mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-18 12:24:38 +08:00
a9dd42f197
'stack_bought_valid'. (s390_get_frame_info): Set fextra_info->stack_bought_valid if we initialize fextra_info->stack_bought. (s390_frameless_function_invocation): Don't trust the value of fextra_info_ptr->stack_bought unless fextra_info->stack_bought_valid is set.
2741 lines
86 KiB
C
2741 lines
86 KiB
C
/* Target-dependent code for GDB, the GNU debugger.
|
|
|
|
Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
|
|
|
|
Contributed by D.J. Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
|
|
for IBM Deutschland Entwicklung GmbH, IBM Corporation.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
|
|
02111-1307, USA. */
|
|
|
|
#define S390_TDEP /* for special macros in tm-s390.h */
|
|
#include <defs.h>
|
|
#include "arch-utils.h"
|
|
#include "frame.h"
|
|
#include "inferior.h"
|
|
#include "symtab.h"
|
|
#include "target.h"
|
|
#include "gdbcore.h"
|
|
#include "gdbcmd.h"
|
|
#include "symfile.h"
|
|
#include "objfiles.h"
|
|
#include "tm.h"
|
|
#include "../bfd/bfd.h"
|
|
#include "floatformat.h"
|
|
#include "regcache.h"
|
|
#include "value.h"
|
|
#include "gdb_assert.h"
|
|
|
|
|
|
|
|
|
|
/* Number of bytes of storage in the actual machine representation
|
|
for register N. */
|
|
static int
|
|
s390_register_raw_size (int reg_nr)
|
|
{
|
|
if (S390_FP0_REGNUM <= reg_nr
|
|
&& reg_nr < S390_FP0_REGNUM + S390_NUM_FPRS)
|
|
return S390_FPR_SIZE;
|
|
else
|
|
return 4;
|
|
}
|
|
|
|
static int
|
|
s390x_register_raw_size (int reg_nr)
|
|
{
|
|
return (reg_nr == S390_FPC_REGNUM)
|
|
|| (reg_nr >= S390_FIRST_ACR && reg_nr <= S390_LAST_ACR) ? 4 : 8;
|
|
}
|
|
|
|
static int
|
|
s390_cannot_fetch_register (int regno)
|
|
{
|
|
return (regno >= S390_FIRST_CR && regno < (S390_FIRST_CR + 9)) ||
|
|
(regno >= (S390_FIRST_CR + 12) && regno <= S390_LAST_CR);
|
|
}
|
|
|
|
static int
|
|
s390_register_byte (int reg_nr)
|
|
{
|
|
if (reg_nr <= S390_GP_LAST_REGNUM)
|
|
return reg_nr * S390_GPR_SIZE;
|
|
if (reg_nr <= S390_LAST_ACR)
|
|
return S390_ACR0_OFFSET + (((reg_nr) - S390_FIRST_ACR) * S390_ACR_SIZE);
|
|
if (reg_nr <= S390_LAST_CR)
|
|
return S390_CR0_OFFSET + (((reg_nr) - S390_FIRST_CR) * S390_CR_SIZE);
|
|
if (reg_nr == S390_FPC_REGNUM)
|
|
return S390_FPC_OFFSET;
|
|
else
|
|
return S390_FP0_OFFSET + (((reg_nr) - S390_FP0_REGNUM) * S390_FPR_SIZE);
|
|
}
|
|
|
|
#define S390_MAX_INSTR_SIZE (6)
|
|
#define S390_SYSCALL_OPCODE (0x0a)
|
|
#define S390_SYSCALL_SIZE (2)
|
|
#define S390_SIGCONTEXT_SREGS_OFFSET (8)
|
|
#define S390X_SIGCONTEXT_SREGS_OFFSET (8)
|
|
#define S390_SIGREGS_FP0_OFFSET (144)
|
|
#define S390X_SIGREGS_FP0_OFFSET (216)
|
|
#define S390_UC_MCONTEXT_OFFSET (256)
|
|
#define S390X_UC_MCONTEXT_OFFSET (344)
|
|
#define S390_STACK_FRAME_OVERHEAD 16*DEPRECATED_REGISTER_SIZE+32
|
|
#define S390_STACK_PARAMETER_ALIGNMENT DEPRECATED_REGISTER_SIZE
|
|
#define S390_NUM_FP_PARAMETER_REGISTERS (GDB_TARGET_IS_ESAME ? 4:2)
|
|
#define S390_SIGNAL_FRAMESIZE (GDB_TARGET_IS_ESAME ? 160:96)
|
|
#define s390_NR_sigreturn 119
|
|
#define s390_NR_rt_sigreturn 173
|
|
|
|
|
|
|
|
struct frame_extra_info
|
|
{
|
|
int initialised;
|
|
int good_prologue;
|
|
CORE_ADDR function_start;
|
|
CORE_ADDR skip_prologue_function_start;
|
|
CORE_ADDR saved_pc_valid;
|
|
CORE_ADDR saved_pc;
|
|
CORE_ADDR sig_fixed_saved_pc_valid;
|
|
CORE_ADDR sig_fixed_saved_pc;
|
|
CORE_ADDR frame_pointer_saved_pc; /* frame pointer needed for alloca */
|
|
CORE_ADDR stack_bought_valid;
|
|
CORE_ADDR stack_bought; /* amount we decrement the stack pointer by */
|
|
CORE_ADDR sigcontext;
|
|
};
|
|
|
|
|
|
static CORE_ADDR s390_frame_saved_pc_nofix (struct frame_info *fi);
|
|
|
|
static int
|
|
s390_readinstruction (bfd_byte instr[], CORE_ADDR at,
|
|
struct disassemble_info *info)
|
|
{
|
|
int instrlen;
|
|
|
|
static int s390_instrlen[] = {
|
|
2,
|
|
4,
|
|
4,
|
|
6
|
|
};
|
|
if ((*info->read_memory_func) (at, &instr[0], 2, info))
|
|
return -1;
|
|
instrlen = s390_instrlen[instr[0] >> 6];
|
|
if (instrlen > 2)
|
|
{
|
|
if ((*info->read_memory_func) (at + 2, &instr[2], instrlen - 2, info))
|
|
return -1;
|
|
}
|
|
return instrlen;
|
|
}
|
|
|
|
static void
|
|
s390_memset_extra_info (struct frame_extra_info *fextra_info)
|
|
{
|
|
memset (fextra_info, 0, sizeof (struct frame_extra_info));
|
|
}
|
|
|
|
|
|
|
|
static const char *
|
|
s390_register_name (int reg_nr)
|
|
{
|
|
static char *register_names[] = {
|
|
"pswm", "pswa",
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
|
"acr0", "acr1", "acr2", "acr3", "acr4", "acr5", "acr6", "acr7",
|
|
"acr8", "acr9", "acr10", "acr11", "acr12", "acr13", "acr14", "acr15",
|
|
"cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
|
|
"cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14", "cr15",
|
|
"fpc",
|
|
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
|
|
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15"
|
|
};
|
|
|
|
if (reg_nr <= S390_LAST_REGNUM)
|
|
return register_names[reg_nr];
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
|
|
|
|
|
|
static int
|
|
s390_stab_reg_to_regnum (int regno)
|
|
{
|
|
return regno >= 64 ? S390_PSWM_REGNUM - 64 :
|
|
regno >= 48 ? S390_FIRST_ACR - 48 :
|
|
regno >= 32 ? S390_FIRST_CR - 32 :
|
|
regno <= 15 ? (regno + 2) :
|
|
S390_FP0_REGNUM + ((regno - 16) & 8) + (((regno - 16) & 3) << 1) +
|
|
(((regno - 16) & 4) >> 2);
|
|
}
|
|
|
|
|
|
/* Prologue analysis. */
|
|
|
|
/* When we analyze a prologue, we're really doing 'abstract
|
|
interpretation' or 'pseudo-evaluation': running the function's code
|
|
in simulation, but using conservative approximations of the values
|
|
it would have when it actually runs. For example, if our function
|
|
starts with the instruction:
|
|
|
|
ahi r1, 42 # add halfword immediate 42 to r1
|
|
|
|
we don't know exactly what value will be in r1 after executing this
|
|
instruction, but we do know it'll be 42 greater than its original
|
|
value.
|
|
|
|
If we then see an instruction like:
|
|
|
|
ahi r1, 22 # add halfword immediate 22 to r1
|
|
|
|
we still don't know what r1's value is, but again, we can say it is
|
|
now 64 greater than its original value.
