
|
// name@version. This is used for relocatable links.
|
|
|
|
std::string
|
|
Symbol::versioned_name() const
|
|
{
|
|
gold_assert(this->version_ != NULL);
|
|
std::string ret = this->name_;
|
|
ret.push_back('@');
|
|
if (this->is_def_)
|
|
ret.push_back('@');
|
|
ret += this->version_;
|
|
return ret;
|
|
}
|
|
|
|
// Return true if SHNDX represents a common symbol.
|
|
|
|
bool
|
|
Symbol::is_common_shndx(unsigned int shndx)
|
|
{
|
|
return (shndx == elfcpp::SHN_COMMON
|
|
|| shndx == parameters->target().small_common_shndx()
|
|
|| shndx == parameters->target().large_common_shndx());
|
|
}
|
|
|
|
// Allocate a common symbol.
|
|
|
|
template<int size>
|
|
void
|
|
Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
|
|
{
|
|
this->allocate_base_common(od);
|
|
this->value_ = value;
|
|
}
|
|
|
|
// The ""'s around str ensure str is a string literal, so sizeof works.
|
|
#define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
|
|
|
|
// Return true if this symbol should be added to the dynamic symbol
|
|
// table.
|
|
|
|
inline bool
|
|
Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
|
|
{
|
|
// If the symbol is only present on plugin files, the plugin decided we
|
|
// don't need it.
|
|
if (!this->in_real_elf())
|
|
return false;
|
|
|
|
// If the symbol is used by a dynamic relocation, we need to add it.
|
|
if (this->needs_dynsym_entry())
|
|
return true;
|
|
|
|
// If this symbol's section is not added, the symbol need not be added.
|
|
// The section may have been GCed. Note that export_dynamic is being
|
|
// overridden here. This should not be done for shared objects.
|
|
if (parameters->options().gc_sections()
|
|
&& !parameters->options().shared()
|
|
&& this->source() == Symbol::FROM_OBJECT
|
|
&& !this->object()->is_dynamic())
|
|
{
|
|
Relobj* relobj = static_cast<Relobj*>(this->object());
|
|
bool is_ordinary;
|
|
unsigned int shndx = this->shndx(&is_ordinary);
|
|
if (is_ordinary && shndx != elfcpp::SHN_UNDEF
|
|
&& !relobj->is_section_included(shndx)
|
|
&& !symtab->is_section_folded(relobj, shndx))
|
|
return false;
|
|
}
|
|
|
|
// If the symbol was forced dynamic in a --dynamic-list file
|
|
// or an --export-dynamic-symbol option, add it.
|
|
if (!this->is_from_dynobj()
|
|
&& (parameters->options().in_dynamic_list(this->name())
|
|
|| parameters->options().is_export_dynamic_symbol(this->name())))
|
|
{
|
|
if (!this->is_forced_local())
|
|
return true;
|
|
gold_warning(_("Cannot export local symbol '%s'"),
|
|
this->demangled_name().c_str());
|
|
return false;
|
|
}
|
|
|
|
// If the symbol was forced local in a version script, do not add it.
|
|
if (this->is_forced_local())
|
|
return false;
|
|
|
|
// If dynamic-list-data was specified, add any STT_OBJECT.
|
|
if (parameters->options().dynamic_list_data()
|
|
&& !this->is_from_dynobj()
|
|
&& this->type() == elfcpp::STT_OBJECT)
|
|
return true;
|
|
|
|
// If --dynamic-list-cpp-new was specified, add any new/delete symbol.
|
|
// If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
|
|
if ((parameters->options().dynamic_list_cpp_new()
|
|
|| parameters->options().dynamic_list_cpp_typeinfo())
|
|
&& !this->is_from_dynobj())
|
|
{
|
|
// TODO(csilvers): We could probably figure out if we're an operator
|
|
// new/delete or typeinfo without the need to demangle.
|
|
char* demangled_name = cplus_demangle(this->name(),
|
|
DMGL_ANSI | DMGL_PARAMS);
|
|
if (demangled_name == NULL)
|
|
{
|
|
// Not a C++ symbol, so it can't satisfy these flags
|
|
}
|
|
else if (parameters->options().dynamic_list_cpp_new()
|
|
&& (strprefix(demangled_name, "operator new")
|
|
|| strprefix(demangled_name, "operator delete")))
|
|
{
|
|
free(demangled_name);
|
|
return true;
|
|
}
|
|
else if (parameters->options().dynamic_list_cpp_typeinfo()
|
|
&& (strprefix(demangled_name, "typeinfo name for")
|
|
|| strprefix(demangled_name, "typeinfo for")))
|
|
{
|
|
free(demangled_name);
|
|
return true;
|
|
}
|
|
else
|
|
free(demangled_name);
|
|
}
|
|
|
|
// If exporting all symbols or building a shared library,
|
|
// and the symbol is defined in a regular object and is
|
|
// externally visible, we need to add it.
|
|
if ((parameters->options().export_dynamic() || parameters->options().shared())
|
|
&& !this->is_from_dynobj()
|
|
&& !this->is_undefined()
|
|
&& this->is_externally_visible())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
// Return true if the final value of this symbol is known at link
|
|
// time.
|
|
|
|
bool
|
|
Symbol::final_value_is_known() const
|
|
{
|
|
// If we are not generating an executable, then no final values are
|
|
// known, since they will change at runtime.
|
|
if (parameters->options().output_is_position_independent()
|
|
|| parameters->options().relocatable())
|
|
return false;
|
|
|
|
// If the symbol is not from an object file, and is not undefined,
|
|
// then it is defined, and known.
|
|
if (this->source_ != FROM_OBJECT)
|
|
{
|
|
if (this->source_ != IS_UNDEFINED)
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
// If the symbol is from a dynamic object, then the final value
|
|
// is not known.
|
|
if (this->object()->is_dynamic())
|
|
return false;
|
|
|
|
// If the symbol is not undefined (it is defined or common),
|
|
// then the final value is known.
|
|
if (!this->is_undefined())
|
|
return true;
|
|
}
|
|
|
|
// If the symbol is undefined, then whether the final value is known
|
|
// depends on whether we are doing a static link. If we are doing a
|
|
// dynamic link, then the final value could be filled in at runtime.
|
|
// This could reasonably be the case for a weak undefined symbol.
|
|
return parameters->doing_static_link();
|
|
}
|
|
|
|
// Return the output section where this symbol is defined.
|
|
|
|
Output_section*
|
|
Symbol::output_section() const
|
|
{
|
|
switch (this->source_)
|
|
{
|
|
case FROM_OBJECT:
|
|
{
|
|
unsigned int shndx = this->u_.from_object.shndx;
|
|
if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
|
|
{
|
|
gold_assert(!this->u_.from_object.object->is_dynamic());
|
|
gold_assert(this->u_.from_object.object->pluginobj() == NULL);
|
|
Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
|
|
return relobj->output_section(shndx);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
case IN_OUTPUT_DATA:
|
|
return this->u_.in_output_data.output_data->output_section();
|
|
|
|
case IN_OUTPUT_SEGMENT:
|
|
case IS_CONSTANT:
|
|
case IS_UNDEFINED:
|
|
return NULL;
|
|
|
|
default:
|
|
gold_unreachable();
|
|
}
|
|
}
|
|
|
|
// Set the symbol's output section. This is used for symbols defined
|
|
// in scripts. This should only be called after the symbol table has
|
|
// been finalized.
|
|
|
|
void
|
|
Symbol::set_output_section(Output_section* os)
|
|
{
|
|
switch (this->source_)
|
|
{
|
|
case FROM_OBJECT:
|
|
case IN_OUTPUT_DATA:
|
|
gold_assert(this->output_section() == os);
|
|
break;
|
|
case IS_CONSTANT:
|
|
this->source_ = IN_OUTPUT_DATA;
|
|
this->u_.in_output_data.output_data = os;
|
|
this->u_.in_output_data.offset_is_from_end = false;
|
|
break;
|
|
case IN_OUTPUT_SEGMENT:
|
|
case IS_UNDEFINED:
|
|
default:
|
|
gold_unreachable();
|
|
}
|
|
}
|
|
|
|
// Class Symbol_table.
|
|
|
|
Symbol_table::Symbol_table(unsigned int count,
|
|
const Version_script_info& version_script)
|
|
: saw_undefined_(0), offset_(0), table_(count), namepool_(),
|
|
forwarders_(), commons_(), tls_commons_(), small_commons_(),
|
|
large_commons_(), forced_locals_(), warnings_(),
|
|
version_script_(version_script), gc_(NULL), icf_(NULL)
|
|
{
|
|
namepool_.reserve(count);
|
|
}
|
|
|
|
Symbol_table::~Symbol_table()
|
|
{
|
|
}
|
|
|
|
// The symbol table key equality function. This is called with
|
|
// Stringpool keys.
|
|
|
|
inline bool
|
|
Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
|
|
const Symbol_table_key& k2) const
|
|
{
|
|
return k1.first == k2.first && k1.second == k2.second;
|
|
}
|
|
|
|
bool
|
|
Symbol_table::is_section_folded(Object* obj, unsigned int shndx) const
|
|
{
|
|
return (parameters->options().icf_enabled()
|
|
&& this->icf_->is_section_folded(obj, shndx));
|
|
}
|
|
|
|
// For symbols that have been listed with a -u or --export-dynamic-symbol
|
|
// option, add them to the work list to avoid gc'ing them.
|
|
|
|
void
|
|
Symbol_table::gc_mark_undef_symbols(Layout* layout)
|
|
{
|
|
for (options::String_set::const_iterator p =
|
|
parameters->options().undefined_begin();
|
|
p != parameters->options().undefined_end();
|
|
++p)
|
|
{
|
|
const char* name = p->c_str();
|
|
Symbol* sym = this->lookup(name);
|
|
gold_assert(sym != NULL);
|
|
if (sym->source() == Symbol::FROM_OBJECT
|
|
&& !sym->object()->is_dynamic())
|
|
{
|
|
this->gc_mark_symbol(sym);
|
|
}
|
|
}
|
|
|
|
for (options::String_set::const_iterator p =
|
|
parameters->options().export_dynamic_symbol_begin();
|
|
p != parameters->options().export_dynamic_symbol_end();
|
|
++p)
|
|
{
|
|
const char* name = p->c_str();
|
|
Symbol* sym = this->lookup(name);
|
|
// It's not an error if a symbol named by --export-dynamic-symbol
|
|
// is undefined.
|
|
if (sym != NULL
|
|
&& sym->source() == Symbol::FROM_OBJECT
|
|
&& !sym->object()->is_dynamic())
|
|
{
|
|
this->gc_mark_symbol(sym);
|
|
}
|
|
}
|
|
|
|
for (Script_options::referenced_const_iterator p =
|
|
layout->script_options()->referenced_begin();
|
|
p != layout->script_options()->referenced_end();
|
|
++p)
|
|
{
|
|
Symbol* sym = this->lookup(p->c_str());
|
|
gold_assert(sym != NULL);
|
|
if (sym->source() == Symbol::FROM_OBJECT
|
|
&& !sym->object()->is_dynamic())
|
|
{
|
|
this->gc_mark_symbol(sym);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
Symbol_table::gc_mark_symbol(Symbol* sym)
|
|
{
|
|
// Add the object and section to the work list.
|
|
bool is_ordinary;
|
|
unsigned int shndx = sym->shndx(&is_ordinary);
|
|
if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
|
|
{
|
|
gold_assert(this->gc_!= NULL);
|
|
this->gc_->worklist().push(Section_id(sym->object(), shndx));
|
|
}
|
|
parameters->target().gc_mark_symbol(this, sym);
|
|
}
|
|
|
|
// When doing garbage collection, keep symbols that have been seen in
|
|
// dynamic objects.
|
|
inline void
|
|
Symbol_table::gc_mark_dyn_syms(Symbol* sym)
|
|
{
|
|
if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
|
|
&& !sym->object()->is_dynamic())
|
|
this->gc_mark_symbol(sym);
|
|
}
|
|
|
|
// Make TO a symbol which forwards to FROM.
|
|
|
|
void
|
|
Symbol_table::make_forwarder(Symbol* from, Symbol* to)
|
|
{
|
|
gold_assert(from != to);
|
|
gold_assert(!from->is_forwarder() && !to->is_forwarder());
|
|
this->forwarders_[from] = to;
|
|
from->set_forwarder();
|
|
}
|
|
|
|
// Resolve the forwards from FROM, returning the real symbol.
|
|
|
|
Symbol*
|
|
Symbol_table::resolve_forwards(const Symbol* from) const
|
|
{
|
|
gold_assert(from->is_forwarder());
|
|
Unordered_map<const Symbol*, Symbol*>::const_iterator p =
|
|
this->forwarders_.find(from);
|
|
gold_assert(p != this->forwarders_.end());
|
|
return p->second;
|
|
}
|
|
|
|
// Look up a symbol by name.
|
|
|
|
Symbol*
|
|
Symbol_table::lookup(const char* name, const char* version) const
|
|
{
|
|
Stringpool::Key name_key;
|
|
name = this->namepool_.find(name, &name_key);
|
|
if (name == NULL)
|
|
return NULL;
|
|
|
|
Stringpool::Key version_key = 0;
|
|
if (version != NULL)
|
|
{
|
|
version = this->namepool_.find(version, &version_key);
|
|
if (version == NULL)
|
|
return NULL;
|
|
}
|
|
|
|
Symbol_table_key key(name_key, version_key);
|
|
Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
|
|
if (p == this->table_.end())
|
|
return NULL;
|
|
return p->second;
|
|
}
|
|
|
|
// Resolve a Symbol with another Symbol. This is only used in the
|
|
// unusual case where there are references to both an unversioned
|
|
// symbol and a symbol with a version, and we then discover that that
|
|
// version is the default version. Because this is unusual, we do
|
|
// this the slow way, by converting back to an ELF symbol.
|
|
|
|
template<int size, bool big_endian>
|
|
void
|
|
Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
|
|
{
|
|
unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
|
|
elfcpp::Sym_write<size, big_endian> esym(buf);
|
|
// We don't bother to set the st_name or the st_shndx field.
|
|
esym.put_st_value(from->value());
|
|
esym.put_st_size(from->symsize());
|
|
esym.put_st_info(from->binding(), from->type());
|
|
esym.put_st_other(from->visibility(), from->nonvis());
|
|
bool is_ordinary;
|
|
unsigned int shndx = from->shndx(&is_ordinary);
|
|
this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
|
|
from->version());
|
|
if (from->in_reg())
|
|
to->set_in_reg();
|
|
if (from->in_dyn())
|
|
to->set_in_dyn();
|
|
if (parameters->options().gc_sections())
|
|
this->gc_mark_dyn_syms(to);
|
|
}
|
|
|
|
// Record that a symbol is forced to be local by a version script or
|
|
// by visibility.