|
|
|
|
If the next instruction were:
|
|
|
|
lr r2, r1 # set r2 to r1's value
|
|
|
|
then we can say that r2's value is now the original value of r1
|
|
plus 64. And so on.
|
|
|
|
Of course, this can only go so far before it gets unreasonable. If
|
|
we wanted to be able to say anything about the value of r1 after
|
|
the instruction:
|
|
|
|
xr r1, r3 # exclusive-or r1 and r3, place result in r1
|
|
|
|
then things would get pretty complex. But remember, we're just
|
|
doing a conservative approximation; if exclusive-or instructions
|
|
aren't relevant to prologues, we can just say r1's value is now
|
|
'unknown'. We can ignore things that are too complex, if that loss
|
|
of information is acceptable for our application.
|
|
|
|
Once you've reached an instruction that you don't know how to
|
|
simulate, you stop. Now you examine the state of the registers and
|
|
stack slots you've kept track of. For example:
|
|
|
|
- To see how large your stack frame is, just check the value of sp;
|
|
if it's the original value of sp minus a constant, then that
|
|
constant is the stack frame's size. If the sp's value has been
|
|
marked as 'unknown', then that means the prologue has done
|
|
something too complex for us to track, and we don't know the
|
|
frame size.
|
|
|
|
- To see whether we've saved the SP in the current frame's back
|
|
chain slot, we just check whether the current value of the back
|
|
chain stack slot is the original value of the sp.
|
|
|
|
Sure, this takes some work. But prologue analyzers aren't
|
|
quick-and-simple pattern patching to recognize a few fixed prologue
|
|
forms any more; they're big, hairy functions. Along with inferior
|
|
function calls, prologue analysis accounts for a substantial
|
|
portion of the time needed to stabilize a GDB port. So I think
|
|
it's worthwhile to look for an approach that will be easier to
|
|
understand and maintain. In the approach used here:
|
|
|
|
- It's easier to see that the analyzer is correct: you just see
|
|
whether the analyzer properly (albiet conservatively) simulates
|
|
the effect of each instruction.
|
|
|
|
- It's easier to extend the analyzer: you can add support for new
|
|
instructions, and know that you haven't broken anything that
|
|
wasn't already broken before.
|
|
|
|
- It's orthogonal: to gather new information, you don't need to
|
|
complicate the code for each instruction. As long as your domain
|
|
of conservative values is already detailed enough to tell you
|
|
what you need, then all the existing instruction simulations are
|
|
already gathering the right data for you.
|
|
|
|
A 'struct prologue_value' is a conservative approximation of the
|
|
real value the register or stack slot will have. */
|
|
|
|
struct prologue_value {
|
|
|
|
/* What sort of value is this? This determines the interpretation
|
|
of subsequent fields. */
|
|
enum {
|
|
|
|
/* We don't know anything about the value. This is also used for
|
|
values we could have kept track of, when doing so would have
|
|
been too complex and we don't want to bother. The bottom of
|
|
our lattice. */
|
|
pv_unknown,
|
|
|
|
/* A known constant. K is its value. */
|
|
pv_constant,
|
|
|
|
/* The value that register REG originally had *UPON ENTRY TO THE
|
|
FUNCTION*, plus K. If K is zero, this means, obviously, just
|
|
the value REG had upon entry to the function. REG is a GDB
|
|
register number. Before we start interpreting, we initialize
|
|
every register R to { pv_register, R, 0 }. */
|
|
pv_register,
|
|
|
|
} kind;
|
|
|
|
/* The meanings of the following fields depend on 'kind'; see the
|
|
comments for the specific 'kind' values. */
|
|
int reg;
|
|
CORE_ADDR k;
|
|
};
|
|
|
|
|
|
/* Set V to be unknown. */
|
|
static void
|
|
pv_set_to_unknown (struct prologue_value *v)
|
|
{
|
|
v->kind = pv_unknown;
|
|
}
|
|
|
|
|
|
/* Set V to the constant K. */
|
|
static void
|
|
pv_set_to_constant (struct prologue_value *v, CORE_ADDR k)
|
|
{
|
|
v->kind = pv_constant;
|
|
v->k = k;
|
|
}
|
|
|
|
|
|
/* Set V to the original value of register REG, plus K. */
|
|
static void
|
|
pv_set_to_register (struct prologue_value *v, int reg, CORE_ADDR k)
|
|
{
|
|
v->kind = pv_register;
|
|
v->reg = reg;
|
|
v->k = k;
|
|
}
|
|
|
|
|
|
/* If one of *A and *B is a constant, and the other isn't, swap the
|
|
pointers as necessary to ensure that *B points to the constant.
|
|
This can reduce the number of cases we need to analyze in the
|
|
functions below. */
|
|
static void
|
|
pv_constant_last (struct prologue_value **a,
|
|
struct prologue_value **b)
|
|
{
|
|
if ((*a)->kind == pv_constant
|
|
&& (*b)->kind != pv_constant)
|
|
{
|
|
struct prologue_value *temp = *a;
|
|
*a = *b;
|
|
*b = temp;
|
|
}
|
|
}
|
|
|
|
|
|
/* Set SUM to the sum of A and B. SUM, A, and B may point to the same
|
|
'struct prologue_value' object. */
|
|
static void
|
|
pv_add (struct prologue_value *sum,
|
|
struct prologue_value *a,
|
|
struct prologue_value *b)
|
|
{
|
|
pv_constant_last (&a, &b);
|
|
|
|
/* We can handle adding constants to registers, and other constants. */
|
|
if (b->kind == pv_constant
|
|
&& (a->kind == pv_register
|
|
|| a->kind == pv_constant))
|
|
{
|
|
sum->kind = a->kind;
|
|
sum->reg = a->reg; /* not meaningful if a is pv_constant, but
|
|
harmless */
|
|
sum->k = a->k + b->k;
|
|
}
|
|
|
|
/* Anything else we don't know how to add. We don't have a
|
|
representation for, say, the sum of two registers, or a multiple
|
|
of a register's value (adding a register to itself). */
|
|
else
|
|
sum->kind = pv_unknown;
|
|
}
|
|
|
|
|
|
/* Add the constant K to V. */
|
|
static void
|
|
pv_add_constant (struct prologue_value *v, CORE_ADDR k)
|
|
{
|
|
struct prologue_value pv_k;
|
|
|
|
/* Rather than thinking of all the cases we can and can't handle,
|
|
we'll just let pv_add take care of that for us. */
|
|
pv_set_to_constant (&pv_k, k);
|
|
pv_add (v, v, &pv_k);
|
|
}
|
|
|
|
|
|
/* Subtract B from A, and put the result in DIFF.
|
|
|
|
This isn't quite the same as negating B and adding it to A, since
|
|
we don't have a representation for the negation of anything but a
|
|
constant. For example, we can't negate { pv_register, R1, 10 },
|
|
but we do know that { pv_register, R1, 10 } minus { pv_register,
|
|
R1, 5 } is { pv_constant, <ignored>, 5 }.
|
|
|
|
This means, for example, that we can subtract two stack addresses;
|
|
they're both relative to the original SP. Since the frame pointer
|
|
is set based on the SP, its value will be the original SP plus some
|
|
constant (probably zero), so we can use its value just fine. */
|
|
static void
|
|
pv_subtract (struct prologue_value *diff,
|
|
struct prologue_value *a,
|
|
struct prologue_value *b)
|
|
{
|
|
pv_constant_last (&a, &b);
|
|
|
|
/* We can subtract a constant from another constant, or from a
|
|
register. */
|
|
if (b->kind == pv_constant
|
|
&& (a->kind == pv_register
|
|
|| a->kind == pv_constant))
|
|
{
|
|
diff->kind = a->kind;
|
|
diff->reg = a->reg; /* not always meaningful, but harmless */
|
|
diff->k = a->k - b->k;
|
|
}
|
|
|
|
/* We can subtract a register from itself, yielding a constant. */
|
|
else if (a->kind == pv_register
|
|
&& b->kind == pv_register
|
|
&& a->reg == b->reg)
|
|
{
|
|
diff->kind = pv_constant;
|
|
diff->k = a->k - b->k;
|
|
}
|
|
|
|
/* We don't know how to subtract anything else. */
|
|
else
|
|
diff->kind = pv_unknown;
|
|
}
|
|
|
|
|
|
/* Set AND to the logical and of A and B. */
|
|
static void
|
|
pv_logical_and (struct prologue_value *and,
|
|
struct prologue_value *a,
|
|
struct prologue_value *b)
|
|
{
|
|
pv_constant_last (&a, &b);
|
|
|
|
/* We can 'and' two constants. */
|
|
if (a->kind == pv_constant
|
|
&& b->kind == pv_constant)
|
|
{
|
|
and->kind = pv_constant;
|
|
and->k = a->k & b->k;
|
|
}
|
|
|
|
/* We can 'and' anything with the constant zero. */
|
|
else if (b->kind == pv_constant
|
|
&& b->k == 0)
|
|
{
|
|
and->kind = pv_constant;
|
|
and->k = 0;
|
|
}
|
|
|
|
/* We can 'and' anything with ~0. */
|
|
else if (b->kind == pv_constant
|
|
&& b->k == ~ (CORE_ADDR) 0)
|
|
*and = *a;
|
|
|
|
/* We can 'and' a register with itself. */
|
|
else if (a->kind == pv_register
|
|
&& b->kind == pv_register
|
|
&& a->reg == b->reg
|
|
&& a->k == b->k)
|
|
*and = *a;
|
|
|
|
/* Otherwise, we don't know. */
|
|
else
|
|
pv_set_to_unknown (and);
|
|
}
|
|
|
|
|
|
/* Return non-zero iff A and B are identical expressions.
|
|
|
|
This is not the same as asking if the two values are equal; the
|
|
result of such a comparison would have to be a pv_boolean, and
|
|
asking whether two 'unknown' values were equal would give you
|
|
pv_maybe. Same for comparing, say, { pv_register, R1, 0 } and {
|
|
pv_register, R2, 0}. Instead, this is asking whether the two
|
|
representations are the same. */
|
|
static int
|
|
pv_is_identical (struct prologue_value *a,
|
|
struct prologue_value *b)
|
|
{
|
|
if (a->kind != b->kind)
|
|
return 0;
|
|
|
|
switch (a->kind)
|
|
{
|
|
case pv_unknown:
|
|
return 1;
|
|
case pv_constant:
|
|
return (a->k == b->k);
|
|
case pv_register:
|
|
return (a->reg == b->reg && a->k == b->k);
|
|
default:
|
|
gdb_assert (0);
|
|
}
|
|
}
|
|
|
|
|
|
/* Return non-zero if A is the original value of register number R
|
|
plus K, zero otherwise. */
|
|
static int
|
|
pv_is_register (struct prologue_value *a, int r, CORE_ADDR k)
|
|
{
|
|
return (a->kind == pv_register
|
|
&& a->reg == r
|
|
&& a->k == k);
|
|
}
|
|
|
|
|
|
/* A prologue-value-esque boolean type, including "maybe", when we
|
|
can't figure out whether something is true or not. */
|
|
enum pv_boolean {
|
|
pv_maybe,
|
|
pv_definite_yes,
|
|
pv_definite_no,
|
|
};
|
|
|
|
|
|
/* Decide whether a reference to SIZE bytes at ADDR refers exactly to
|
|
an element of an array. The array starts at ARRAY_ADDR, and has
|
|
ARRAY_LEN values of ELT_SIZE bytes each. If ADDR definitely does
|
|
refer to an array element, set *I to the index of the referenced
|
|
element in the array, and return pv_definite_yes. If it definitely
|
|
doesn't, return pv_definite_no. If we can't tell, return pv_maybe.
|
|
|
|
If the reference does touch the array, but doesn't fall exactly on
|
|
an element boundary, or doesn't refer to the whole element, return
|
|
pv_maybe. */
|
|
static enum pv_boolean
|
|
pv_is_array_ref (struct prologue_value *addr,
|
|
CORE_ADDR size,
|
|
struct prologue_value *array_addr,
|
|
CORE_ADDR array_len,
|
|
CORE_ADDR elt_size,
|
|
int *i)
|
|
{
|
|
struct prologue_value offset;
|
|
|
|
/* Note that, since ->k is a CORE_ADDR, and CORE_ADDR is unsigned,
|
|
if addr is *before* the start of the array, then this isn't going
|
|
to be negative... */
|
|
pv_subtract (&offset, addr, array_addr);
|
|
|
|
if (offset.kind == pv_constant)
|
|
{
|
|
/* This is a rather odd test. We want to know if the SIZE bytes
|
|
at ADDR don't overlap the array at all, so you'd expect it to
|
|
be an || expression: "if we're completely before || we're
|
|
completely after". But with unsigned arithmetic, things are
|
|
different: since it's a number circle, not a number line, the
|
|
right values for offset.k are actually one contiguous range. */
|
|
if (offset.k <= -size
|
|
&& offset.k >= array_len * elt_size)
|
|
return pv_definite_no;
|
|
else if (offset.k % elt_size != 0
|
|
|| size != elt_size)
|
|
return pv_maybe;
|
|
else
|
|
{
|
|
*i = offset.k / elt_size;
|
|
return pv_definite_yes;
|
|
}
|
|
}
|
|
else
|
|
return pv_maybe;
|
|
}
|
|
|
|
|
|
|
|
/* Decoding S/390 instructions. */
|
|
|
|
/* Named opcode values for the S/390 instructions we recognize. Some
|
|
instructions have their opcode split across two fields; those are the
|
|
op1_* and op2_* enums. */
|
|
enum
|
|
{
|
|
op1_aghi = 0xa7, op2_aghi = 0xb,
|
|
op1_ahi = 0xa7, op2_ahi = 0xa,
|
|
op_ar = 0x1a,
|
|
op_basr = 0x0d,
|
|
op1_bras = 0xa7, op2_bras = 0x5,
|
|
op_l = 0x58,
|
|
op_la = 0x41,
|
|
op1_larl = 0xc0, op2_larl = 0x0,
|
|
op_lgr = 0xb904,
|
|
op1_lghi = 0xa7, op2_lghi = 0x9,
|
|
op1_lhi = 0xa7, op2_lhi = 0x8,
|
|
op_lr = 0x18,
|
|
op_nr = 0x14,
|
|
op_ngr = 0xb980,
|
|
op_s = 0x5b,
|
|
op_st = 0x50,
|
|
op_std = 0x60,
|
|
op1_stg = 0xe3, op2_stg = 0x24,
|
|
op_stm = 0x90,
|
|
op1_stmg = 0xeb, op2_stmg = 0x24,
|
|
op_svc = 0x0a,
|
|
};
|
|
|
|
|
|
/* The functions below are for recognizing and decoding S/390
|
|
instructions of various formats. Each of them checks whether INSN
|
|
is an instruction of the given format, with the specified opcodes.
|
|
If it is, it sets the remaining arguments to the values of the
|
|
instruction's fields, and returns a non-zero value; otherwise, it
|
|
returns zero.