|
|
|
|
void
|
|
Symbol_table::force_local(Symbol* sym)
|
|
{
|
|
if (!sym->is_defined() && !sym->is_common())
|
|
return;
|
|
if (sym->is_forced_local())
|
|
{
|
|
// We already got this one.
|
|
return;
|
|
}
|
|
sym->set_is_forced_local();
|
|
this->forced_locals_.push_back(sym);
|
|
}
|
|
|
|
// Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
|
|
// is only called for undefined symbols, when at least one --wrap
|
|
// option was used.
|
|
|
|
const char*
|
|
Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
|
|
{
|
|
// For some targets, we need to ignore a specific character when
|
|
// wrapping, and add it back later.
|
|
char prefix = '\0';
|
|
if (name[0] == parameters->target().wrap_char())
|
|
{
|
|
prefix = name[0];
|
|
++name;
|
|
}
|
|
|
|
if (parameters->options().is_wrap(name))
|
|
{
|
|
// Turn NAME into __wrap_NAME.
|
|
std::string s;
|
|
if (prefix != '\0')
|
|
s += prefix;
|
|
s += "__wrap_";
|
|
s += name;
|
|
|
|
// This will give us both the old and new name in NAMEPOOL_, but
|
|
// that is OK. Only the versions we need will wind up in the
|
|
// real string table in the output file.
|
|
return this->namepool_.add(s.c_str(), true, name_key);
|
|
}
|
|
|
|
const char* const real_prefix = "__real_";
|
|
const size_t real_prefix_length = strlen(real_prefix);
|
|
if (strncmp(name, real_prefix, real_prefix_length) == 0
|
|
&& parameters->options().is_wrap(name + real_prefix_length))
|
|
{
|
|
// Turn __real_NAME into NAME.
|
|
std::string s;
|
|
if (prefix != '\0')
|
|
s += prefix;
|
|
s += name + real_prefix_length;
|
|
return this->namepool_.add(s.c_str(), true, name_key);
|
|
}
|
|
|
|
return name;
|
|
}
|
|
|
|
// This is called when we see a symbol NAME/VERSION, and the symbol
|
|
// already exists in the symbol table, and VERSION is marked as being
|
|
// the default version. SYM is the NAME/VERSION symbol we just added.
|
|
// DEFAULT_IS_NEW is true if this is the first time we have seen the
|
|
// symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
|
|
|
|
template<int size, bool big_endian>
|
|
void
|
|
Symbol_table::define_default_version(Sized_symbol<size>* sym,
|
|
bool default_is_new,
|
|
Symbol_table_type::iterator pdef)
|
|
{
|
|
if (default_is_new)
|
|
{
|
|
// This is the first time we have seen NAME/NULL. Make
|
|
// NAME/NULL point to NAME/VERSION, and mark SYM as the default
|
|
// version.
|
|
pdef->second = sym;
|
|
sym->set_is_default();
|
|
}
|
|
else if (pdef->second == sym)
|
|
{
|
|
// NAME/NULL already points to NAME/VERSION. Don't mark the
|
|
// symbol as the default if it is not already the default.
|
|
}
|
|
else
|
|
{
|
|
// This is the unfortunate case where we already have entries
|
|
// for both NAME/VERSION and NAME/NULL. We now see a symbol
|
|
// NAME/VERSION where VERSION is the default version. We have
|
|
// already resolved this new symbol with the existing
|
|
// NAME/VERSION symbol.
|
|
|
|
// It's possible that NAME/NULL and NAME/VERSION are both
|
|
// defined in regular objects. This can only happen if one
|
|
// object file defines foo and another defines foo@@ver. This
|
|
// is somewhat obscure, but we call it a multiple definition
|
|
// error.
|
|
|
|
// It's possible that NAME/NULL actually has a version, in which
|
|
// case it won't be the same as VERSION. This happens with
|
|
// ver_test_7.so in the testsuite for the symbol t2_2. We see
|
|
// t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
|
|
// then see an unadorned t2_2 in an object file and give it
|
|
// version VER1 from the version script. This looks like a
|
|
// default definition for VER1, so it looks like we should merge
|
|
// t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
|
|
// not obvious that this is an error, either. So we just punt.
|
|
|
|
// If one of the symbols has non-default visibility, and the
|
|
// other is defined in a shared object, then they are different
|
|
// symbols.
|
|
|
|
// Otherwise, we just resolve the symbols as though they were
|
|
// the same.
|
|
|
|
if (pdef->second->version() != NULL)
|
|
gold_assert(pdef->second->version() != sym->version());
|
|
else if (sym->visibility() != elfcpp::STV_DEFAULT
|
|
&& pdef->second->is_from_dynobj())
|
|
;
|
|
else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
|
|
&& sym->is_from_dynobj())
|
|
;
|
|
else
|
|
{
|
|
const Sized_symbol<size>* symdef;
|
|
symdef = this->get_sized_symbol<size>(pdef->second);
|
|
Symbol_table::resolve<size, big_endian>(sym, symdef);
|
|
this->make_forwarder(pdef->second, sym);
|
|
pdef->second = sym;
|
|
sym->set_is_default();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add one symbol from OBJECT to the symbol table. NAME is symbol
|
|
// name and VERSION is the version; both are canonicalized. DEF is
|
|
// whether this is the default version. ST_SHNDX is the symbol's
|
|
// section index; IS_ORDINARY is whether this is a normal section
|
|
// rather than a special code.
|
|
|
|
// If IS_DEFAULT_VERSION is true, then this is the definition of a
|
|
// default version of a symbol. That means that any lookup of
|
|
// NAME/NULL and any lookup of NAME/VERSION should always return the
|
|
// same symbol. This is obvious for references, but in particular we
|
|
// want to do this for definitions: overriding NAME/NULL should also
|
|
// override NAME/VERSION. If we don't do that, it would be very hard
|
|
// to override functions in a shared library which uses versioning.
|
|
|
|
// We implement this by simply making both entries in the hash table
|
|
// point to the same Symbol structure. That is easy enough if this is
|
|
// the first time we see NAME/NULL or NAME/VERSION, but it is possible
|
|
// that we have seen both already, in which case they will both have
|
|
// independent entries in the symbol table. We can't simply change
|
|
// the symbol table entry, because we have pointers to the entries
|
|
// attached to the object files. So we mark the entry attached to the
|
|
// object file as a forwarder, and record it in the forwarders_ map.
|
|
// Note that entries in the hash table will never be marked as
|
|
// forwarders.
|
|
//
|
|
// ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
|
|
// ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
|
|
// for a special section code. ST_SHNDX may be modified if the symbol
|
|
// is defined in a section being discarded.
|
|
|
|
template<int size, bool big_endian>
|
|
Sized_symbol<size>*
|
|
Symbol_table::add_from_object(Object* object,
|
|
const char* name,
|
|
Stringpool::Key name_key,
|
|
const char* version,
|
|
Stringpool::Key version_key,
|
|
bool is_default_version,
|
|
const elfcpp::Sym<size, big_endian>& sym,
|
|
unsigned int st_shndx,
|
|
bool is_ordinary,
|
|
unsigned int orig_st_shndx)
|
|
{
|
|
// Print a message if this symbol is being traced.
|
|
if (parameters->options().is_trace_symbol(name))
|
|
{
|
|
if (orig_st_shndx == elfcpp::SHN_UNDEF)
|
|
gold_info(_("%s: reference to %s"), object->name().c_str(), name);
|
|
else
|
|
gold_info(_("%s: definition of %s"), object->name().c_str(), name);
|
|
}
|
|
|
|
// For an undefined symbol, we may need to adjust the name using
|
|
// --wrap.
|
|
if (orig_st_shndx == elfcpp::SHN_UNDEF
|
|
&& parameters->options().any_wrap())
|
|
{
|
|
const char* wrap_name = this->wrap_symbol(name, &name_key);
|
|
if (wrap_name != name)
|
|
{
|
|
// If we see a reference to malloc with version GLIBC_2.0,
|
|
// and we turn it into a reference to __wrap_malloc, then we
|
|
// discard the version number. Otherwise the user would be
|
|
// required to specify the correct version for
|
|
// __wrap_malloc.
|
|
version = NULL;
|
|
version_key = 0;
|
|
name = wrap_name;
|
|
}
|
|
}
|
|
|
|
Symbol* const snull = NULL;
|
|
std::pair<typename Symbol_table_type::iterator, bool> ins =
|
|
this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
|
|
snull));
|
|
|
|
std::pair<typename Symbol_table_type::iterator, bool> insdefault =
|
|
std::make_pair(this->table_.end(), false);
|
|
if (is_default_version)
|
|
{
|
|
const Stringpool::Key vnull_key = 0;
|
|
insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
|
|
vnull_key),
|
|
snull));
|
|
}
|
|
|
|
// ins.first: an iterator, which is a pointer to a pair.
|
|
// ins.first->first: the key (a pair of name and version).
|
|
// ins.first->second: the value (Symbol*).
|
|
// ins.second: true if new entry was inserted, false if not.
|
|
|
|
Sized_symbol<size>* ret;
|
|
bool was_undefined;
|
|
bool was_common;
|
|
if (!ins.second)
|
|
{
|
|
// We already have an entry for NAME/VERSION.
|
|
ret = this->get_sized_symbol<size>(ins.first->second);
|
|
gold_assert(ret != NULL);
|
|
|
|
was_undefined = ret->is_undefined();
|
|
was_common = ret->is_common();
|
|
|
|
this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
|
|
version);
|
|
if (parameters->options().gc_sections())
|
|
this->gc_mark_dyn_syms(ret);
|
|
|
|
if (is_default_version)
|
|
this->define_default_version<size, big_endian>(ret, insdefault.second,
|
|
insdefault.first);
|
|
}
|
|
else
|
|
{
|
|
// This is the first time we have seen NAME/VERSION.
|
|
gold_assert(ins.first->second == NULL);
|
|
|
|
if (is_default_version && !insdefault.second)
|
|
{
|
|
// We already have an entry for NAME/NULL. If we override
|
|
// it, then change it to NAME/VERSION.
|
|
ret = this->get_sized_symbol<size>(insdefault.first->second);
|
|
|
|
was_undefined = ret->is_undefined();
|
|
was_common = ret->is_common();
|
|
|
|
this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
|
|
version);
|
|
if (parameters->options().gc_sections())
|
|
this->gc_mark_dyn_syms(ret);
|
|
ins.first->second = ret;
|
|
}
|
|
else
|
|
{
|
|
was_undefined = false;
|
|
was_common = false;
|
|
|
|
Sized_target<size, big_endian>* target =
|
|
parameters->sized_target<size, big_endian>();
|
|
if (!target->has_make_symbol())
|
|
ret = new Sized_symbol<size>();
|
|
else
|
|
{
|
|
ret = target->make_symbol();
|
|
if (ret == NULL)
|
|
{
|
|
// This means that we don't want a symbol table
|
|
// entry after all.
|
|
if (!is_default_version)
|
|
this->table_.erase(ins.first);
|
|
else
|
|
{
|
|
this->table_.erase(insdefault.first);
|
|
// Inserting INSDEFAULT invalidated INS.
|
|
this->table_.erase(std::make_pair(name_key,
|
|
version_key));
|
|
}
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
|
|
|
|
ins.first->second = ret;
|
|
if (is_default_version)
|
|
{
|
|
// This is the first time we have seen NAME/NULL. Point
|
|
// it at the new entry for NAME/VERSION.
|
|
gold_assert(insdefault.second);
|
|
insdefault.first->second = ret;
|
|
}
|
|
}
|
|
|
|
if (is_default_version)
|
|
ret->set_is_default();
|
|
}
|
|
|
|
// Record every time we see a new undefined symbol, to speed up
|
|
// archive groups.
|
|
if (!was_undefined && ret->is_undefined())
|
|
{
|
|
++this->saw_undefined_;
|
|
if (parameters->options().has_plugins())
|
|
parameters->options().plugins()->new_undefined_symbol(ret);
|
|
}
|
|
|
|
// Keep track of common symbols, to speed up common symbol
|
|
// allocation.
|
|
if (!was_common && ret->is_common())
|
|
{
|
|
if (ret->type() == elfcpp::STT_TLS)
|
|
this->tls_commons_.push_back(ret);
|
|
else if (!is_ordinary
|
|
&& st_shndx == parameters->target().small_common_shndx())
|
|
this->small_commons_.push_back(ret);
|
|
else if (!is_ordinary
|
|
&& st_shndx == parameters->target().large_common_shndx())
|
|
this->large_commons_.push_back(ret);
|
|
else
|
|
this->commons_.push_back(ret);
|
|
}
|
|
|
|
// If we're not doing a relocatable link, then any symbol with
|
|
// hidden or internal visibility is local.
|
|
if ((ret->visibility() == elfcpp::STV_HIDDEN
|
|
|| ret->visibility() == elfcpp::STV_INTERNAL)
|
|
&& (ret->binding() == elfcpp::STB_GLOBAL
|
|
|| ret->binding() == elfcpp::STB_GNU_UNIQUE
|
|
|| ret->binding() == elfcpp::STB_WEAK)
|
|
&& !parameters->options().relocatable())
|
|
this->force_local(ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
// Add all the symbols in a relocatable object to the hash table.
|
|
|
|
template<int size, bool big_endian>
|
|
void
|
|
Symbol_table::add_from_relobj(
|
|
Sized_relobj_file<size, big_endian>* relobj,
|
|
const unsigned char* syms,
|
|
size_t count,
|
|
size_t symndx_offset,
|
|
const char* sym_names,
|
|
size_t sym_name_size,
|
|
typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
|
|
size_t* defined)
|
|
{
|
|
*defined = 0;
|
|
|
|
gold_assert(size == parameters->target().get_size());
|
|
|
|
const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
|
|
|
|
const bool just_symbols = relobj->just_symbols();
|
|
|
|
const unsigned char* p = syms;
|
|
for (size_t i = 0; i < count; ++i, p += sym_size)
|
|
{
|
|
(*sympointers)[i] = NULL;
|
|
|
|
elfcpp::Sym<size, big_endian> sym(p);
|
|
|
|
unsigned int st_name = sym.get_st_name();
|
|
if (st_name >= sym_name_size)
|
|
{
|
|
relobj->error(_("bad global symbol name offset %u at %zu"),
|
|
st_name, i);
|
|
continue;
|
|
}
|
|
|
|
const char* name = sym_names + st_name;
|
|
|
|
bool is_ordinary;
|
|
unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
|
|
sym.get_st_shndx(),
|
|
&is_ordinary);
|
|
unsigned int orig_st_shndx = st_shndx;
|
|
if (!is_ordinary)
|
|
orig_st_shndx = elfcpp::SHN_UNDEF;
|
|
|
|
if (st_shndx != elfcpp::SHN_UNDEF)
|
|
++*defined;
|
|
|
|
// A symbol defined in a section which we are not including must
|
|
// be treated as an undefined symbol.
|
|
bool is_defined_in_discarded_section = false;
|
|
if (st_shndx != elfcpp::SHN_UNDEF
|
|
&& is_ordinary
|
|
&& !relobj->is_section_included(st_shndx)
|
|
&& !this->is_section_folded(relobj, st_shndx))
|
|
{
|
|
st_shndx = elfcpp::SHN_UNDEF;
|
|
is_defined_in_discarded_section = true;
|
|
}
|
|
|
|
// In an object file, an '@' in the name separates the symbol
|
|
// name from the version name. If there are two '@' characters,
|
|
// this is the default version.
|
|
const char* ver = strchr(name, '@');
|
|
Stringpool::Key ver_key = 0;
|
|
int namelen = 0;
|
|
// IS_DEFAULT_VERSION: is the version default?
|
|
// IS_FORCED_LOCAL: is the symbol forced local?
|
|
bool is_default_version = false;
|
|
bool is_forced_local = false;
|
|
|
|
// FIXME: For incremental links, we don't store version information,
|
|
// so we need to ignore version symbols for now.
|
|
if (parameters->incremental_update() && ver != NULL)
|
|
{
|
|
namelen = ver - name;
|
|
ver = NULL;
|
|
}
|
|
|
|
if (ver != NULL)
|
|
{
|
|
// The symbol name is of the form foo@VERSION or foo@@VERSION
|
|
namelen = ver - name;
|
|
++ver;
|
|
if (*ver == '@')
|
|
{
|
|
is_default_version = true;
|
|
++ver;
|
|
}
|
|
ver = this->namepool_.add(ver, true, &ver_key);
|
|
}
|
|
// We don't want to assign a version to an undefined symbol,
|
|
// even if it is listed in the version script. FIXME: What
|
|
// about a common symbol?
|
|
else
|
|
{
|
|
namelen = strlen(name);
|
|
if (!this->version_script_.empty()
|
|
&& st_shndx != elfcpp::SHN_UNDEF)
|
|
{
|
|
// The symbol name did not have a version, but the
|
|
// version script may assign a version anyway.
|
|
std::string version;
|
|
bool is_global;
|
|
if (this->version_script_.get_symbol_version(name, &version,
|
|
&is_global))
|
|
{
|
|
if (!is_global)
|
|
is_forced_local = true;
|
|
else if (!version.empty())
|
|
{
|
|
ver = this->namepool_.add_with_length(version.c_str(),
|
|
version.length(),
|
|
true,
|
|
&ver_key);
|
|
is_default_version = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
elfcpp::Sym<size, big_endian>* psym = &sym;
|
|
unsigned char symbuf[sym_size];
|
|
elfcpp::Sym<size, big_endian> sym2(symbuf);
|
|
if (just_symbols)
|
|
{
|
|
memcpy(symbuf, p, sym_size);
|
|
elfcpp::Sym_write<size, big_endian> sw(symbuf);
|
|
if (orig_st_shndx != elfcpp::SHN_UNDEF
|
|
&& is_ordinary
|
|
&& relobj->e_type() == elfcpp::ET_REL)
|
|
{
|
|
// Symbol values in relocatable object files are section
|
|
// relative. This is normally what we want, but since here
|
|
// we are converting the symbol to absolute we need to add
|
|
// the section address. The section address in an object
|
|
// file is normally zero, but people can use a linker
|
|
// script to change it.
|
|
sw.put_st_value(sym.get_st_value()
|
|
+ relobj->section_address(orig_st_shndx));
|
|
}
|
|
st_shndx = elfcpp::SHN_ABS;
|
|
is_ordinary = false;
|
|
psym = &sym2;
|
|
}
|
|
|
|
// Fix up visibility if object has no-export set.
|
|
if (relobj->no_export()
|
|
&& (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
|
|
{
|
|
// We may have copied symbol already above.
|
|
if (psym != &sym2)
|
|
{
|
|
memcpy(symbuf, p, sym_size);
|
|
psym = &sym2;
|
|
}
|
|
|
|
elfcpp::STV visibility = sym2.get_st_visibility();
|
|
if (visibility == elfcpp::STV_DEFAULT
|
|
|| visibility == elfcpp::STV_PROTECTED)
|
|
{
|
|
elfcpp::Sym_write<size, big_endian> sw(symbuf);
|
|
unsigned char nonvis = sym2.get_st_nonvis();
|
|
sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
|
|
}
|
|
}
|
|
|
|
Stringpool::Key name_key;
|
|
name = this->namepool_.add_with_length(name, namelen, true,
|
|
&name_key);
|
|
|
|
Sized_symbol<size>* res;
|
|
res = this->add_from_object(relobj, name, name_key, ver, ver_key,
|
|
is_default_version, *psym, st_shndx,
|
|
is_ordinary, orig_st_shndx);
|
|
|
|
if (is_forced_local)
|
|
this->force_local(res);
|
|
|
|
// Do not treat this symbol as garbage if this symbol will be
|
|
// exported to the dynamic symbol table. This is true when
|
|
// building a shared library or using --export-dynamic and
|
|
// the symbol is externally visible.
|
|
if (parameters->options().gc_sections()
|
|
&& res->is_externally_visible()
|
|
&& !res->is_from_dynobj()
|
|
&& (parameters->options().shared()
|
|
|| parameters->options().export_dynamic()))
|
|
this->gc_mark_symbol(res);
|
|
|
|
if (is_defined_in_discarded_section)
|
|
res->set_is_defined_in_discarded_section();
|
|
|
|
(*sympointers)[i] = res;
|
|
}
|
|
}
|
|
|
|
// Add a symbol from a plugin-claimed file.
|
|
|
|
template<int size, bool big_endian>
|
|
Symbol*
|
|
Symbol_table::add_from_pluginobj(
|
|
Sized_pluginobj<size, big_endian>* obj,
|
|
const char* name,
|
|
const char* ver,
|
|
elfcpp::Sym<size, big_endian>* sym)
|
|
{
|
|
unsigned int st_shndx = sym->get_st_shndx();
|
|
bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
|
|
|
|
Stringpool::Key ver_key = 0;
|
|
bool is_default_version = false;
|
|
bool is_forced_local = false;
|
|
|
|
if (ver != NULL)
|
|
{
|
|
ver = this->namepool_.add(ver, true, &ver_key);
|
|
}
|
|
// We don't want to assign a version to an undefined symbol,
|
|
// even if it is listed in the version script. FIXME: What
|
|
// about a common symbol?
|
|
else
|
|
{
|
|
if (!this->version_script_.empty()
|
|
&& st_shndx != elfcpp::SHN_UNDEF)
|
|
{
|
|
// The symbol name did not have a version, but the
|
|
// version script may assign a version anyway.
|
|
std::string version;
|
|
bool is_global;
|
|
if (this->version_script_.get_symbol_version(name, &version,
|
|
&is_global))
|
|
{
|
|
if (!is_global)
|
|
is_forced_local = true;
|
|
else if (!version.empty())
|
|
{
|
|
ver = this->namepool_.add_with_length(version.c_str(),
|
|
version.length(),
|
|
true,
|
|
&ver_key);
|
|
is_default_version = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Stringpool::Key name_key;
|
|
name = this->namepool_.add(name, true, &name_key);
|
|
|
|
Sized_symbol<size>* res;
|
|
res = this->add_from_object(obj, name, name_key, ver, ver_key,
|
|
is_default_version, *sym, st_shndx,
|
|
is_ordinary, st_shndx);
|
|
|
|
if (is_forced_local)
|
|
this->force_local(res);
|
|
|
|
return res;
|
|
}
|
|
|
|
// Add all the symbols in a dynamic object to the hash table.
|
|
|
|
template<int size, bool big_endian>
|
|
void
|
|
Symbol_table::add_from_dynobj(
|
|
Sized_dynobj<size, big_endian>* dynobj,
|
|
const unsigned char* syms,
|
|
size_t count,
|
|
const char* sym_names,
|
|
size_t sym_name_size,
|
|
const unsigned char* versym,
|
|
size_t versym_size,
|
|
const std::vector<const char*>* version_map,
|
|
typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
|
|
size_t* defined)
|
|
{
|
|
*defined = 0;
|
|
|
|
gold_assert(size == parameters->target().get_size());
|
|
|
|
if (dynobj->just_symbols())
|
|
{
|
|
gold_error(_("--just-symbols does not make sense with a shared object"));
|
|
return;
|
|
}
|
|
|
|
// FIXME: For incremental links, we don't store version information,
|
|
// so we need to ignore version symbols for now.
|
|
if (parameters->incremental_update())
|
|
versym = NULL;
|
|
|
|
if (versym != NULL && versym_size / 2 < count)
|
|
{
|
|
dynobj->error(_("too few symbol versions"));
|
|
return;
|
|
}
|
|
|
|
const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
|
|
|
|
// We keep a list of all STT_OBJECT symbols, so that we can resolve
|
|
// weak aliases. This is necessary because if the dynamic object
|
|
// provides the same variable under two names, one of which is a
|
|
// weak definition, and the regular object refers to the weak
|
|
// definition, we have to put both the weak definition and the
|
|
// strong definition into the dynamic symbol table. Given a weak
|
|
// definition, the only way that we can find the corresponding
|
|
// strong definition, if any, is to search the symbol table.
|
|
std::vector<Sized_symbol<size>*> object_symbols;
|
|
|
|
const unsigned char* p = syms;
|
|
const unsigned char* vs = versym;
|
|
for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
|
|
{
|
|
elfcpp::Sym<size, big_endian> sym(p);
|
|
|
|
if (sympointers != NULL)
|
|
(*sympointers)[i] = NULL;
|
|
|
|
// Ignore symbols with local binding or that have
|
|
// internal or hidden visibility.
|
|
if (sym.get_st_bind() == elfcpp::STB_LOCAL
|
|
|| sym.get_st_visibility() == elfcpp::STV_INTERNAL
|
|
|| sym.get_st_visibility() == elfcpp::STV_HIDDEN)
|
|
continue;
|
|
|
|
// A protected symbol in a shared library must be treated as a
|
|
// normal symbol when viewed from outside the shared library.
|
|
// Implement this by overriding the visibility here.
|
|
elfcpp::Sym<size, big_endian>* psym = &sym;
|
|
unsigned char symbuf[sym_size];
|
|
elfcpp::Sym<size, big_endian> sym2(symbuf);
|
|
if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
|
|
{
|
|
memcpy(symbuf, p, sym_size);
|
|
elfcpp::Sym_write<size, big_endian> sw(symbuf);
|
|
sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
|
|
psym = &sym2;
|
|
}
|
|
|
|
unsigned int st_name = psym->get_st_name();
|
|
if (st_name >= sym_name_size)
|
|
{
|
|
dynobj->error(_("bad symbol name offset %u at %zu"),
|
|
st_name, i);
|
|
continue;
|
|
}
|
|
|
|
const char* name = sym_names + st_name;
|
|
|
|
bool is_ordinary;
|
|
unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
|
|
&is_ordinary);
|
|
|
|
if (st_shndx != elfcpp::SHN_UNDEF)
|
|
++*defined;
|
|
|
|
Sized_symbol<size>* res;
|
|
|
|
if (versym == NULL)
|
|
{
|
|
Stringpool::Key name_key;
|
|
name = this->namepool_.add(name, true, &name_key);
|
|
res = this->add_from_object(dynobj, name, name_key, NULL, 0,
|
|
false, *psym, st_shndx, is_ordinary,
|
|
st_shndx);
|
|
}
|
|
else
|
|
{
|
|
// Read the version information.
|
|
|
|
unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
|
|
|
|
bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
|
|
v &= elfcpp::VERSYM_VERSION;
|
|
|
|
// The Sun documentation says that V can be VER_NDX_LOCAL,
|
|
// or VER_NDX_GLOBAL, or a version index. The meaning of
|
|
// VER_NDX_LOCAL is defined as "Symbol has local scope."
|
|
// The old GNU linker will happily generate VER_NDX_LOCAL
|
|
// for an undefined symbol. I don't know what the Sun
|
|
// linker will generate.
|
|
|
|
if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
|
|
&& st_shndx != elfcpp::SHN_UNDEF)
|
|
{
|
|
// This symbol should not be visible outside the object.
|
|
continue;
|
|
}
|
|
|
|
// At this point we are definitely going to add this symbol.
|
|
Stringpool::Key name_key;
|
|
name = this->namepool_.add(name, true, &name_key);
|
|
|
|
if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
|
|
|| v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
|
|
{
|
|
// This symbol does not have a version.
|
|
res = this->add_from_object(dynobj, name, name_key, NULL, 0,
|
|
false, *psym, st_shndx, is_ordinary,
|
|
st_shndx);
|
|
}
|
|
else
|
|
{
|
|
if (v >= version_map->size())
|
|
{
|
|
dynobj->error(_("versym for symbol %zu out of range: %u"),
|
|
i, v);
|
|
continue;
|
|
}
|
|
|
|
const char* version = (*version_map)[v];
|
|
if (version == NULL)
|
|
{
|
|
dynobj->error(_("versym for symbol %zu has no name: %u"),
|
|
i, v);
|
|
continue;
|
|
}
|
|
|
|
Stringpool::Key version_key;
|
|
version = this->namepool_.add(version, true, &version_key);
|
|
|
|
// If this is an absolute symbol, and the version name
|
|
// and symbol name are the same, then this is the
|
|
// version definition symbol. These symbols exist to
|
|
// support using -u to pull in particular versions. We
|
|
// do not want to record a version for them.