|
|
|
|
These functions' arguments appear in the order they appear in the
|
|
instruction, not in the machine-language form. So, opcodes always
|
|
come first, even though they're sometimes scattered around the
|
|
instructions. And displacements appear before base and extension
|
|
registers, as they do in the assembly syntax, not at the end, as
|
|
they do in the machine language. */
|
|
static int
|
|
is_ri (bfd_byte *insn, int op1, int op2, unsigned int *r1, int *i2)
|
|
{
|
|
if (insn[0] == op1 && (insn[1] & 0xf) == op2)
|
|
{
|
|
*r1 = (insn[1] >> 4) & 0xf;
|
|
/* i2 is a 16-bit signed quantity. */
|
|
*i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
|
|
return 1;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
is_ril (bfd_byte *insn, int op1, int op2,
|
|
unsigned int *r1, int *i2)
|
|
{
|
|
if (insn[0] == op1 && (insn[1] & 0xf) == op2)
|
|
{
|
|
*r1 = (insn[1] >> 4) & 0xf;
|
|
/* i2 is a signed quantity. If the host 'int' is 32 bits long,
|
|
no sign extension is necessary, but we don't want to assume
|
|
that. */
|
|
*i2 = (((insn[2] << 24)
|
|
| (insn[3] << 16)
|
|
| (insn[4] << 8)
|
|
| (insn[5])) ^ 0x80000000) - 0x80000000;
|
|
return 1;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
is_rr (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
|
|
{
|
|
if (insn[0] == op)
|
|
{
|
|
*r1 = (insn[1] >> 4) & 0xf;
|
|
*r2 = insn[1] & 0xf;
|
|
return 1;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
is_rre (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
|
|
{
|
|
if (((insn[0] << 8) | insn[1]) == op)
|
|
{
|
|
/* Yes, insn[3]. insn[2] is unused in RRE format. */
|
|
*r1 = (insn[3] >> 4) & 0xf;
|
|
*r2 = insn[3] & 0xf;
|
|
return 1;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
is_rs (bfd_byte *insn, int op,
|
|
unsigned int *r1, unsigned int *r3, unsigned int *d2, unsigned int *b2)
|
|
{
|
|
if (insn[0] == op)
|
|
{
|
|
*r1 = (insn[1] >> 4) & 0xf;
|
|
*r3 = insn[1] & 0xf;
|
|
*b2 = (insn[2] >> 4) & 0xf;
|
|
*d2 = ((insn[2] & 0xf) << 8) | insn[3];
|
|
return 1;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
is_rse (bfd_byte *insn, int op1, int op2,
|
|
unsigned int *r1, unsigned int *r3, unsigned int *d2, unsigned int *b2)
|
|
{
|
|
if (insn[0] == op1
|
|
/* Yes, insn[5]. insn[4] is unused. */
|
|
&& insn[5] == op2)
|
|
{
|
|
*r1 = (insn[1] >> 4) & 0xf;
|
|
*r3 = insn[1] & 0xf;
|
|
*b2 = (insn[2] >> 4) & 0xf;
|
|
*d2 = ((insn[2] & 0xf) << 8) | insn[3];
|
|
return 1;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
is_rx (bfd_byte *insn, int op,
|
|
unsigned int *r1, unsigned int *d2, unsigned int *x2, unsigned int *b2)
|
|
{
|
|
if (insn[0] == op)
|
|
{
|
|
*r1 = (insn[1] >> 4) & 0xf;
|
|
*x2 = insn[1] & 0xf;
|
|
*b2 = (insn[2] >> 4) & 0xf;
|
|
*d2 = ((insn[2] & 0xf) << 8) | insn[3];
|
|
return 1;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
is_rxe (bfd_byte *insn, int op1, int op2,
|
|
unsigned int *r1, unsigned int *d2, unsigned int *x2, unsigned int *b2)
|
|
{
|
|
if (insn[0] == op1
|
|
/* Yes, insn[5]. insn[4] is unused. */
|
|
&& insn[5] == op2)
|
|
{
|
|
*r1 = (insn[1] >> 4) & 0xf;
|
|
*x2 = insn[1] & 0xf;
|
|
*b2 = (insn[2] >> 4) & 0xf;
|
|
*d2 = ((insn[2] & 0xf) << 8) | insn[3];
|
|
return 1;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Set ADDR to the effective address for an X-style instruction, like:
|
|
|
|
L R1, D2(X2, B2)
|
|
|
|
Here, X2 and B2 are registers, and D2 is an unsigned 12-bit
|
|
constant; the effective address is the sum of all three. If either
|
|
X2 or B2 are zero, then it doesn't contribute to the sum --- this
|
|
means that r0 can't be used as either X2 or B2.
|
|
|
|
GPR is an array of general register values, indexed by GPR number,
|
|
not GDB register number. */
|
|
static void
|
|
compute_x_addr (struct prologue_value *addr,
|
|
struct prologue_value *gpr,
|
|
unsigned int d2, unsigned int x2, unsigned int b2)
|
|
{
|
|
/* We can't just add stuff directly in addr; it might alias some of
|
|
the registers we need to read. */
|
|
struct prologue_value result;
|
|
|
|
pv_set_to_constant (&result, d2);
|
|
if (x2)
|
|
pv_add (&result, &result, &gpr[x2]);
|
|
if (b2)
|
|
pv_add (&result, &result, &gpr[b2]);
|
|
|
|
*addr = result;
|
|
}
|
|
|
|
|
|
/* The number of GPR and FPR spill slots in an S/390 stack frame. We
|
|
track general-purpose registers r2 -- r15, and floating-point
|
|
registers f0, f2, f4, and f6. */
|
|
#define S390_NUM_SPILL_SLOTS (14 + 4)
|
|
|
|
|
|
/* If the SIZE bytes at ADDR are a stack slot we're actually tracking,
|
|
return pv_definite_yes and set *STACK to point to the slot. If
|
|
we're sure that they are not any of our stack slots, then return
|
|
pv_definite_no. Otherwise, return pv_maybe.
|
|
- GPR is an array indexed by GPR number giving the current values
|
|
of the general-purpose registers.
|
|
- SPILL is an array tracking the spill area of the caller's frame;
|
|
SPILL[i] is the i'th spill slot. The spill slots are designated
|
|
for r2 -- r15, and then f0, f2, f4, and f6.
|
|
- BACK_CHAIN is the value of the back chain slot; it's only valid
|
|
when the current frame actually has some space for a back chain
|
|
slot --- that is, when the current value of the stack pointer
|
|
(according to GPR) is at least S390_STACK_FRAME_OVERHEAD bytes
|
|
less than its original value. */
|
|
static enum pv_boolean
|
|
s390_on_stack (struct prologue_value *addr,
|
|
CORE_ADDR size,
|
|
struct prologue_value *gpr,
|
|
struct prologue_value *spill,
|
|
struct prologue_value *back_chain,
|
|
struct prologue_value **stack)
|
|
{
|
|
struct prologue_value gpr_spill_addr;
|
|
struct prologue_value fpr_spill_addr;
|
|
struct prologue_value back_chain_addr;
|
|
int i;
|
|
enum pv_boolean b;
|
|
|
|
/* Construct the addresses of the spill arrays and the back chain. */
|
|
pv_set_to_register (&gpr_spill_addr, S390_SP_REGNUM, 2 * S390_GPR_SIZE);
|
|
pv_set_to_register (&fpr_spill_addr, S390_SP_REGNUM, 16 * S390_GPR_SIZE);
|
|
back_chain_addr = gpr[S390_SP_REGNUM - S390_GP0_REGNUM];
|
|
|
|
/* We have to check for GPR and FPR references using two separate
|
|
calls to pv_is_array_ref, since the GPR and FPR spill slots are
|
|
different sizes. (SPILL is an array, but the thing it tracks
|
|
isn't really an array.) */
|
|
|
|
/* Was it a reference to the GPR spill array? */
|
|
b = pv_is_array_ref (addr, size, &gpr_spill_addr, 14, S390_GPR_SIZE, &i);
|
|
if (b == pv_definite_yes)
|
|
{
|
|
*stack = &spill[i];
|
|
return pv_definite_yes;
|
|
}
|
|
if (b == pv_maybe)
|
|
return pv_maybe;
|
|
|
|
/* Was it a reference to the FPR spill array? */
|
|
b = pv_is_array_ref (addr, size, &fpr_spill_addr, 4, S390_FPR_SIZE, &i);
|
|
if (b == pv_definite_yes)
|
|
{
|
|
*stack = &spill[14 + i];
|
|
return pv_definite_yes;
|
|
}
|
|
if (b == pv_maybe)
|
|
return pv_maybe;
|
|
|
|
/* Was it a reference to the back chain?
|
|
This isn't quite right. We ought to check whether we have
|
|
actually allocated any new frame at all. */
|
|
b = pv_is_array_ref (addr, size, &back_chain_addr, 1, S390_GPR_SIZE, &i);
|
|
if (b == pv_definite_yes)
|
|
{
|
|
*stack = back_chain;
|
|
return pv_definite_yes;
|
|
}
|
|
if (b == pv_maybe)
|
|
return pv_maybe;
|
|
|
|
/* All the above queries returned definite 'no's. */
|
|
return pv_definite_no;
|
|
}
|
|
|
|
|
|
/* Do a SIZE-byte store of VALUE to ADDR. GPR, SPILL, and BACK_CHAIN,
|
|
and the return value are as described for s390_on_stack, above.