|
|
if (st_shndx == elfcpp::SHN_ABS
|
|
&& !is_ordinary
|
|
&& name_key == version_key)
|
|
res = this->add_from_object(dynobj, name, name_key, NULL, 0,
|
|
false, *psym, st_shndx, is_ordinary,
|
|
st_shndx);
|
|
else
|
|
{
|
|
const bool is_default_version =
|
|
!hidden && st_shndx != elfcpp::SHN_UNDEF;
|
|
res = this->add_from_object(dynobj, name, name_key, version,
|
|
version_key, is_default_version,
|
|
*psym, st_shndx,
|
|
is_ordinary, st_shndx);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Note that it is possible that RES was overridden by an
|
|
// earlier object, in which case it can't be aliased here.
|
|
if (st_shndx != elfcpp::SHN_UNDEF
|
|
&& is_ordinary
|
|
&& psym->get_st_type() == elfcpp::STT_OBJECT
|
|
&& res->source() == Symbol::FROM_OBJECT
|
|
&& res->object() == dynobj)
|
|
object_symbols.push_back(res);
|
|
|
|
if (sympointers != NULL)
|
|
(*sympointers)[i] = res;
|
|
}
|
|
|
|
this->record_weak_aliases(&object_symbols);
|
|
}
|
|
|
|
// Add a symbol from a incremental object file.
|
|
|
|
template<int size, bool big_endian>
|
|
Sized_symbol<size>*
|
|
Symbol_table::add_from_incrobj(
|
|
Object* obj,
|
|
const char* name,
|
|
const char* ver,
|
|
elfcpp::Sym<size, big_endian>* sym)
|
|
{
|
|
unsigned int st_shndx = sym->get_st_shndx();
|
|
bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
|
|
|
|
Stringpool::Key ver_key = 0;
|
|
bool is_default_version = false;
|
|
bool is_forced_local = false;
|
|
|
|
Stringpool::Key name_key;
|
|
name = this->namepool_.add(name, true, &name_key);
|
|
|
|
Sized_symbol<size>* res;
|
|
res = this->add_from_object(obj, name, name_key, ver, ver_key,
|
|
is_default_version, *sym, st_shndx,
|
|
is_ordinary, st_shndx);
|
|
|
|
if (is_forced_local)
|
|
this->force_local(res);
|
|
|
|
return res;
|
|
}
|
|
|
|
// This is used to sort weak aliases. We sort them first by section
|
|
// index, then by offset, then by weak ahead of strong.
|
|
|
|
template<int size>
|
|
class Weak_alias_sorter
|
|
{
|
|
public:
|
|
bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
|
|
};
|
|
|
|
template<int size>
|
|
bool
|
|
Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
|
|
const Sized_symbol<size>* s2) const
|
|
{
|
|
bool is_ordinary;
|
|
unsigned int s1_shndx = s1->shndx(&is_ordinary);
|
|
gold_assert(is_ordinary);
|
|
unsigned int s2_shndx = s2->shndx(&is_ordinary);
|
|
gold_assert(is_ordinary);
|
|
if (s1_shndx != s2_shndx)
|
|
return s1_shndx < s2_shndx;
|
|
|
|
if (s1->value() != s2->value())
|
|
return s1->value() < s2->value();
|
|
if (s1->binding() != s2->binding())
|
|
{
|
|
if (s1->binding() == elfcpp::STB_WEAK)
|
|
return true;
|
|
if (s2->binding() == elfcpp::STB_WEAK)
|
|
return false;
|
|
}
|
|
return std::string(s1->name()) < std::string(s2->name());
|
|
}
|
|
|
|
// SYMBOLS is a list of object symbols from a dynamic object. Look
|
|
// for any weak aliases, and record them so that if we add the weak
|
|
// alias to the dynamic symbol table, we also add the corresponding
|
|
// strong symbol.
|
|
|
|
template<int size>
|
|
void
|
|
Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
|
|
{
|
|
// Sort the vector by section index, then by offset, then by weak
|
|
// ahead of strong.
|
|
std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
|
|
|
|
// Walk through the vector. For each weak definition, record
|
|
// aliases.
|
|
for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
|
|
symbols->begin();
|
|
p != symbols->end();
|
|
++p)
|
|
{
|
|
if ((*p)->binding() != elfcpp::STB_WEAK)
|
|
continue;
|
|
|
|
// Build a circular list of weak aliases. Each symbol points to
|
|
// the next one in the circular list.
|
|
|
|
Sized_symbol<size>* from_sym = *p;
|
|
typename std::vector<Sized_symbol<size>*>::const_iterator q;
|
|
for (q = p + 1; q != symbols->end(); ++q)
|
|
{
|
|
bool dummy;
|
|
if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
|
|
|| (*q)->value() != from_sym->value())
|
|
break;
|
|
|
|
this->weak_aliases_[from_sym] = *q;
|
|
from_sym->set_has_alias();
|
|
from_sym = *q;
|
|
}
|
|
|
|
if (from_sym != *p)
|
|
{
|
|
this->weak_aliases_[from_sym] = *p;
|
|
from_sym->set_has_alias();
|
|
}
|
|
|
|
p = q - 1;
|
|
}
|
|
}
|
|
|
|
// Create and return a specially defined symbol. If ONLY_IF_REF is
|
|
// true, then only create the symbol if there is a reference to it.
|
|
// If this does not return NULL, it sets *POLDSYM to the existing
|
|
// symbol if there is one. This sets *RESOLVE_OLDSYM if we should
|
|
// resolve the newly created symbol to the old one. This
|
|
// canonicalizes *PNAME and *PVERSION.
|
|
|
|
template<int size, bool big_endian>
|
|
Sized_symbol<size>*
|
|
Symbol_table::define_special_symbol(const char** pname, const char** pversion,
|
|
bool only_if_ref,
|
|
Sized_symbol<size>** poldsym,
|
|
bool* resolve_oldsym)
|
|
{
|
|
*resolve_oldsym = false;
|
|
*poldsym = NULL;
|
|
|
|
// If the caller didn't give us a version, see if we get one from
|
|
// the version script.
|
|
std::string v;
|
|
bool is_default_version = false;
|
|
if (*pversion == NULL)
|
|
{
|
|
bool is_global;
|
|
if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
|
|
{
|
|
if (is_global && !v.empty())
|
|
{
|
|
*pversion = v.c_str();
|
|
// If we get the version from a version script, then we
|
|
// are also the default version.
|
|
is_default_version = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
Symbol* oldsym;
|
|
Sized_symbol<size>* sym;
|
|
|
|
bool add_to_table = false;
|
|
typename Symbol_table_type::iterator add_loc = this->table_.end();
|
|
bool add_def_to_table = false;
|
|
typename Symbol_table_type::iterator add_def_loc = this->table_.end();
|
|
|
|
if (only_if_ref)
|
|
{
|
|
oldsym = this->lookup(*pname, *pversion);
|
|
if (oldsym == NULL && is_default_version)
|
|
oldsym = this->lookup(*pname, NULL);
|
|
if (oldsym == NULL || !oldsym->is_undefined())
|
|
return NULL;
|
|
|
|
*pname = oldsym->name();
|
|
if (is_default_version)
|
|
*pversion = this->namepool_.add(*pversion, true, NULL);
|
|
else
|
|
*pversion = oldsym->version();
|
|
}
|
|
else
|
|
{
|
|
// Canonicalize NAME and VERSION.
|
|
Stringpool::Key name_key;
|
|
*pname = this->namepool_.add(*pname, true, &name_key);
|
|
|
|
Stringpool::Key version_key = 0;
|
|
if (*pversion != NULL)
|
|
*pversion = this->namepool_.add(*pversion, true, &version_key);
|
|
|
|
Symbol* const snull = NULL;
|
|
std::pair<typename Symbol_table_type::iterator, bool> ins =
|
|
this->table_.insert(std::make_pair(std::make_pair(name_key,
|
|
version_key),
|
|
snull));
|
|
|
|
std::pair<typename Symbol_table_type::iterator, bool> insdefault =
|
|
std::make_pair(this->table_.end(), false);
|
|
if (is_default_version)
|
|
{
|
|
const Stringpool::Key vnull = 0;
|
|
insdefault =
|
|
this->table_.insert(std::make_pair(std::make_pair(name_key,
|
|
vnull),
|
|
snull));
|
|
}
|
|
|
|
if (!ins.second)
|
|
{
|
|
// We already have a symbol table entry for NAME/VERSION.
|
|
oldsym = ins.first->second;
|
|
gold_assert(oldsym != NULL);
|
|
|
|
if (is_default_version)
|
|
{
|
|
Sized_symbol<size>* soldsym =
|
|
this->get_sized_symbol<size>(oldsym);
|
|
this->define_default_version<size, big_endian>(soldsym,
|
|
insdefault.second,
|
|
insdefault.first);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// We haven't seen this symbol before.
|
|
gold_assert(ins.first->second == NULL);
|
|
|
|
add_to_table = true;
|
|
add_loc = ins.first;
|
|
|
|
if (is_default_version && !insdefault.second)
|
|
{
|
|
// We are adding NAME/VERSION, and it is the default
|
|
// version. We already have an entry for NAME/NULL.
|
|
oldsym = insdefault.first->second;
|
|
*resolve_oldsym = true;
|
|
}
|
|
else
|
|
{
|
|
oldsym = NULL;
|
|
|
|
if (is_default_version)
|
|
{
|
|
add_def_to_table = true;
|
|
add_def_loc = insdefault.first;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
const Target& target = parameters->target();
|
|
if (!target.has_make_symbol())
|
|
sym = new Sized_symbol<size>();
|
|
else
|
|
{
|
|
Sized_target<size, big_endian>* sized_target =
|
|
parameters->sized_target<size, big_endian>();
|
|
sym = sized_target->make_symbol();
|
|
if (sym == NULL)
|
|
return NULL;
|
|
}
|
|
|
|
if (add_to_table)
|
|
add_loc->second = sym;
|
|
else
|
|
gold_assert(oldsym != NULL);
|
|
|
|
if (add_def_to_table)
|
|
add_def_loc->second = sym;
|
|
|
|
*poldsym = this->get_sized_symbol<size>(oldsym);
|
|
|
|
return sym;
|
|
}
|
|
|
|
// Define a symbol based on an Output_data.
|
|
|
|
Symbol*
|
|
Symbol_table::define_in_output_data(const char* name,
|
|
const char* version,
|
|
Defined defined,
|
|
Output_data* od,
|
|
uint64_t value,
|
|
uint64_t symsize,
|
|
elfcpp::STT type,
|
|
elfcpp::STB binding,
|
|
elfcpp::STV visibility,
|
|
unsigned char nonvis,
|
|
bool offset_is_from_end,
|
|
bool only_if_ref)
|
|
{
|
|
if (parameters->target().get_size() == 32)
|
|
{
|
|
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
|
|
return this->do_define_in_output_data<32>(name, version, defined, od,
|
|
value, symsize, type, binding,
|
|
visibility, nonvis,
|
|
offset_is_from_end,
|
|
only_if_ref);
|
|
#else
|
|
gold_unreachable();
|
|
#endif
|
|
}
|
|
else if (parameters->target().get_size() == 64)
|
|
{
|
|
#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
|
|
return this->do_define_in_output_data<64>(name, version, defined, od,
|
|
value, symsize, type, binding,
|
|
visibility, nonvis,
|
|
offset_is_from_end,
|
|
only_if_ref);
|
|
#else
|
|
gold_unreachable();
|
|
#endif
|
|
}
|
|
else
|
|
gold_unreachable();
|
|
}
|
|
|
|
// Define a symbol in an Output_data, sized version.
|
|
|
|
template<int size>
|
|
Sized_symbol<size>*
|
|
Symbol_table::do_define_in_output_data(
|
|
const char* name,
|
|
const char* version,
|
|
Defined defined,
|
|
Output_data* od,
|
|
typename elfcpp::Elf_types<size>::Elf_Addr value,
|
|
typename elfcpp::Elf_types<size>::Elf_WXword symsize,
|
|
elfcpp::STT type,
|
|
elfcpp::STB binding,
|
|
elfcpp::STV visibility,
|
|
unsigned char nonvis,
|
|
bool offset_is_from_end,
|
|
bool only_if_ref)
|
|
{
|
|
Sized_symbol<size>* sym;
|
|
Sized_symbol<size>* oldsym;
|
|
bool resolve_oldsym;
|
|
|
|
if (parameters->target().is_big_endian())
|
|
{
|
|
#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
|
|
sym = this->define_special_symbol<size, true>(&name, &version,
|
|
only_if_ref, &oldsym,
|
|
&resolve_oldsym);
|
|
#else
|
|
gold_unreachable();
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
|
|
sym = this->define_special_symbol<size, false>(&name, &version,
|
|
only_if_ref, &oldsym,
|
|
&resolve_oldsym);
|
|
#else
|
|
gold_unreachable();
|
|
#endif
|
|
}
|
|
|
|
if (sym == NULL)
|
|
return NULL;
|
|
|
|
sym->init_output_data(name, version, od, value, symsize, type, binding,
|
|
visibility, nonvis, offset_is_from_end,
|
|
defined == PREDEFINED);
|
|
|
|
if (oldsym == NULL)
|
|
{
|
|
if (binding == elfcpp::STB_LOCAL
|
|
|| this->version_script_.symbol_is_local(name))
|
|
this->force_local(sym);
|
|
else if (version != NULL)
|
|
sym->set_is_default();
|
|
return sym;
|
|
}
|
|
|
|
if (Symbol_table::should_override_with_special(oldsym, type, defined))
|
|
this->override_with_special(oldsym, sym);
|
|
|
|
if (resolve_oldsym)
|
|
return sym;
|
|
else
|
|
{
|
|
delete sym;
|
|
return oldsym;
|
|
}
|
|
}
|
|
|
|
// Define a symbol based on an Output_segment.
|
|
|
|
Symbol*
|
|
Symbol_table::define_in_output_segment(const char* name,
|
|
const char* version,
|
|
Defined defined,
|
|
Output_segment* os,
|
|
uint64_t value,
|
|
uint64_t symsize,
|
|
elfcpp::STT type,
|
|
elfcpp::STB binding,
|
|
elfcpp::STV visibility,
|
|
unsigned char nonvis,
|
|
Symbol::Segment_offset_base offset_base,
|
|
bool only_if_ref)
|
|
{
|
|
if (parameters->target().get_size() == 32)
|
|
{
|
|
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
|
|
return this->do_define_in_output_segment<32>(name, version, defined, os,
|
|
value, symsize, type,
|
|
binding, visibility, nonvis,
|
|
offset_base, only_if_ref);
|
|
#else
|
|
gold_unreachable();
|
|
#endif
|
|
}
|
|
else if (parameters->target().get_size() == 64)
|
|
{
|
|
#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
|
|
return this->do_define_in_output_segment<64>(name, version, defined, os,
|
|
value, symsize, type,
|
|
binding, visibility, nonvis,
|
|
offset_base, only_if_ref);
|
|
#else
|
|
gold_unreachable();
|
|
#endif
|
|
}
|
|
else
|
|
gold_unreachable();
|
|
}
|
|
|
|
// Define a symbol in an Output_segment, sized version.
|
|
|
|
template<int size>
|
|
Sized_symbol<size>*
|
|
Symbol_table::do_define_in_output_segment(
|
|
const char* name,
|
|
const char* version,
|
|
Defined defined,
|
|
Output_segment* os,
|
|
typename elfcpp::Elf_types<size>::Elf_Addr value,
|
|
typename elfcpp::Elf_types<size>::Elf_WXword symsize,
|
|
elfcpp::STT type,
|
|
elfcpp::STB binding,
|
|
elfcpp::STV visibility,
|
|
unsigned char nonvis,
|
|
Symbol::Segment_offset_base offset_base,
|
|
bool only_if_ref)
|
|
{
|
|
Sized_symbol<size>* sym;
|
|
Sized_symbol<size>* oldsym;
|
|
bool resolve_oldsym;
|
|
|
|
if (parameters->target().is_big_endian())
|
|
{
|
|
#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
|
|
sym = this->define_special_symbol<size, true>(&name, &version,
|
|
only_if_ref, &oldsym,
|
|
&resolve_oldsym);
|
|
#else
|
|
gold_unreachable();
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
|
|
sym = this->define_special_symbol<size, false>(&name, &version,
|
|
only_if_ref, &oldsym,
|
|
&resolve_oldsym);
|
|
#else
|
|
gold_unreachable();
|
|
#endif
|
|
}
|
|
|
|
if (sym == NULL)
|
|
return NULL;
|
|
|
|
sym->init_output_segment(name, version, os, value, symsize, type, binding,
|
|
visibility, nonvis, offset_base,
|
|
defined == PREDEFINED);
|
|
|
|
if (oldsym == NULL)
|
|
{
|
|
if (binding == elfcpp::STB_LOCAL
|
|
|| this->version_script_.symbol_is_local(name))
|
|
this->force_local(sym);
|
|
else if (version != NULL)
|
|
sym->set_is_default();
|
|
return sym;
|
|
}
|
|
|
|
if (Symbol_table::should_override_with_special(oldsym, type, defined))
|
|
this->override_with_special(oldsym, sym);
|
|
|
|
if (resolve_oldsym)
|
|
return sym;
|
|
else
|
|
{
|
|
delete sym;
|
|
return oldsym;
|
|
}
|
|
}
|
|
|
|
// Define a special symbol with a constant value. It is a multiple
|
|
// definition error if this symbol is already defined.
|
|
|
|
Symbol*
|
|
Symbol_table::define_as_constant(const char* name,
|
|
const char* version,
|
|
Defined defined,
|
|
uint64_t value,
|
|
uint64_t symsize,
|
|
elfcpp::STT type,
|
|
elfcpp::STB binding,
|
|
elfcpp::STV visibility,
|
|
unsigned char nonvis,
|
|
bool only_if_ref,
|
|
bool force_override)
|
|
{
|
|
if (parameters->target().get_size() == 32)
|
|
{
|
|
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
|
|
return this->do_define_as_constant<32>(name, version, defined, value,
|
|
symsize, type, binding,
|
|
visibility, nonvis, only_if_ref,
|
|
force_override);
|
|
#else
|
|
gold_unreachable();
|
|
#endif
|
|
}
|
|
else if (parameters->target().get_size() == 64)
|
|
{
|
|
#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
|
|
return this->do_define_as_constant<64>(name, version, defined, value,
|
|
symsize, type, binding,
|
|
visibility, nonvis, only_if_ref,
|
|
force_override);
|
|
#else
|
|
gold_unreachable();
|
|
#endif
|
|
}
|
|
else
|
|
gold_unreachable();
|
|
}
|
|
|
|
// Define a symbol as a constant, sized version.
|
|
|
|
template<int size>
|
|
Sized_symbol<size>*
|
|
Symbol_table::do_define_as_constant(
|
|
const char* name,
|
|
const char* version,
|
|
Defined defined,
|
|
typename elfcpp::Elf_types<size>::Elf_Addr value,
|
|
typename elfcpp::Elf_types<size>::Elf_WXword symsize,
|
|
elfcpp::STT type,
|
|
elfcpp::STB binding,
|
|
elfcpp::STV visibility,
|
|
unsigned char nonvis,
|
|
bool only_if_ref,
|
|
bool force_override)
|
|
{
|
|
Sized_symbol<size>* sym;
|
|
Sized_symbol<size>* oldsym;
|
|
bool resolve_oldsym;
|
|
|
|
if (parameters->target().is_big_endian())
|
|
{
|
|
#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
|
|
sym = this->define_special_symbol<size, true>(&name, &version,
|
|
only_if_ref, &oldsym,
|
|
&resolve_oldsym);
|
|
#else
|
|
gold_unreachable();
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
|
|
sym = this->define_special_symbol<size, false>(&name, &version,
|
|
only_if_ref, &oldsym,
|
|
&resolve_oldsym);
|
|
#else
|
|
gold_unreachable();
|
|
#endif
|
|
}
|
|
|
|
if (sym == NULL)
|
|
return NULL;
|
|
|
|
sym->init_constant(name, version, value, symsize, type, binding, visibility,
|
|
nonvis, defined == PREDEFINED);
|
|
|
|
if (oldsym == NULL)
|
|
{
|
|
// Version symbols are absolute symbols with name == version.
|
|
// We don't want to force them to be local.
|
|
if ((version == NULL
|
|
|| name != version
|
|
|| value != 0)
|
|
&& (binding == elfcpp::STB_LOCAL
|
|
|| this->version_script_.symbol_is_local(name)))
|
|
this->force_local(sym);
|
|
else if (version != NULL
|
|
&& (name != version || value != 0))
|
|
sym->set_is_default();
|
|
return sym;
|
|
}
|
|
|
|
if (force_override
|
|
|| Symbol_table::should_override_with_special(oldsym, type, defined))
|
|
this->override_with_special(oldsym, sym);
|
|
|
|
if (resolve_oldsym)
|
|
return sym;
|
|
else
|
|
{
|
|
delete sym;
|
|
return oldsym;
|
|
}
|
|
}
|
|
|
|
// Define a set of symbols in output sections.
|
|
|
|
void
|
|
Symbol_table::define_symbols(const Layout* layout, int count,
|
|
const Define_symbol_in_section* p,
|
|
bool only_if_ref)
|
|
{
|
|
for (int i = 0; i < count; ++i, ++p)
|
|
{
|
|
Output_section* os = layout->find_output_section(p->output_section);
|
|
if (os != NULL)
|
|
this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
|
|
p->size, p->type, p->binding,
|
|
p->visibility, p->nonvis,
|
|
p->offset_is_from_end,
|
|
only_if_ref || p->only_if_ref);
|
|
else
|
|
this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
|
|
p->type, p->binding, p->visibility, p->nonvis,
|
|
only_if_ref || p->only_if_ref,
|
|
false);
|
|
}
|
|
}
|
|
|
|
// Define a set of symbols in output segments.
|
|
|
|
void
|
|
Symbol_table::define_symbols(const Layout* layout, int count,
|
|
const Define_symbol_in_segment* p,
|
|
bool only_if_ref)
|
|
{
|
|
for (int i = 0; i < count; ++i, ++p)
|
|
{
|
|
Output_segment* os = layout->find_output_segment(p->segment_type,
|
|
p->segment_flags_set,
|
|
p->segment_flags_clear);
|
|
if (os != NULL)
|
|
this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
|
|
p->size, p->type, p->binding,
|
|
p->visibility, p->nonvis,
|
|
p->offset_base,
|
|
only_if_ref || p->only_if_ref);
|
|
else
|
|
this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
|
|
p->type, p->binding, p->visibility, p->nonvis,
|
|
only_if_ref || p->only_if_ref,
|
|
false);
|
|
}
|
|
}
|
|
|
|
// Define CSYM using a COPY reloc. POSD is the Output_data where the
|
|
// symbol should be defined--typically a .dyn.bss section. VALUE is
|
|
// the offset within POSD.
|
|
|
|
template<int size>
|
|
void
|
|
Symbol_table::define_with_copy_reloc(
|
|
Sized_symbol<size>* csym,
|
|
Output_data* posd,
|
|
typename elfcpp::Elf_types<size>::Elf_Addr value)
|
|
{
|
|
gold_assert(csym->is_from_dynobj());
|
|
gold_assert(!csym->is_copied_from_dynobj());
|
|
Object* object = csym->object();
|
|
gold_assert(object->is_dynamic());
|
|
Dynobj* dynobj = static_cast<Dynobj*>(object);
|
|
|
|
// Our copied variable has to override any variable in a shared
|
|
// library.
|
|
elfcpp::STB binding = csym->binding();
|
|
if (binding == elfcpp::STB_WEAK)
|
|
binding = elfcpp::STB_GLOBAL;
|
|
|
|
this->define_in_output_data(csym->name(), csym->version(), COPY,
|
|
posd, value, csym->symsize(),
|
|
csym->type(), binding,
|
|
csym->visibility(), csym->nonvis(),
|
|
false, false);
|
|
|
|
csym->set_is_copied_from_dynobj();
|
|
csym->set_needs_dynsym_entry();
|
|
|
|
this->copied_symbol_dynobjs_[csym] = dynobj;
|
|
|
|
// We have now defined all aliases, but we have not entered them all
|
|
// in the copied_symbol_dynobjs_ map.
|
|
if (csym->has_alias())
|
|
{
|
|
Symbol* sym = csym;
|
|
while (true)
|
|
{
|
|
sym = this->weak_aliases_[sym];
|
|
if (sym == csym)
|
|
break;
|
|
gold_assert(sym->output_data() == posd);
|
|
|
|
sym->set_is_copied_from_dynobj();
|
|
this->copied_symbol_dynobjs_[sym] = dynobj;
|
|
}
|
|
}
|
|
}
|
|
|
|
// SYM is defined using a COPY reloc. Return the dynamic object where
|
|
// the original definition was found.
|
|
|
|
Dynobj*
|
|
Symbol_table::get_copy_source(const Symbol* sym) const
|
|
{
|
|
gold_assert(sym->is_copied_from_dynobj());
|
|
Copied_symbol_dynobjs::const_iterator p =
|
|
this->copied_symbol_dynobjs_.find(sym);
|
|
gold_assert(p != this->copied_symbol_dynobjs_.end());
|
|
return p->second;
|
|
}
|
|
|
|
// Add any undefined symbols named on the command line.
|
|
|
|
void
|
|
Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
|
|
{
|
|
if (parameters->options().any_undefined()
|
|
|| layout->script_options()->any_unreferenced())
|
|
{
|
|
if (parameters->target().get_size() == 32)
|
|
{
|
|
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
|
|
this->do_add_undefined_symbols_from_command_line<32>(layout);
|
|
#else
|
|
gold_unreachable();
|
|
#endif
|
|
}
|
|
else if (parameters->target().get_size() == 64)
|
|
{
|
|
#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
|
|
this->do_add_undefined_symbols_from_command_line<64>(layout);
|
|
#else
|
|
gold_unreachable();
|
|
#endif
|
|
}
|
|
else
|
|
gold_unreachable();
|
|
}
|
|
}
|
|
|
|
template<int size>
|
|
void
|
|
Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
|
|
{
|
|
for (options::String_set::const_iterator p =
|
|
parameters->options().undefined_begin();
|
|
p != parameters->options().undefined_end();
|
|
++p)
|
|
this->add_undefined_symbol_from_command_line<size>(p->c_str());
|
|
|
|
for (options::String_set::const_iterator p =
|
|
parameters->options().export_dynamic_symbol_begin();
|
|
p != parameters->options().export_dynamic_symbol_end();
|
|
++p)
|
|
this->add_undefined_symbol_from_command_line<size>(p->c_str());
|
|
|
|
for (Script_options::referenced_const_iterator p =
|
|
layout->script_options()->referenced_begin();
|
|
p != layout->script_options()->referenced_end();
|
|
++p)
|
|
this->add_undefined_symbol_from_command_line<size>(p->c_str());
|
|
}
|
|
|
|
template<int size>
|
|
void
|
|
Symbol_table::add_undefined_symbol_from_command_line(const char* name)
|
|
{
|
|
if (this->lookup(name) != NULL)
|
|
return;
|
|
|
|
const char* version = NULL;
|
|
|
|
Sized_symbol<size>* sym;
|
|
Sized_symbol<size>* oldsym;
|
|
bool resolve_oldsym;
|
|
if (parameters->target().is_big_endian())
|
|
{
|
|
#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
|
|
sym = this->define_special_symbol<size, true>(&name, &version,
|
|
false, &oldsym,
|
|
&resolve_oldsym);
|
|
#else
|
|
gold_unreachable();
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
|
|
sym = this->define_special_symbol<size, false>(&name, &version,
|
|
false, &oldsym,
|
|
&resolve_oldsym);
|
|
#else
|
|
gold_unreachable();
|
|
#endif
|
|
}
|
|
|
|
gold_assert(oldsym == NULL);
|
|
|
|
sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
|
|
elfcpp::STV_DEFAULT, 0);
|
|
++this->saw_undefined_;
|
|
}
|
|
|
|
// Set the dynamic symbol indexes. INDEX is the index of the first
|
|
// global dynamic symbol. Pointers to the symbols are stored into the
|
|
// vector SYMS. The names are added to DYNPOOL. This returns an
|
|
// updated dynamic symbol index.
|
|
|
|
unsigned int
|
|
Symbol_table::set_dynsym_indexes(unsigned int index,
|
|
std::vector<Symbol*>* syms,
|
|
Stringpool* dynpool,
|
|
Versions* versions)
|
|
{
|
|
std::vector<Symbol*> as_needed_sym;
|
|
|
|
for (Symbol_table_type::iterator p = this->table_.begin();
|
|
p != this->table_.end();
|
|
++p)
|
|
{
|
|
Symbol* sym = p->second;
|
|
|
|
// Note that SYM may already have a dynamic symbol index, since
|
|
// some symbols appear more than once in the symbol table, with
|
|
// and without a version.