|
|
Note that, when this returns pv_maybe, we have to assume that all
|
|
of our memory now contains unknown values. */
|
|
static enum pv_boolean
|
|
s390_store (struct prologue_value *addr,
|
|
CORE_ADDR size,
|
|
struct prologue_value *value,
|
|
struct prologue_value *gpr,
|
|
struct prologue_value *spill,
|
|
struct prologue_value *back_chain)
|
|
{
|
|
struct prologue_value *stack;
|
|
enum pv_boolean on_stack
|
|
= s390_on_stack (addr, size, gpr, spill, back_chain, &stack);
|
|
|
|
if (on_stack == pv_definite_yes)
|
|
*stack = *value;
|
|
|
|
return on_stack;
|
|
}
|
|
|
|
|
|
/* The current frame looks like a signal delivery frame: the first
|
|
instruction is an 'svc' opcode. If the next frame is a signal
|
|
handler's frame, set FI's saved register map to point into the
|
|
signal context structure. */
|
|
static void
|
|
s390_get_signal_frame_info (struct frame_info *fi)
|
|
{
|
|
struct frame_info *next_frame = get_next_frame (fi);
|
|
|
|
if (next_frame
|
|
&& get_frame_extra_info (next_frame)
|
|
&& get_frame_extra_info (next_frame)->sigcontext)
|
|
{
|
|
/* We're definitely backtracing from a signal handler. */
|
|
CORE_ADDR *saved_regs = get_frame_saved_regs (fi);
|
|
CORE_ADDR save_reg_addr = (get_frame_extra_info (next_frame)->sigcontext
|
|
+ REGISTER_BYTE (S390_GP0_REGNUM));
|
|
int reg;
|
|
|
|
for (reg = 0; reg < S390_NUM_GPRS; reg++)
|
|
{
|
|
saved_regs[S390_GP0_REGNUM + reg] = save_reg_addr;
|
|
save_reg_addr += S390_GPR_SIZE;
|
|
}
|
|
|
|
save_reg_addr = (get_frame_extra_info (next_frame)->sigcontext
|
|
+ (GDB_TARGET_IS_ESAME ? S390X_SIGREGS_FP0_OFFSET :
|
|
S390_SIGREGS_FP0_OFFSET));
|
|
for (reg = 0; reg < S390_NUM_FPRS; reg++)
|
|
{
|
|
saved_regs[S390_FP0_REGNUM + reg] = save_reg_addr;
|
|
save_reg_addr += S390_FPR_SIZE;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static int
|
|
s390_get_frame_info (CORE_ADDR start_pc,
|
|
struct frame_extra_info *fextra_info,
|
|
struct frame_info *fi,
|
|
int init_extra_info)
|
|
{
|
|
/* Our return value:
|
|
zero if we were able to read all the instructions we wanted, or
|
|
-1 if we got an error trying to read memory. */
|
|
int result = 0;
|
|
|
|
/* We just use this for reading instructions. */
|
|
disassemble_info info;
|
|
|
|
/* The current PC for our abstract interpretation. */
|
|
CORE_ADDR pc;
|
|
|
|
/* The address of the next instruction after that. */
|
|
CORE_ADDR next_pc;
|
|
|
|
/* The general-purpose registers. */
|
|
struct prologue_value gpr[S390_NUM_GPRS];
|
|
|
|
/* The floating-point registers. */
|
|
struct prologue_value fpr[S390_NUM_FPRS];
|
|
|
|
/* The register spill stack slots in the caller's frame ---
|
|
general-purpose registers r2 through r15, and floating-point
|
|
registers. spill[i] is where gpr i+2 gets spilled;
|
|
spill[(14, 15, 16, 17)] is where (f0, f2, f4, f6) get spilled. */
|
|
struct prologue_value spill[S390_NUM_SPILL_SLOTS];
|
|
|
|
/* The value of the back chain slot. This is only valid if the stack
|
|
pointer is known to be less than its original value --- that is,
|
|
if we have indeed allocated space on the stack. */
|
|
struct prologue_value back_chain;
|
|
|
|
/* The address of the instruction after the last one that changed
|
|
the SP, FP, or back chain. */
|
|
CORE_ADDR after_last_frame_setup_insn = start_pc;
|
|
|
|
info.read_memory_func = deprecated_tm_print_insn_info.read_memory_func;
|
|
|
|
/* Set up everything's initial value. */
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < S390_NUM_GPRS; i++)
|
|
pv_set_to_register (&gpr[i], S390_GP0_REGNUM + i, 0);
|
|
|
|
for (i = 0; i < S390_NUM_FPRS; i++)
|
|
pv_set_to_register (&fpr[i], S390_FP0_REGNUM + i, 0);
|
|
|
|
for (i = 0; i < S390_NUM_SPILL_SLOTS; i++)
|
|
pv_set_to_unknown (&spill[i]);
|
|
|
|
pv_set_to_unknown (&back_chain);
|
|
}
|
|
|
|
/* Start interpreting instructions, until we hit something we don't
|
|
know how to interpret. (Ideally, we should stop at the frame's
|
|
real current PC, but at the moment, our callers don't give us
|
|
that info.) */
|
|
for (pc = start_pc; ; pc = next_pc)
|
|
{
|
|
bfd_byte insn[S390_MAX_INSTR_SIZE];
|
|
int insn_len = s390_readinstruction (insn, pc, &info);
|
|
|
|
/* Fields for various kinds of instructions. */
|
|
unsigned int b2, r1, r2, d2, x2, r3;
|
|
int i2;
|
|
|
|
/* The values of SP, FP, and back chain before this instruction,
|
|
for detecting instructions that change them. */
|
|
struct prologue_value pre_insn_sp, pre_insn_fp, pre_insn_back_chain;
|
|
|
|
/* If we got an error trying to read the instruction, report it. */
|
|
if (insn_len < 0)
|
|
{
|
|
result = -1;
|
|
break;
|
|
}
|
|
|
|
next_pc = pc + insn_len;
|
|
|
|
pre_insn_sp = gpr[S390_SP_REGNUM - S390_GP0_REGNUM];
|
|
pre_insn_fp = gpr[S390_FRAME_REGNUM - S390_GP0_REGNUM];
|
|
pre_insn_back_chain = back_chain;
|
|
|
|
/* A special case, first --- only recognized as the very first
|
|
instruction of the function, for signal delivery frames:
|
|
SVC i --- system call */
|
|
if (pc == start_pc
|
|
&& is_rr (insn, op_svc, &r1, &r2))
|
|
{
|
|
if (fi)
|
|
s390_get_signal_frame_info (fi);
|
|
break;
|
|
}
|
|
|
|
/* AHI r1, i2 --- add halfword immediate */
|
|
else if (is_ri (insn, op1_ahi, op2_ahi, &r1, &i2))
|
|
pv_add_constant (&gpr[r1], i2);
|
|
|
|
|
|
/* AGHI r1, i2 --- add halfword immediate (64-bit version) */
|
|
else if (GDB_TARGET_IS_ESAME
|
|
&& is_ri (insn, op1_aghi, op2_aghi, &r1, &i2))
|
|
pv_add_constant (&gpr[r1], i2);
|
|
|
|
/* AR r1, r2 -- add register */
|
|
else if (is_rr (insn, op_ar, &r1, &r2))
|
|
pv_add (&gpr[r1], &gpr[r1], &gpr[r2]);
|
|
|
|
/* BASR r1, 0 --- branch and save
|
|
Since r2 is zero, this saves the PC in r1, but doesn't branch. */
|
|
else if (is_rr (insn, op_basr, &r1, &r2)
|
|
&& r2 == 0)
|
|
pv_set_to_constant (&gpr[r1], next_pc);
|
|
|
|
/* BRAS r1, i2 --- branch relative and save */
|
|
else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2))
|
|
{
|
|
pv_set_to_constant (&gpr[r1], next_pc);
|
|
next_pc = pc + i2 * 2;
|
|
|
|
/* We'd better not interpret any backward branches. We'll
|
|
never terminate. */
|
|
if (next_pc <= pc)
|
|
break;
|
|
}
|
|
|
|
/* L r1, d2(x2, b2) --- load */
|
|
else if (is_rx (insn, op_l, &r1, &d2, &x2, &b2))
|
|
{
|
|
struct prologue_value addr;
|
|
struct prologue_value *stack;
|
|
|
|
compute_x_addr (&addr, gpr, d2, x2, b2);
|
|
|
|
/* If it's a load from an in-line constant pool, then we can
|
|
simulate that, under the assumption that the code isn't
|
|