|
|
|
|
if (!sym->should_add_dynsym_entry(this))
|
|
sym->set_dynsym_index(-1U);
|
|
else if (!sym->has_dynsym_index())
|
|
{
|
|
sym->set_dynsym_index(index);
|
|
++index;
|
|
syms->push_back(sym);
|
|
dynpool->add(sym->name(), false, NULL);
|
|
|
|
// If the symbol is defined in a dynamic object and is
|
|
// referenced strongly in a regular object, then mark the
|
|
// dynamic object as needed. This is used to implement
|
|
// --as-needed.
|
|
if (sym->is_from_dynobj()
|
|
&& sym->in_reg()
|
|
&& !sym->is_undef_binding_weak())
|
|
sym->object()->set_is_needed();
|
|
|
|
// Record any version information, except those from
|
|
// as-needed libraries not seen to be needed. Note that the
|
|
// is_needed state for such libraries can change in this loop.
|
|
if (sym->version() != NULL)
|
|
{
|
|
if (!sym->is_from_dynobj()
|
|
|| !sym->object()->as_needed()
|
|
|| sym->object()->is_needed())
|
|
versions->record_version(this, dynpool, sym);
|
|
else
|
|
as_needed_sym.push_back(sym);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Process version information for symbols from as-needed libraries.
|
|
for (std::vector<Symbol*>::iterator p = as_needed_sym.begin();
|
|
p != as_needed_sym.end();
|
|
++p)
|
|
{
|
|
Symbol* sym = *p;
|
|
|
|
if (sym->object()->is_needed())
|
|
versions->record_version(this, dynpool, sym);
|
|
else
|
|
sym->clear_version();
|
|
}
|
|
|
|
// Finish up the versions. In some cases this may add new dynamic
|
|
// symbols.
|
|
index = versions->finalize(this, index, syms);
|
|
|
|
return index;
|
|
}
|
|
|
|
// Set the final values for all the symbols. The index of the first
|
|
// global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
|
|
// file offset OFF. Add their names to POOL. Return the new file
|
|
// offset. Update *PLOCAL_SYMCOUNT if necessary.
|
|
|
|
off_t
|
|
Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
|
|
size_t dyncount, Stringpool* pool,
|
|
unsigned int* plocal_symcount)
|
|
{
|
|
off_t ret;
|
|
|
|
gold_assert(*plocal_symcount != 0);
|
|
this->first_global_index_ = *plocal_symcount;
|
|
|
|
this->dynamic_offset_ = dynoff;
|
|
this->first_dynamic_global_index_ = dyn_global_index;
|
|
this->dynamic_count_ = dyncount;
|
|
|
|
if (parameters->target().get_size() == 32)
|
|
{
|
|
#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
|
|
ret = this->sized_finalize<32>(off, pool, plocal_symcount);
|
|
#else
|
|
gold_unreachable();
|
|
#endif
|
|
}
|
|
else if (parameters->target().get_size() == 64)
|
|
{
|
|
#if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
|
|
ret = this->sized_finalize<64>(off, pool, plocal_symcount);
|
|
#else
|
|
gold_unreachable();
|
|
#endif
|
|
}
|
|
else
|
|
gold_unreachable();
|
|
|
|
// Now that we have the final symbol table, we can reliably note
|
|
// which symbols should get warnings.
|
|
this->warnings_.note_warnings(this);
|
|
|
|
return ret;
|
|
}
|
|
|
|
// SYM is going into the symbol table at *PINDEX. Add the name to
|
|
// POOL, update *PINDEX and *POFF.
|
|
|
|
template<int size>
|
|
void
|
|
Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
|
|
unsigned int* pindex, off_t* poff)
|
|
{
|
|
sym->set_symtab_index(*pindex);
|
|
if (sym->version() == NULL || !parameters->options().relocatable())
|
|
pool->add(sym->name(), false, NULL);
|
|
else
|
|
pool->add(sym->versioned_name(), true, NULL);
|
|
++*pindex;
|
|
*poff += elfcpp::Elf_sizes<size>::sym_size;
|
|
}
|
|
|
|
// Set the final value for all the symbols. This is called after
|
|
// Layout::finalize, so all the output sections have their final
|
|
// address.
|
|
|
|
template<int size>
|
|
off_t
|
|
Symbol_table::sized_finalize(off_t off, Stringpool* pool,
|
|
unsigned int* plocal_symcount)
|
|
{
|
|
off = align_address(off, size >> 3);
|
|
this->offset_ = off;
|
|
|
|
unsigned int index = *plocal_symcount;
|
|
const unsigned int orig_index = index;
|
|
|
|
// First do all the symbols which have been forced to be local, as
|
|
// they must appear before all global symbols.
|
|
for (Forced_locals::iterator p = this->forced_locals_.begin();
|
|
p != this->forced_locals_.end();
|
|
++p)
|
|
{
|
|
Symbol* sym = *p;
|
|
gold_assert(sym->is_forced_local());
|
|
if (this->sized_finalize_symbol<size>(sym))
|
|
{
|
|
this->add_to_final_symtab<size>(sym, pool, &index, &off);
|
|
++*plocal_symcount;
|
|
}
|
|
}
|
|
|
|
// Now do all the remaining symbols.
|
|
for (Symbol_table_type::iterator p = this->table_.begin();
|
|
p != this->table_.end();
|
|
++p)
|
|
{
|
|
Symbol* sym = p->second;
|
|
if (this->sized_finalize_symbol<size>(sym))
|
|
this->add_to_final_symtab<size>(sym, pool, &index, &off);
|
|
}
|
|
|
|
this->output_count_ = index - orig_index;
|
|
|
|
return off;
|
|
}
|
|
|
|
// Compute the final value of SYM and store status in location PSTATUS.
|
|
// During relaxation, this may be called multiple times for a symbol to
|
|
// compute its would-be final value in each relaxation pass.
|
|
|
|
template<int size>
|
|
typename Sized_symbol<size>::Value_type
|
|
Symbol_table::compute_final_value(
|
|
const Sized_symbol<size>* sym,
|
|
Compute_final_value_status* pstatus) const
|
|
{
|
|
typedef typename Sized_symbol<size>::Value_type Value_type;
|
|
Value_type value;
|
|
|
|
switch (sym->source())
|
|
{
|
|
case Symbol::FROM_OBJECT:
|
|
{
|
|
bool is_ordinary;
|
|
unsigned int shndx = sym->shndx(&is_ordinary);
|
|
|
|
if (!is_ordinary
|
|
&& shndx != elfcpp::SHN_ABS
|
|
&& !Symbol::is_common_shndx(shndx))
|
|
{
|
|
*pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
|
|
return 0;
|
|
}
|
|
|
|
Object* symobj = sym->object();
|
|
if (symobj->is_dynamic())
|
|
{
|
|
value = 0;
|
|
shndx = elfcpp::SHN_UNDEF;
|
|
}
|
|
else if (symobj->pluginobj() != NULL)
|
|
{
|
|
value = 0;
|
|
shndx = elfcpp::SHN_UNDEF;
|
|
}
|
|
else if (shndx == elfcpp::SHN_UNDEF)
|
|
value = 0;
|
|
else if (!is_ordinary
|
|
&& (shndx == elfcpp::SHN_ABS
|
|
|| Symbol::is_common_shndx(shndx)))
|
|
value = sym->value();
|
|
else
|
|
{
|
|
Relobj* relobj = static_cast<Relobj*>(symobj);
|
|
Output_section* os = relobj->output_section(shndx);
|
|
|
|
if (this->is_section_folded(relobj, shndx))
|
|
{
|
|
gold_assert(os == NULL);
|
|
// Get the os of the section it is folded onto.
|
|
Section_id folded = this->icf_->get_folded_section(relobj,
|
|
shndx);
|
|
gold_assert(folded.first != NULL);
|
|
Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
|
|
unsigned folded_shndx = folded.second;
|
|
|
|
os = folded_obj->output_section(folded_shndx);
|
|
gold_assert(os != NULL);
|
|
|
|
// Replace (relobj, shndx) with canonical ICF input section.
|
|
shndx = folded_shndx;
|
|
relobj = folded_obj;
|
|
}
|
|
|
|
uint64_t secoff64 = relobj->output_section_offset(shndx);
|
|
if (os == NULL)
|
|
{
|
|
bool static_or_reloc = (parameters->doing_static_link() ||
|
|
parameters->options().relocatable());
|
|
gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
|
|
|
|
*pstatus = CFVS_NO_OUTPUT_SECTION;
|
|
return 0;
|
|
}
|
|
|
|
if (secoff64 == -1ULL)
|
|
{
|
|
// The section needs special handling (e.g., a merge section).
|
|
|
|
value = os->output_address(relobj, shndx, sym->value());
|
|
}
|
|
else
|
|
{
|
|
Value_type secoff =
|
|
convert_types<Value_type, uint64_t>(secoff64);
|
|
if (sym->type() == elfcpp::STT_TLS)
|
|
value = sym->value() + os->tls_offset() + secoff;
|
|
else
|
|
value = sym->value() + os->address() + secoff;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case Symbol::IN_OUTPUT_DATA:
|
|
{
|
|
Output_data* od = sym->output_data();
|
|
value = sym->value();
|
|
if (sym->type() != elfcpp::STT_TLS)
|
|
value += od->address();
|
|
else
|
|
{
|
|
Output_section* os = od->output_section();
|
|
gold_assert(os != NULL);
|
|
value += os->tls_offset() + (od->address() - os->address());
|
|
}
|
|
if (sym->offset_is_from_end())
|
|
value += od->data_size();
|
|
}
|
|
break;
|
|
|
|
case Symbol::IN_OUTPUT_SEGMENT:
|
|
{
|
|
Output_segment* os = sym->output_segment();
|
|
value = sym->value();
|
|
if (sym->type() != elfcpp::STT_TLS)
|
|
value += os->vaddr();
|
|
switch (sym->offset_base())
|
|
{
|
|
case Symbol::SEGMENT_START:
|
|
break;
|
|
case Symbol::SEGMENT_END:
|
|
value += os->memsz();
|
|
break;
|
|
case Symbol::SEGMENT_BSS:
|
|
value += os->filesz();
|
|
break;
|
|
default:
|
|
gold_unreachable();
|
|
}
|
|
}
|
|
break;
|
|
|
|
case Symbol::IS_CONSTANT:
|
|
value = sym->value();
|
|
break;
|
|
|
|
case Symbol::IS_UNDEFINED:
|
|
value = 0;
|
|
break;
|
|
|
|
default:
|
|
gold_unreachable();
|
|
}
|
|
|
|
*pstatus = CFVS_OK;
|
|
return value;
|
|
}
|
|
|
|
// Finalize the symbol SYM. This returns true if the symbol should be
|
|
// added to the symbol table, false otherwise.
|
|
|
|
template<int size>
|
|
bool
|
|
Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
|
|
{
|
|
typedef typename Sized_symbol<size>::Value_type Value_type;
|
|
|
|
Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
|
|
|
|
// The default version of a symbol may appear twice in the symbol
|
|
// table. We only need to finalize it once.
|
|
if (sym->has_symtab_index())
|
|
return false;
|
|
|
|
if (!sym->in_reg())
|
|
{
|
|
gold_assert(!sym->has_symtab_index());
|
|
sym->set_symtab_index(-1U);
|
|
gold_assert(sym->dynsym_index() == -1U);
|
|
return false;
|
|
}
|
|
|
|
// If the symbol is only present on plugin files, the plugin decided we
|
|
// don't need it.
|
|
if (!sym->in_real_elf())
|
|
{
|
|
gold_assert(!sym->has_symtab_index());
|
|
sym->set_symtab_index(-1U);
|
|
return false;
|
|
}
|
|
|
|
// Compute final symbol value.
|
|
Compute_final_value_status status;
|
|
Value_type value = this->compute_final_value(sym, &status);
|
|
|
|
switch (status)
|
|
{
|
|
case CFVS_OK:
|
|
break;
|
|
case CFVS_UNSUPPORTED_SYMBOL_SECTION:
|
|
{
|
|
bool is_ordinary;
|
|
unsigned int shndx = sym->shndx(&is_ordinary);
|
|
gold_error(_("%s: unsupported symbol section 0x%x"),
|
|
sym->demangled_name().c_str(), shndx);
|
|
}
|
|
break;
|
|
case CFVS_NO_OUTPUT_SECTION:
|
|
sym->set_symtab_index(-1U);
|
|
return false;
|
|
default:
|
|
gold_unreachable();
|
|
}
|
|
|
|
sym->set_value(value);
|
|
|
|
if (parameters->options().strip_all()
|
|
|| !parameters->options().should_retain_symbol(sym->name()))
|
|
{
|
|
sym->set_symtab_index(-1U);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Write out the global symbols.
|
|
|
|
void
|
|
Symbol_table::write_globals(const Stringpool* sympool,
|
|
const Stringpool* dynpool,
|
|
Output_symtab_xindex* symtab_xindex,
|
|
Output_symtab_xindex* dynsym_xindex,
|
|
Output_file* of) const
|
|
{
|
|
switch (parameters->size_and_endianness())
|
|
{
|
|
#ifdef HAVE_TARGET_32_LITTLE
|
|
case Parameters::TARGET_32_LITTLE:
|
|
this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
|
|
dynsym_xindex, of);
|
|
break;
|
|
#endif
|
|
#ifdef HAVE_TARGET_32_BIG
|
|
case Parameters::TARGET_32_BIG:
|
|
this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
|
|
dynsym_xindex, of);
|
|
break;
|
|
#endif
|
|
#ifdef HAVE_TARGET_64_LITTLE
|
|
case Parameters::TARGET_64_LITTLE:
|
|
this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
|
|
dynsym_xindex, of);
|
|
break;
|
|
#endif
|
|
#ifdef HAVE_TARGET_64_BIG
|
|
case Parameters::TARGET_64_BIG:
|
|
this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
|
|
dynsym_xindex, of);
|
|
break;
|
|
#endif
|
|
default:
|
|
gold_unreachable();
|
|
}
|
|
}
|
|
|
|
// Write out the global symbols.
|
|
|
|
template<int size, bool big_endian>
|
|
void
|
|
Symbol_table::sized_write_globals(const Stringpool* sympool,
|
|
const Stringpool* dynpool,
|
|
Output_symtab_xindex* symtab_xindex,
|
|
Output_symtab_xindex* dynsym_xindex,
|
|
Output_file* of) const
|
|
{
|
|
const Target& target = parameters->target();
|
|
|
|
const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
|
|
|
|
const unsigned int output_count = this->output_count_;
|
|
const section_size_type oview_size = output_count * sym_size;
|
|
const unsigned int first_global_index = this->first_global_index_;
|
|
unsigned char* psyms;
|
|
if (this->offset_ == 0 || output_count == 0)
|
|
psyms = NULL;
|
|
else
|
|
psyms = of->get_output_view(this->offset_, oview_size);
|
|
|
|
const unsigned int dynamic_count = this->dynamic_count_;
|
|
const section_size_type dynamic_size = dynamic_count * sym_size;
|
|
const unsigned int first_dynamic_global_index =
|
|
this->first_dynamic_global_index_;
|
|
unsigned char* dynamic_view;
|
|
if (this->dynamic_offset_ == 0 || dynamic_count == 0)
|
|
dynamic_view = NULL;
|
|
else
|
|
dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
|
|
|
|
for (Symbol_table_type::const_iterator p = this->table_.begin();
|
|
p != this->table_.end();
|
|
++p)
|
|
{
|
|
Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
|
|
|
|
// Possibly warn about unresolved symbols in shared libraries.
|
|
this->warn_about_undefined_dynobj_symbol(sym);
|
|
|
|
unsigned int sym_index = sym->symtab_index();
|
|
unsigned int dynsym_index;
|
|
if (dynamic_view == NULL)
|
|
dynsym_index = -1U;
|
|
else
|
|
dynsym_index = sym->dynsym_index();
|
|
|
|
if (sym_index == -1U && dynsym_index == -1U)
|
|
{
|
|
// This symbol is not included in the output file.
|
|
continue;
|
|
}
|
|
|
|
unsigned int shndx;
|
|
typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
|
|
typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
|
|
elfcpp::STB binding = sym->binding();
|
|
|
|
// If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
|
|
if (binding == elfcpp::STB_GNU_UNIQUE
|
|
&& !parameters->options().gnu_unique())
|
|
binding = elfcpp::STB_GLOBAL;
|
|
|
|
switch (sym->source())
|
|
{
|
|
case Symbol::FROM_OBJECT:
|
|
{
|
|
bool is_ordinary;
|
|
unsigned int in_shndx = sym->shndx(&is_ordinary);
|
|
|
|
if (!is_ordinary
|
|
&& in_shndx != elfcpp::SHN_ABS
|
|
&& !Symbol::is_common_shndx(in_shndx))
|
|
{
|
|
gold_error(_("%s: unsupported symbol section 0x%x"),
|
|
sym->demangled_name().c_str(), in_shndx);
|
|
shndx = in_shndx;
|
|
}
|
|
else
|
|
{
|
|
Object* symobj = sym->object();
|
|
if (symobj->is_dynamic())
|
|
{
|
|
if (sym->needs_dynsym_value())
|
|
dynsym_value = target.dynsym_value(sym);
|
|
shndx = elfcpp::SHN_UNDEF;
|
|
if (sym->is_undef_binding_weak())
|
|
binding = elfcpp::STB_WEAK;
|
|
else
|
|
binding = elfcpp::STB_GLOBAL;
|
|
}
|
|
else if (symobj->pluginobj() != NULL)
|
|
shndx = elfcpp::SHN_UNDEF;
|
|
else if (in_shndx == elfcpp::SHN_UNDEF
|
|
|| (!is_ordinary
|
|
&& (in_shndx == elfcpp::SHN_ABS
|
|
|| Symbol::is_common_shndx(in_shndx))))
|
|
shndx = in_shndx;
|
|
else
|
|
{
|
|
Relobj* relobj = static_cast<Relobj*>(symobj);
|
|
Output_section* os = relobj->output_section(in_shndx);
|
|
if (this->is_section_folded(relobj, in_shndx))
|
|
{
|
|
// This global symbol must be written out even though
|
|
// it is folded.
|
|
// Get the os of the section it is folded onto.
|
|
Section_id folded =
|
|
this->icf_->get_folded_section(relobj, in_shndx);
|
|
gold_assert(folded.first !=NULL);
|
|
Relobj* folded_obj =
|
|
reinterpret_cast<Relobj*>(folded.first);
|
|
os = folded_obj->output_section(folded.second);
|
|
gold_assert(os != NULL);
|
|
}
|
|
gold_assert(os != NULL);
|
|
shndx = os->out_shndx();
|
|
|
|
if (shndx >= elfcpp::SHN_LORESERVE)
|
|
{
|
|
if (sym_index != -1U)
|
|
symtab_xindex->add(sym_index, shndx);
|
|
if (dynsym_index != -1U)
|
|
dynsym_xindex->add(dynsym_index, shndx);
|
|
shndx = elfcpp::SHN_XINDEX;
|
|
}
|
|
|
|
// In object files symbol values are section
|
|
// relative.
|
|
if (parameters->options().relocatable())
|
|
sym_value -= os->address();
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case Symbol::IN_OUTPUT_DATA:
|
|
{
|
|
Output_data* od = sym->output_data();
|
|
|
|
shndx = od->out_shndx();
|
|
if (shndx >= elfcpp::SHN_LORESERVE)
|
|
{
|
|
if (sym_index != -1U)
|
|
symtab_xindex->add(sym_index, shndx);
|
|
if (dynsym_index != -1U)
|
|
dynsym_xindex->add(dynsym_index, shndx);
|
|
shndx = elfcpp::SHN_XINDEX;
|
|
}
|
|
|
|
// In object files symbol values are section
|
|
// relative.
|
|
if (parameters->options().relocatable())
|
|
sym_value -= od->address();
|
|
}
|
|
break;
|
|
|
|
case Symbol::IN_OUTPUT_SEGMENT:
|
|
shndx = elfcpp::SHN_ABS;
|
|
break;
|
|
|
|
case Symbol::IS_CONSTANT:
|
|
shndx = elfcpp::SHN_ABS;
|
|
break;
|
|
|
|
case Symbol::IS_UNDEFINED:
|
|
shndx = elfcpp::SHN_UNDEF;
|
|
break;
|
|
|
|
default:
|
|
gold_unreachable();
|
|
}
|
|
|
|
if (sym_index != -1U)
|
|
{
|
|
sym_index -= first_global_index;
|
|
gold_assert(sym_index < output_count);
|
|
unsigned char* ps = psyms + (sym_index * sym_size);
|
|
this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
|
|
binding, sympool, ps);
|
|
}
|
|
|
|
if (dynsym_index != -1U)
|
|
{
|
|
dynsym_index -= first_dynamic_global_index;
|
|
gold_assert(dynsym_index < dynamic_count);
|
|
unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
|
|
this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
|
|
binding, dynpool, pd);
|
|
}
|
|
}
|
|
|
|
of->write_output_view(this->offset_, oview_size, psyms);
|
|
if (dynamic_view != NULL)
|
|
of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
|
|
}
|
|
|
|
// Write out the symbol SYM, in section SHNDX, to P. POOL is the
|
|
// strtab holding the name.
|
|
|
|
template<int size, bool big_endian>
|
|
void
|
|
Symbol_table::sized_write_symbol(
|
|
Sized_symbol<size>* sym,
|
|
typename elfcpp::Elf_types<size>::Elf_Addr value,
|
|
unsigned int shndx,
|
|
elfcpp::STB binding,
|
|
const Stringpool* pool,
|
|
unsigned char* p) const
|
|
{
|
|
elfcpp::Sym_write<size, big_endian> osym(p);
|
|
if (sym->version() == NULL || !parameters->options().relocatable())
|
|
osym.put_st_name(pool->get_offset(sym->name()));
|
|
else
|
|
osym.put_st_name(pool->get_offset(sym->versioned_name()));
|
|
osym.put_st_value(value);
|
|
// Use a symbol size of zero for undefined symbols from shared libraries.
|
|
if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
|
|
osym.put_st_size(0);
|
|
else
|
|
osym.put_st_size(sym->symsize());
|
|
elfcpp::STT type = sym->type();
|
|
// Turn IFUNC symbols from shared libraries into normal FUNC symbols.
|
|
if (type == elfcpp::STT_GNU_IFUNC
|
|
&& sym->is_from_dynobj())
|
|
type = elfcpp::STT_FUNC;
|
|
// A version script may have overridden the default binding.
|
|
if (sym->is_forced_local())
|
|
osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
|
|
else
|
|
osym.put_st_info(elfcpp::elf_st_info(binding, type));
|
|
osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
|
|
osym.put_st_shndx(shndx);
|
|
}
|
|
|
|
// Check for unresolved symbols in shared libraries. This is
|
|
// controlled by the --allow-shlib-undefined option.
|
|
|
|
// We only warn about libraries for which we have seen all the
|
|
// DT_NEEDED entries. We don't try to track down DT_NEEDED entries
|
|
// which were not seen in this link. If we didn't see a DT_NEEDED
|
|
// entry, we aren't going to be able to reliably report whether the
|
|
// symbol is undefined.
|
|
|
|
// We also don't warn about libraries found in a system library
|
|
// directory (e.g., /lib or /usr/lib); we assume that those libraries
|
|
// are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
|
|
// can have undefined references satisfied by ld-linux.so.
|
|
|
|
inline void
|
|
Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
|
|
{
|
|
bool dummy;
|
|
if (sym->source() == Symbol::FROM_OBJECT
|
|
&& sym->object()->is_dynamic()
|
|
&& sym->shndx(&dummy) == elfcpp::SHN_UNDEF
|
|
&& sym->binding() != elfcpp::STB_WEAK
|
|
&& !parameters->options().allow_shlib_undefined()
|
|
&& !parameters->target().is_defined_by_abi(sym)
|
|
&& !sym->object()->is_in_system_directory())
|
|
{
|
|
// A very ugly cast.
|
|
Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
|
|
if (!dynobj->has_unknown_needed_entries())
|
|
gold_undefined_symbol(sym);
|
|
}
|
|
}
|
|
|
|
// Write out a section symbol. Return the update offset.
|
|
|
|
void
|
|
Symbol_table::write_section_symbol(const Output_section* os,
|
|
Output_symtab_xindex* symtab_xindex,
|
|
Output_file* of,
|
|
off_t offset) const
|
|
{
|
|
switch (parameters->size_and_endianness())
|
|
{
|
|
#ifdef HAVE_TARGET_32_LITTLE
|
|
case Parameters::TARGET_32_LITTLE:
|
|
this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
|
|
offset);
|
|
break;
|
|
#endif
|
|
#ifdef HAVE_TARGET_32_BIG
|
|
case Parameters::TARGET_32_BIG:
|
|
this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
|
|
offset);
|
|
break;
|
|
#endif
|
|
#ifdef HAVE_TARGET_64_LITTLE
|
|
case Parameters::TARGET_64_LITTLE:
|
|
this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
|
|
offset);
|
|
break;
|
|
#endif
|
|
#ifdef HAVE_TARGET_64_BIG
|
|
case Parameters::TARGET_64_BIG:
|
|
this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
|
|
offset);
|
|
break;
|
|
#endif
|
|
default:
|
|
gold_unreachable();
|
|
}
|
|
}
|
|
|
|
// Write out a section symbol, specialized for size and endianness.
|
|
|
|
template<int size, bool big_endian>
|
|
void
|
|
Symbol_table::sized_write_section_symbol(const Output_section* os,
|
|
Output_symtab_xindex* symtab_xindex,
|
|
Output_file* of,
|
|
off_t offset) const
|
|
{
|
|
const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
|
|
|
|
unsigned char* pov = of->get_output_view(offset, sym_size);
|
|
|
|
elfcpp::Sym_write<size, big_endian> osym(pov);
|
|
osym.put_st_name(0);
|
|
if (parameters->options().relocatable())
|
|
osym.put_st_value(0);
|
|
else
|
|
osym.put_st_value(os->address());
|
|
osym.put_st_size(0);
|
|
osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
|
|
elfcpp::STT_SECTION));
|
|
osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
|
|
|
|
unsigned int shndx = os->out_shndx();
|
|
if (shndx >= elfcpp::SHN_LORESERVE)
|
|
{
|
|
symtab_xindex->add(os->symtab_index(), shndx);
|
|
shndx = elfcpp::SHN_XINDEX;
|
|
}
|
|
osym.put_st_shndx(shndx);
|
|
|
|
of->write_output_view(offset, sym_size, pov);
|
|
}
|
|
|
|
// Print statistical information to stderr. This is used for --stats.
|
|
|
|
void
|
|
Symbol_table::print_stats() const
|
|
{
|
|
#if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
|
|
fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
|
|
program_name, this->table_.size(), this->table_.bucket_count());
|
|
#else
|
|
fprintf(stderr, _("%s: symbol table entries: %zu\n"),
|
|
program_name, this->table_.size());
|
|
#endif
|
|
this->namepool_.print_stats("symbol table stringpool");
|
|
}
|
|
|
|
// We check for ODR violations by looking for symbols with the same
|
|
// name for which the debugging information reports that they were
|
|
// defined in disjoint source locations. When comparing the source
|
|
// location, we consider instances with the same base filename to be
|
|
// the same. This is because different object files/shared libraries
|
|
// can include the same header file using different paths, and
|
|
// different optimization settings can make the line number appear to
|
|
// be a couple lines off, and we don't want to report an ODR violation
|
|
// in those cases.
|
|
|
|
// This struct is used to compare line information, as returned by
|
|
// Dwarf_line_info::one_addr2line. It implements a < comparison
|
|
// operator used with std::sort.
|
|
|
|
struct Odr_violation_compare
|
|
{
|
|
bool
|
|
operator()(const std::string& s1, const std::string& s2) const
|
|
{
|
|
// Inputs should be of the form "dirname/filename:linenum" where
|
|
// "dirname/" is optional. We want to compare just the filename:linenum.
|
|
|
|
// Find the last '/' in each string.
|
|
std::string::size_type s1begin = s1.rfind('/');
|
|
std::string::size_type s2begin = s2.rfind('/');
|
|
// If there was no '/' in a string, start at the beginning.
|
|
if (s1begin == std::string::npos)
|
|
s1begin = 0;
|
|
if (s2begin == std::string::npos)
|
|
s2begin = 0;
|
|
return s1.compare(s1begin, std::string::npos,
|
|
s2, s2begin, std::string::npos) < 0;
|
|
}
|
|
};
|
|
|
|
// Returns all of the lines attached to LOC, not just the one the
|
|
// instruction actually came from.
|
|
std::vector<std::string>
|
|
Symbol_table::linenos_from_loc(const Task* task,
|
|
const Symbol_location& loc)
|
|
{
|
|
// We need to lock the object in order to read it. This
|
|
// means that we have to run in a singleton Task. If we
|
|
// want to run this in a general Task for better
|
|
// performance, we will need one Task for object, plus
|
|
// appropriate locking to ensure that we don't conflict with
|
|
// other uses of the object. Also note, one_addr2line is not
|
|
// currently thread-safe.