going to change between the time the processor actually
|
|
executed it creating the current frame, and the time when
|
|
we're analyzing the code to unwind past that frame. */
|
|
if (addr.kind == pv_constant
|
|
&& start_pc <= addr.k
|
|
&& addr.k < next_pc)
|
|
pv_set_to_constant (&gpr[r1],
|
|
read_memory_integer (addr.k, 4));
|
|
|
|
/* If it's definitely a reference to something on the stack,
|
|
we can do that. */
|
|
else if (s390_on_stack (&addr, 4, gpr, spill, &back_chain, &stack)
|
|
== pv_definite_yes)
|
|
gpr[r1] = *stack;
|
|
|
|
/* Otherwise, we don't know the value. */
|
|
else
|
|
pv_set_to_unknown (&gpr[r1]);
|
|
}
|
|
|
|
/* LA r1, d2(x2, b2) --- load address */
|
|
else if (is_rx (insn, op_la, &r1, &d2, &x2, &b2))
|
|
compute_x_addr (&gpr[r1], gpr, d2, x2, b2);
|
|
|
|
/* LARL r1, i2 --- load address relative long */
|
|
else if (GDB_TARGET_IS_ESAME
|
|
&& is_ril (insn, op1_larl, op2_larl, &r1, &i2))
|
|
pv_set_to_constant (&gpr[r1], pc + i2 * 2);
|
|
|
|
/* LGR r1, r2 --- load from register */
|
|
else if (GDB_TARGET_IS_ESAME
|
|
&& is_rre (insn, op_lgr, &r1, &r2))
|
|
gpr[r1] = gpr[r2];
|
|
|
|
/* LHI r1, i2 --- load halfword immediate */
|
|
else if (is_ri (insn, op1_lhi, op2_lhi, &r1, &i2))
|
|
pv_set_to_constant (&gpr[r1], i2);
|
|
|
|
/* LGHI r1, i2 --- load halfword immediate --- 64-bit version */
|
|
else if (is_ri (insn, op1_lghi, op2_lghi, &r1, &i2))
|
|
pv_set_to_constant (&gpr[r1], i2);
|
|
|
|
/* LR r1, r2 --- load from register */
|
|
else if (is_rr (insn, op_lr, &r1, &r2))
|
|
gpr[r1] = gpr[r2];
|
|
|
|
/* NGR r1, r2 --- logical and --- 64-bit version */
|
|
else if (GDB_TARGET_IS_ESAME
|
|
&& is_rre (insn, op_ngr, &r1, &r2))
|
|
pv_logical_and (&gpr[r1], &gpr[r1], &gpr[r2]);
|
|
|
|
/* NR r1, r2 --- logical and */
|
|
else if (is_rr (insn, op_nr, &r1, &r2))
|
|
pv_logical_and (&gpr[r1], &gpr[r1], &gpr[r2]);
|
|
|
|
/* NGR r1, r2 --- logical and --- 64-bit version */
|
|
else if (GDB_TARGET_IS_ESAME
|
|
&& is_rre (insn, op_ngr, &r1, &r2))
|
|
pv_logical_and (&gpr[r1], &gpr[r1], &gpr[r2]);
|
|
|
|
/* NR r1, r2 --- logical and */
|
|
else if (is_rr (insn, op_nr, &r1, &r2))
|
|
pv_logical_and (&gpr[r1], &gpr[r1], &gpr[r2]);
|
|
|
|
/* S r1, d2(x2, b2) --- subtract from memory */
|
|
else if (is_rx (insn, op_s, &r1, &d2, &x2, &b2))
|
|
{
|
|
struct prologue_value addr;
|
|
struct prologue_value value;
|
|
struct prologue_value *stack;
|
|
|
|
compute_x_addr (&addr, gpr, d2, x2, b2);
|
|
|
|
/* If it's a load from an in-line constant pool, then we can
|
|
simulate that, under the assumption that the code isn't
|
|
going to change between the time the processor actually
|
|
executed it and the time when we're analyzing it. */
|
|
if (addr.kind == pv_constant
|
|
&& start_pc <= addr.k
|
|
&& addr.k < pc)
|
|
pv_set_to_constant (&value, read_memory_integer (addr.k, 4));
|
|
|
|
/* If it's definitely a reference to something on the stack,
|
|
we could do that. */
|
|
else if (s390_on_stack (&addr, 4, gpr, spill, &back_chain, &stack)
|
|
== pv_definite_yes)
|
|
value = *stack;
|
|
|
|
/* Otherwise, we don't know the value. */
|
|
else
|
|
pv_set_to_unknown (&value);
|
|
|
|
pv_subtract (&gpr[r1], &gpr[r1], &value);
|
|
}
|
|
|
|
/* ST r1, d2(x2, b2) --- store */
|
|
else if (is_rx (insn, op_st, &r1, &d2, &x2, &b2))
|
|
{
|
|
struct prologue_value addr;
|
|
|
|
compute_x_addr (&addr, gpr, d2, x2, b2);
|
|
|
|
/* The below really should be '4', not 'S390_GPR_SIZE'; this
|
|
instruction always stores 32 bits, regardless of the full
|
|
size of the GPR. */
|
|
if (s390_store (&addr, 4, &gpr[r1], gpr, spill, &back_chain)
|
|
== pv_maybe)
|
|
/* If we can't be sure that it's *not* a store to
|
|
something we're tracing, then we would have to mark all
|
|
our memory as unknown --- after all, it *could* be a
|
|
store to any of them --- so we might as well just stop
|
|
interpreting. */
|
|
break;
|
|
}
|
|
|
|
/* STD r1, d2(x2,b2) --- store floating-point register */
|
|
else if (is_rx (insn, op_std, &r1, &d2, &x2, &b2))
|
|
{
|
|
struct prologue_value addr;
|
|
|
|
compute_x_addr (&addr, gpr, d2, x2, b2);
|
|
|
|
if (s390_store (&addr, 8, &fpr[r1], gpr, spill, &back_chain)
|
|
== pv_maybe)
|
|
/* If we can't be sure that it's *not* a store to
|
|
something we're tracing, then we would have to mark all
|
|
our memory as unknown --- after all, it *could* be a
|
|
store to any of them --- so we might as well just stop
|
|
interpreting. */
|
|
break;
|
|
}
|
|
|
|
/* STG r1, d2(x2, b2) --- 64-bit store */
|
|
else if (GDB_TARGET_IS_ESAME
|
|
&& is_rxe (insn, op1_stg, op2_stg, &r1, &d2, &x2, &b2))
|
|
{
|
|
struct prologue_value addr;
|
|
|
|
compute_x_addr (&addr, gpr, d2, x2, b2);
|
|
|
|
/* The below really should be '8', not 'S390_GPR_SIZE'; this
|
|
instruction always stores 64 bits, regardless of the full
|
|
size of the GPR. */
|
|
if (s390_store (&addr, 8, &gpr[r1], gpr, spill, &back_chain)
|
|
== pv_maybe)
|
|
/* If we can't be sure that it's *not* a store to
|
|
something we're tracing, then we would have to mark all
|
|
our memory as unknown --- after all, it *could* be a
|
|
store to any of them --- so we might as well just stop
|
|
interpreting. */
|
|
break;
|
|
}
|
|
|
|
/* STM r1, r3, d2(b2) --- store multiple */
|
|
else if (is_rs (insn, op_stm, &r1, &r3, &d2, &b2))
|
|
{
|
|
int regnum;
|
|
int offset;
|
|
struct prologue_value addr;
|
|
|
|
for (regnum = r1, offset = 0;
|
|
regnum <= r3;
|
|
regnum++, offset += 4)
|
|
{
|
|
compute_x_addr (&addr, gpr, d2 + offset, 0, b2);
|
|
|
|
if (s390_store (&addr, 4, &gpr[regnum], gpr, spill, &back_chain)
|
|
== pv_maybe)
|
|
/* If we can't be sure that it's *not* a store to
|
|
something we're tracing, then we would have to mark all
|
|
our memory as unknown --- after all, it *could* be a
|
|
store to any of them --- so we might as well just stop
|
|
interpreting. */
|
|
break;
|
|
}
|
|
|
|
/* If we left the loop early, we should stop interpreting
|
|
altogether. */
|
|
if (regnum <= r3)
|
|
break;
|
|
}
|
|
|
|
/* STMG r1, r3, d2(b2) --- store multiple, 64-bit */
|
|
else if (GDB_TARGET_IS_ESAME
|
|
&& is_rse (insn, op1_stmg, op2_stmg, &r1, &r3, &d2, &b2))
|
|
{
|
|
int regnum;
|
|
int offset;
|
|
struct prologue_value addr;
|
|
|
|
for (regnum = r1, offset = 0;
|
|
regnum <= r3;
|
|
regnum++, offset += 8)
|
|
{
|
|
compute_x_addr (&addr, gpr, d2 + offset, 0, b2);
|
|
|
|
if (s390_store (&addr, 8, &gpr[regnum], gpr, spill, &back_chain)
|
|
== pv_maybe)
|
|
/* If we can't be sure that it's *not* a store to
|
|
something we're tracing, then we would have to mark all
|
|
our memory as unknown --- after all, it *could* be a
|
|
store to any of them --- so we might as well just stop
|
|
interpreting. */
|
|
break;
|
|
}
|
|
|
|
/* If we left the loop early, we should stop interpreting
|
|
altogether. */
|
|
if (regnum <= r3)
|
|
break;
|
|
}
|
|
|
|
else
|
|
/* An instruction we don't know how to simulate. The only
|
|
safe thing to do would be to set every value we're tracking
|
|
to 'unknown'. Instead, we'll be optimistic: we just stop
|
|
interpreting, and assume that the machine state we've got
|
|
now is good enough for unwinding the stack. */
|
|
break;
|
|
|
|
/* Record the address after the last instruction that changed
|
|
the FP, SP, or backlink. Ignore instructions that changed
|
|
them back to their original values --- those are probably
|
|
restore instructions. (The back chain is never restored,
|
|
just popped.) */
|
|
{
|
|
struct prologue_value *sp = &gpr[S390_SP_REGNUM - S390_GP0_REGNUM];
|
|
struct prologue_value *fp = &gpr[S390_FRAME_REGNUM - S390_GP0_REGNUM];
|
|
|
|
if ((! pv_is_identical (&pre_insn_sp, sp)
|
|
&& ! pv_is_register (sp, S390_SP_REGNUM, 0))
|
|
|| (! pv_is_identical (&pre_insn_fp, fp)
|
|
&& ! pv_is_register (fp, S390_FRAME_REGNUM, 0))
|
|
|| ! pv_is_identical (&pre_insn_back_chain, &back_chain))
|
|
after_last_frame_setup_insn = next_pc;
|
|
}
|
|
}
|
|
|
|
/* Okay, now gpr[], fpr[], spill[], and back_chain reflect the state
|
|
of the machine as of the first instruction we couldn't interpret
|
|
(hopefully the first non-prologue instruction). */
|
|
{
|
|
/* The size of the frame, or (CORE_ADDR) -1 if we couldn't figure
|
|
that out. */
|
|
CORE_ADDR frame_size = -1;
|
|
|
|
/* The value the SP had upon entry to the function, or
|
|
(CORE_ADDR) -1 if we can't figure that out. */
|
|
CORE_ADDR original_sp = -1;
|
|
|
|
/* Are we using S390_FRAME_REGNUM as a frame pointer register? */
|
|
int using_frame_pointer = 0;
|
|
|
|
/* If S390_FRAME_REGNUM is some constant offset from the SP, then
|
|
that strongly suggests that we're going to use that as our
|
|
frame pointer register, not the SP. */
|
|
{
|
|
struct prologue_value *fp = &gpr[S390_FRAME_REGNUM - S390_GP0_REGNUM];
|
|
|
|
if (fp->kind == pv_register
|
|
&& fp->reg == S390_SP_REGNUM)
|
|
using_frame_pointer = 1;
|
|
}
|
|
|
|
/* If we were given a frame_info structure, we may be able to use
|
|
the frame's base address to figure out the actual value of the
|
|
original SP. */
|
|
if (fi && get_frame_base (fi))
|
|
{
|
|
int frame_base_regno;
|
|
struct prologue_value *frame_base;
|
|
|
|
/* The meaning of the frame base depends on whether the
|
|
function uses a frame pointer register other than the SP or
|
|
not (see s390_read_fp):
|
|
- If the function does use a frame pointer register other
|
|
than the SP, then the frame base is that register's
|
|
value.
|
|
- If the function doesn't use a frame pointer, then the
|
|
frame base is the SP itself.
|
|
We're duplicating some of the logic of s390_fp_regnum here,
|
|
but we don't want to call that, because it would just do
|
|
exactly the same analysis we've already done above. */
|
|
if (using_frame_pointer)
|
|
frame_base_regno = S390_FRAME_REGNUM;
|
|
else
|
|
frame_base_regno = S390_SP_REGNUM;
|
|
|
|
frame_base = &gpr[frame_base_regno - S390_GP0_REGNUM];
|
|
|
|
/* We know the frame base address; if the value of whatever
|
|
register it came from is a constant offset from the
|
|
original SP, then we can reconstruct the original SP just
|
|
by subtracting off that constant. */
|
|
if (frame_base->kind == pv_register
|
|
&& frame_base->reg == S390_SP_REGNUM)
|
|
original_sp = get_frame_base (fi) - frame_base->k;
|
|
}
|
|
|
|
/* If the analysis said that the current SP value is the original
|
|
value less some constant, then that constant is the frame size. */
|
|
{
|
|
struct prologue_value *sp = &gpr[S390_SP_REGNUM - S390_GP0_REGNUM];
|
|
|
|
if (sp->kind == pv_register
|
|
&& sp->reg == S390_SP_REGNUM)
|
|
frame_size = -sp->k;
|
|
}
|
|
|
|
/* If we knew other registers' current values, we could check if
|
|
the analysis said any of those were related to the original SP
|
|
value, too. But for now, we'll just punt. */
|
|
|
|
/* If the caller passed in an 'extra info' structure, fill in the
|
|
parts we can. */
|
|
if (fextra_info)
|
|
{
|
|
if (init_extra_info || ! fextra_info->initialised)
|
|
{
|
|
s390_memset_extra_info (fextra_info);
|
|
fextra_info->function_start = start_pc;
|
|
fextra_info->initialised = 1;
|
|
}
|
|
|
|
if (frame_size != -1)
|
|
{
|
|
fextra_info->stack_bought_valid = 1;
|
|
fextra_info->stack_bought = frame_size;
|
|
}
|
|
|
|
/* Assume everything was okay, and indicate otherwise when we
|
|
find something amiss. */
|
|
fextra_info->good_prologue = 1;
|
|
|
|
if (using_frame_pointer)
|
|
/* Actually, nobody cares about the exact PC, so any
|
|
non-zero value will do here. */
|
|
fextra_info->frame_pointer_saved_pc = 1;
|
|
|
|
/* If we weren't able to find the size of the frame, or find
|
|
the original sp based on actual current register values,
|
|
then we're not going to be able to unwind this frame.
|
|
|
|
(If we're just doing prologue analysis to set a breakpoint,
|
|
then frame_size might be known, but original_sp unknown; if
|
|
we're analyzing a real frame which uses alloca, then
|
|
original_sp might be known (from the frame pointer
|
|
register), but the frame size might be unknown.) */
|
|
if (original_sp == -1 && frame_size == -1)
|
|
fextra_info->good_prologue = 0;
|
|
|
|
if (fextra_info->good_prologue)
|
|
fextra_info->skip_prologue_function_start
|
|
= after_last_frame_setup_insn;
|
|
else
|
|
/* If the prologue was too complex for us to make sense of,
|
|
then perhaps it's better to just not skip anything at
|
|
all. */
|
|
fextra_info->skip_prologue_function_start = start_pc;
|
|
}
|
|
|
|
/* Indicate where registers were saved on the stack, if:
|
|
- the caller seems to want to know,
|
|
- the caller provided an actual SP, and
|
|
- the analysis gave us enough information to actually figure it
|
|
out. */
|
|
if (fi
|
|
&& get_frame_saved_regs (fi)
|
|
&& original_sp != -1)
|
|
{
|
|
int slot_num;
|
|
CORE_ADDR slot_addr;
|
|
CORE_ADDR *saved_regs = get_frame_saved_regs (fi);
|
|
|
|
/* Scan the spill array; if a spill slot says it holds the
|
|
original value of some register, then record that slot's
|
|
address as the place that register was saved.