|
|
Task_lock_obj<Object> tl(task, loc.object);
|
|
|
|
std::vector<std::string> result;
|
|
Symbol_location code_loc = loc;
|
|
parameters->target().function_location(&code_loc);
|
|
// 16 is the size of the object-cache that one_addr2line should use.
|
|
std::string canonical_result = Dwarf_line_info::one_addr2line(
|
|
code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
|
|
if (!canonical_result.empty())
|
|
result.push_back(canonical_result);
|
|
return result;
|
|
}
|
|
|
|
// OutputIterator that records if it was ever assigned to. This
|
|
// allows it to be used with std::set_intersection() to check for
|
|
// intersection rather than computing the intersection.
|
|
struct Check_intersection
|
|
{
|
|
Check_intersection()
|
|
: value_(false)
|
|
{}
|
|
|
|
bool had_intersection() const
|
|
{ return this->value_; }
|
|
|
|
Check_intersection& operator++()
|
|
{ return *this; }
|
|
|
|
Check_intersection& operator*()
|
|
{ return *this; }
|
|
|
|
template<typename T>
|
|
Check_intersection& operator=(const T&)
|
|
{
|
|
this->value_ = true;
|
|
return *this;
|
|
}
|
|
|
|
private:
|
|
bool value_;
|
|
};
|
|
|
|
// Check candidate_odr_violations_ to find symbols with the same name
|
|
// but apparently different definitions (different source-file/line-no
|
|
// for each line assigned to the first instruction).
|
|
|
|
void
|
|
Symbol_table::detect_odr_violations(const Task* task,
|
|
const char* output_file_name) const
|
|
{
|
|
for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
|
|
it != candidate_odr_violations_.end();
|
|
++it)
|
|
{
|
|
const char* const symbol_name = it->first;
|
|
|
|
std::string first_object_name;
|
|
std::vector<std::string> first_object_linenos;
|
|
|
|
Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
|
|
locs = it->second.begin();
|
|
const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
|
|
locs_end = it->second.end();
|
|
for (; locs != locs_end && first_object_linenos.empty(); ++locs)
|
|
{
|
|
// Save the line numbers from the first definition to
|
|
// compare to the other definitions. Ideally, we'd compare
|
|
// every definition to every other, but we don't want to
|
|
// take O(N^2) time to do this. This shortcut may cause
|
|
// false negatives that appear or disappear depending on the
|
|
// link order, but it won't cause false positives.
|
|
first_object_name = locs->object->name();
|
|
first_object_linenos = this->linenos_from_loc(task, *locs);
|
|
}
|
|
|
|
// Sort by Odr_violation_compare to make std::set_intersection work.
|
|
std::sort(first_object_linenos.begin(), first_object_linenos.end(),
|
|
Odr_violation_compare());
|
|
|
|
for (; locs != locs_end; ++locs)
|
|
{
|
|
std::vector<std::string> linenos =
|
|
this->linenos_from_loc(task, *locs);
|
|
// linenos will be empty if we couldn't parse the debug info.
|
|
if (linenos.empty())
|
|
continue;
|
|
// Sort by Odr_violation_compare to make std::set_intersection work.
|
|
std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
|
|
|
|
Check_intersection intersection_result =
|
|
std::set_intersection(first_object_linenos.begin(),
|
|
first_object_linenos.end(),
|
|
linenos.begin(),
|
|
linenos.end(),
|
|
Check_intersection(),
|
|
Odr_violation_compare());
|
|
if (!intersection_result.had_intersection())
|
|
{
|
|
gold_warning(_("while linking %s: symbol '%s' defined in "
|
|
"multiple places (possible ODR violation):"),
|
|
output_file_name, demangle(symbol_name).c_str());
|
|
// This only prints one location from each definition,
|
|
// which may not be the location we expect to intersect
|
|
// with another definition. We could print the whole
|
|
// set of locations, but that seems too verbose.
|
|
gold_assert(!first_object_linenos.empty());
|
|
gold_assert(!linenos.empty());
|
|
fprintf(stderr, _(" %s from %s\n"),
|
|
first_object_linenos[0].c_str(),
|
|
first_object_name.c_str());
|
|
fprintf(stderr, _(" %s from %s\n"),
|
|
linenos[0].c_str(),
|
|
locs->object->name().c_str());
|
|
// Only print one broken pair, to avoid needing to
|
|
// compare against a list of the disjoint definition
|
|
// locations we've found so far. (If we kept comparing
|
|
// against just the first one, we'd get a lot of
|
|
// redundant complaints about the second definition
|
|
// location.)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// We only call one_addr2line() in this function, so we can clear its cache.
|
|
Dwarf_line_info::clear_addr2line_cache();
|
|
}
|
|
|
|
// Warnings functions.
|
|
|
|
// Add a new warning.
|
|
|
|
void
|
|
Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
|
|
const std::string& warning)
|
|
{
|
|
name = symtab->canonicalize_name(name);
|
|
this->warnings_[name].set(obj, warning);
|
|
}
|
|
|
|
// Look through the warnings and mark the symbols for which we should
|
|
// warn. This is called during Layout::finalize when we know the
|
|
// sources for all the symbols.
|
|
|
|
void
|
|
Warnings::note_warnings(Symbol_table* symtab)
|
|
{
|
|
for (Warning_table::iterator p = this->warnings_.begin();
|
|
p != this->warnings_.end();
|
|
++p)
|
|
{
|
|
Symbol* sym = symtab->lookup(p->first, NULL);
|
|
if (sym != NULL
|
|
&& sym->source() == Symbol::FROM_OBJECT
|
|
&& sym->object() == p->second.object)
|
|
sym->set_has_warning();
|
|
}
|
|
}
|
|
|
|
// Issue a warning. This is called when we see a relocation against a
|
|
// symbol for which has a warning.
|
|
|
|
template<int size, bool big_endian>
|
|
void
|
|
Warnings::issue_warning(const Symbol* sym,
|
|
const Relocate_info<size, big_endian>* relinfo,
|
|
size_t relnum, off_t reloffset) const
|
|
{
|
|
gold_assert(sym->has_warning());
|
|
|
|
// We don't want to issue a warning for a relocation against the
|
|
// symbol in the same object file in which the symbol is defined.
|
|
if (sym->object() == relinfo->object)
|
|
return;
|
|
|
|
Warning_table::const_iterator p = this->warnings_.find(sym->name());
|
|
gold_assert(p != this->warnings_.end());
|
|
gold_warning_at_location(relinfo, relnum, reloffset,
|
|
"%s", p->second.text.c_str());
|
|
}
|
|
|
|
// Instantiate the templates we need. We could use the configure
|
|
// script to restrict this to only the ones needed for implemented
|
|
// targets.
|
|
|
|
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
|
|
template
|
|
void
|
|
Sized_symbol<32>::allocate_common(Output_data*, Value_type);
|
|
#endif
|
|
|
|
#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
|
|
template
|
|
void
|
|
Sized_symbol<64>::allocate_common(Output_data*, Value_type);
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_LITTLE
|
|
template
|
|
void
|
|
Symbol_table::add_from_relobj<32, false>(
|
|
Sized_relobj_file<32, false>* relobj,
|
|
const unsigned char* syms,
|
|
size_t count,
|
|
size_t symndx_offset,
|
|
const char* sym_names,
|
|
size_t sym_name_size,
|
|
Sized_relobj_file<32, false>::Symbols* sympointers,
|
|
size_t* defined);
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_BIG
|
|
template
|
|
void
|
|
Symbol_table::add_from_relobj<32, true>(
|
|
Sized_relobj_file<32, true>* relobj,
|
|
const unsigned char* syms,
|
|
size_t count,
|
|
size_t symndx_offset,
|
|
const char* sym_names,
|
|
size_t sym_name_size,
|
|
Sized_relobj_file<32, true>::Symbols* sympointers,
|
|
size_t* defined);
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_LITTLE
|
|
template
|
|
void
|
|
Symbol_table::add_from_relobj<64, false>(
|
|
Sized_relobj_file<64, false>* relobj,
|
|
const unsigned char* syms,
|
|
size_t count,
|
|
size_t symndx_offset,
|
|
const char* sym_names,
|
|
size_t sym_name_size,
|
|
Sized_relobj_file<64, false>::Symbols* sympointers,
|
|
size_t* defined);
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_BIG
|
|
template
|
|
void
|
|
Symbol_table::add_from_relobj<64, true>(
|
|
Sized_relobj_file<64, true>* relobj,
|
|
const unsigned char* syms,
|
|
size_t count,
|
|
size_t symndx_offset,
|
|
const char* sym_names,
|
|
size_t sym_name_size,
|
|
Sized_relobj_file<64, true>::Symbols* sympointers,
|
|
size_t* defined);
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_LITTLE
|
|
template
|
|
Symbol*
|
|
Symbol_table::add_from_pluginobj<32, false>(
|
|
Sized_pluginobj<32, false>* obj,
|
|
const char* name,
|
|
const char* ver,
|
|
elfcpp::Sym<32, false>* sym);
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_BIG
|
|
template
|
|
Symbol*
|
|
Symbol_table::add_from_pluginobj<32, true>(
|
|
Sized_pluginobj<32, true>* obj,
|
|
const char* name,
|
|
const char* ver,
|
|
elfcpp::Sym<32, true>* sym);
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_LITTLE
|
|
template
|
|
Symbol*
|
|
Symbol_table::add_from_pluginobj<64, false>(
|
|
Sized_pluginobj<64, false>* obj,
|
|
const char* name,
|
|
const char* ver,
|
|
elfcpp::Sym<64, false>* sym);
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_BIG
|
|
template
|
|
Symbol*
|
|
Symbol_table::add_from_pluginobj<64, true>(
|
|
Sized_pluginobj<64, true>* obj,
|
|
const char* name,
|
|
const char* ver,
|
|
elfcpp::Sym<64, true>* sym);
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_LITTLE
|
|
template
|
|
void
|
|
Symbol_table::add_from_dynobj<32, false>(
|
|
Sized_dynobj<32, false>* dynobj,
|
|
const unsigned char* syms,
|
|
size_t count,
|
|
const char* sym_names,
|
|
size_t sym_name_size,
|
|
const unsigned char* versym,
|
|
size_t versym_size,
|
|
const std::vector<const char*>* version_map,
|
|
Sized_relobj_file<32, false>::Symbols* sympointers,
|
|
size_t* defined);
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_BIG
|
|
template
|
|
void
|
|
Symbol_table::add_from_dynobj<32, true>(
|
|
Sized_dynobj<32, true>* dynobj,
|
|
const unsigned char* syms,
|
|
size_t count,
|
|
const char* sym_names,
|
|
size_t sym_name_size,
|
|
const unsigned char* versym,
|
|
size_t versym_size,
|
|
const std::vector<const char*>* version_map,
|
|
Sized_relobj_file<32, true>::Symbols* sympointers,
|
|
size_t* defined);
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_LITTLE
|
|
template
|
|
void
|
|
Symbol_table::add_from_dynobj<64, false>(
|
|
Sized_dynobj<64, false>* dynobj,
|
|
const unsigned char* syms,
|
|
size_t count,
|
|
const char* sym_names,
|
|
size_t sym_name_size,
|
|
const unsigned char* versym,
|
|
size_t versym_size,
|
|
const std::vector<const char*>* version_map,
|
|
Sized_relobj_file<64, false>::Symbols* sympointers,
|
|
size_t* defined);
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_BIG
|
|
template
|
|
void
|
|
Symbol_table::add_from_dynobj<64, true>(
|
|
Sized_dynobj<64, true>* dynobj,
|
|
const unsigned char* syms,
|
|
size_t count,
|
|
const char* sym_names,
|
|
size_t sym_name_size,
|
|
const unsigned char* versym,
|
|
size_t versym_size,
|
|
const std::vector<const char*>* version_map,
|
|
Sized_relobj_file<64, true>::Symbols* sympointers,
|
|
size_t* defined);
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_LITTLE
|
|
template
|
|
Sized_symbol<32>*
|
|
Symbol_table::add_from_incrobj(
|
|
Object* obj,
|
|
const char* name,
|
|
const char* ver,
|
|
elfcpp::Sym<32, false>* sym);
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_BIG
|
|
template
|
|
Sized_symbol<32>*
|
|
Symbol_table::add_from_incrobj(
|
|
Object* obj,
|
|
const char* name,
|
|
const char* ver,
|
|
elfcpp::Sym<32, true>* sym);
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_LITTLE
|
|
template
|
|
Sized_symbol<64>*
|
|
Symbol_table::add_from_incrobj(
|
|
Object* obj,
|
|
const char* name,
|
|
const char* ver,
|
|
elfcpp::Sym<64, false>* sym);
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_BIG
|
|
template
|
|
Sized_symbol<64>*
|
|
Symbol_table::add_from_incrobj(
|
|
Object* obj,
|
|
const char* name,
|
|
const char* ver,
|
|
elfcpp::Sym<64, true>* sym);
|
|
#endif
|
|
|
|
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
|
|
template
|
|
void
|
|
Symbol_table::define_with_copy_reloc<32>(
|
|
Sized_symbol<32>* sym,
|
|
Output_data* posd,
|
|
elfcpp::Elf_types<32>::Elf_Addr value);
|
|
#endif
|
|
|
|
#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
|
|
template
|
|
void
|
|
Symbol_table::define_with_copy_reloc<64>(
|
|
Sized_symbol<64>* sym,
|
|
Output_data* posd,
|
|
elfcpp::Elf_types<64>::Elf_Addr value);
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_LITTLE
|
|
template
|
|
void
|
|
Warnings::issue_warning<32, false>(const Symbol* sym,
|
|
const Relocate_info<32, false>* relinfo,
|
|
size_t relnum, off_t reloffset) const;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_BIG
|
|
template
|
|
void
|
|
Warnings::issue_warning<32, true>(const Symbol* sym,
|
|
const Relocate_info<32, true>* relinfo,
|
|
size_t relnum, off_t reloffset) const;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_LITTLE
|
|
template
|
|
void
|
|
Warnings::issue_warning<64, false>(const Symbol* sym,
|
|
const Relocate_info<64, false>* relinfo,
|
|
size_t relnum, off_t reloffset) const;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_BIG
|
|
template
|
|
void
|
|
Warnings::issue_warning<64, true>(const Symbol* sym,
|
|
const Relocate_info<64, true>* relinfo,
|
|
size_t relnum, off_t reloffset) const;
|
|
#endif
|
|
|
|
} // End namespace gold.
|