|
|
|
|
Just for kicks, note that, even if registers aren't saved
|
|
in their officially-sanctioned slots, this will still work
|
|
--- we know what really got put where. */
|
|
|
|
/* First, the slots for r2 -- r15. */
|
|
for (slot_num = 0, slot_addr = original_sp + 2 * S390_GPR_SIZE;
|
|
slot_num < 14;
|
|
slot_num++, slot_addr += S390_GPR_SIZE)
|
|
{
|
|
struct prologue_value *slot = &spill[slot_num];
|
|
|
|
if (slot->kind == pv_register
|
|
&& slot->k == 0)
|
|
saved_regs[slot->reg] = slot_addr;
|
|
}
|
|
|
|
/* Then, the slots for f0, f2, f4, and f6. They're a
|
|
different size. */
|
|
for (slot_num = 14, slot_addr = original_sp + 16 * S390_GPR_SIZE;
|
|
slot_num < S390_NUM_SPILL_SLOTS;
|
|
slot_num++, slot_addr += S390_FPR_SIZE)
|
|
{
|
|
struct prologue_value *slot = &spill[slot_num];
|
|
|
|
if (slot->kind == pv_register
|
|
&& slot->k == 0)
|
|
saved_regs[slot->reg] = slot_addr;
|
|
}
|
|
|
|
/* The stack pointer's element of saved_regs[] is special. */
|
|
saved_regs[S390_SP_REGNUM] = original_sp;
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
static int
|
|
s390_check_function_end (CORE_ADDR pc)
|
|
{
|
|
bfd_byte instr[S390_MAX_INSTR_SIZE];
|
|
disassemble_info info;
|
|
int regidx, instrlen;
|
|
|
|
info.read_memory_func = deprecated_tm_print_insn_info.read_memory_func;
|
|
instrlen = s390_readinstruction (instr, pc, &info);
|
|
if (instrlen < 0)
|
|
return -1;
|
|
/* check for BR */
|
|
if (instrlen != 2 || instr[0] != 07 || (instr[1] >> 4) != 0xf)
|
|
return 0;
|
|
regidx = instr[1] & 0xf;
|
|
/* Check for LMG or LG */
|
|
instrlen =
|
|
s390_readinstruction (instr, pc - (GDB_TARGET_IS_ESAME ? 6 : 4), &info);
|
|
if (instrlen < 0)
|
|
return -1;
|
|
if (GDB_TARGET_IS_ESAME)
|
|
{
|
|
|
|
if (instrlen != 6 || instr[0] != 0xeb || instr[5] != 0x4)
|
|
return 0;
|
|
}
|
|
else if (instrlen != 4 || instr[0] != 0x98)
|
|
{
|
|
return 0;
|
|
}
|
|
if ((instr[2] >> 4) != 0xf)
|
|
return 0;
|
|
if (regidx == 14)
|
|
return 1;
|
|
instrlen = s390_readinstruction (instr, pc - (GDB_TARGET_IS_ESAME ? 12 : 8),
|
|
&info);
|
|
if (instrlen < 0)
|
|
return -1;
|
|
if (GDB_TARGET_IS_ESAME)
|
|
{
|
|
/* Check for LG */
|
|
if (instrlen != 6 || instr[0] != 0xe3 || instr[5] != 0x4)
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
/* Check for L */
|
|
if (instrlen != 4 || instr[0] != 0x58)
|
|
return 0;
|
|
}
|
|
if (instr[2] >> 4 != 0xf)
|
|
return 0;
|
|
if (instr[1] >> 4 != regidx)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
s390_sniff_pc_function_start (CORE_ADDR pc, struct frame_info *fi)
|
|
{
|
|
CORE_ADDR function_start, test_function_start;
|
|
int loop_cnt, err, function_end;
|
|
struct frame_extra_info fextra_info;
|
|
function_start = get_pc_function_start (pc);
|
|
|
|
if (function_start == 0)
|
|
{
|
|
test_function_start = pc;
|
|
if (test_function_start & 1)
|
|
return 0; /* This has to be bogus */
|
|
loop_cnt = 0;
|
|
do
|
|
{
|
|
|
|
err =
|
|
s390_get_frame_info (test_function_start, &fextra_info, fi, 1);
|
|
loop_cnt++;
|
|
test_function_start -= 2;
|
|
function_end = s390_check_function_end (test_function_start);
|
|
}
|
|
while (!(function_end == 1 || err || loop_cnt >= 4096 ||
|
|
(fextra_info.good_prologue)));
|
|
if (fextra_info.good_prologue)
|
|
function_start = fextra_info.function_start;
|
|
else if (function_end == 1)
|
|
function_start = test_function_start;
|
|
}
|
|
return function_start;
|
|
}
|
|
|
|
|
|
|
|
static CORE_ADDR
|
|
s390_function_start (struct frame_info *fi)
|
|
{
|
|
CORE_ADDR function_start = 0;
|
|
|
|
if (get_frame_extra_info (fi) && get_frame_extra_info (fi)->initialised)
|
|
function_start = get_frame_extra_info (fi)->function_start;
|
|
else if (get_frame_pc (fi))
|
|
function_start = get_frame_func (fi);
|
|
return function_start;
|
|
}
|
|
|
|
|
|
|
|
|
|
static int
|
|
s390_frameless_function_invocation (struct frame_info *fi)
|
|
{
|
|
struct frame_extra_info fextra_info, *fextra_info_ptr;
|
|
int frameless = 0;
|
|
|
|
if (get_next_frame (fi) == NULL) /* no may be frameless */
|
|
{
|
|
if (get_frame_extra_info (fi))
|
|
fextra_info_ptr = get_frame_extra_info (fi);
|
|
else
|
|
{
|
|
fextra_info_ptr = &fextra_info;
|
|
s390_get_frame_info (s390_sniff_pc_function_start (get_frame_pc (fi), fi),
|
|
fextra_info_ptr, fi, 1);
|
|
}
|
|
frameless = (fextra_info_ptr->stack_bought_valid
|
|
&& fextra_info_ptr->stack_bought == 0);
|
|
}
|
|
return frameless;
|
|
|
|
}
|
|
|
|
|
|
static int
|
|
s390_is_sigreturn (CORE_ADDR pc, struct frame_info *sighandler_fi,
|
|
CORE_ADDR *sregs, CORE_ADDR *sigcaller_pc)
|
|
{
|
|
bfd_byte instr[S390_MAX_INSTR_SIZE];
|
|
disassemble_info info;
|
|
int instrlen;
|
|
CORE_ADDR scontext;
|
|
int retval = 0;
|
|
CORE_ADDR orig_sp;
|
|
CORE_ADDR temp_sregs;
|
|
|
|
scontext = temp_sregs = 0;
|
|
|
|
info.read_memory_func = deprecated_tm_print_insn_info.read_memory_func;
|
|
instrlen = s390_readinstruction (instr, pc, &info);
|
|
if (sigcaller_pc)
|
|
*sigcaller_pc = 0;
|
|
if (((instrlen == S390_SYSCALL_SIZE) &&
|
|
(instr[0] == S390_SYSCALL_OPCODE)) &&
|
|
((instr[1] == s390_NR_sigreturn) || (instr[1] == s390_NR_rt_sigreturn)))
|
|
{
|
|
if (sighandler_fi)
|
|
{
|
|
if (s390_frameless_function_invocation (sighandler_fi))
|
|
orig_sp = get_frame_base (sighandler_fi);
|
|
else
|
|
orig_sp = ADDR_BITS_REMOVE ((CORE_ADDR)
|
|
read_memory_integer (get_frame_base (sighandler_fi),
|
|
S390_GPR_SIZE));
|
|
if (orig_sp && sigcaller_pc)
|
|
{
|
|
scontext = orig_sp + S390_SIGNAL_FRAMESIZE;
|
|
if (pc == scontext && instr[1] == s390_NR_rt_sigreturn)
|
|
{
|
|
/* We got a new style rt_signal */
|
|
/* get address of read ucontext->uc_mcontext */
|
|
temp_sregs = orig_sp + (GDB_TARGET_IS_ESAME ?
|
|
S390X_UC_MCONTEXT_OFFSET :
|
|
S390_UC_MCONTEXT_OFFSET);
|
|
}
|
|
else
|
|
{
|
|
/* read sigcontext->sregs */
|
|
temp_sregs = ADDR_BITS_REMOVE ((CORE_ADDR)
|
|
read_memory_integer (scontext
|
|
+
|
|
(GDB_TARGET_IS_ESAME
|
|
?
|
|
S390X_SIGCONTEXT_SREGS_OFFSET
|
|
:
|
|
S390_SIGCONTEXT_SREGS_OFFSET),
|
|
S390_GPR_SIZE));
|
|
|
|
}
|
|
/* read sigregs->psw.addr */
|
|
*sigcaller_pc =
|
|
ADDR_BITS_REMOVE ((CORE_ADDR)
|
|
read_memory_integer (temp_sregs +
|
|
REGISTER_BYTE
|
|
(S390_PC_REGNUM),
|
|
S390_PSW_ADDR_SIZE));
|
|
}
|
|
}
|
|
retval = 1;
|
|
}
|
|
if (sregs)
|
|
*sregs = temp_sregs;
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
We need to do something better here but this will keep us out of trouble
|
|
for the moment.
|
|
For some reason the blockframe.c calls us with fi->next->fromleaf
|
|
so this seems of little use to us. */
|
|
static CORE_ADDR
|
|
s390_init_frame_pc_first (int next_fromleaf, struct frame_info *fi)
|
|
{
|
|
CORE_ADDR sigcaller_pc;
|
|
CORE_ADDR pc = 0;
|
|
if (next_fromleaf)
|
|
{
|
|
pc = ADDR_BITS_REMOVE (read_register (S390_RETADDR_REGNUM));
|
|
/* fix signal handlers */
|
|
}
|
|
else if (get_next_frame (fi) && get_frame_pc (get_next_frame (fi)))
|
|
pc = s390_frame_saved_pc_nofix (get_next_frame (fi));
|
|
if (pc && get_next_frame (fi) && get_frame_base (get_next_frame (fi))
|
|
&& s390_is_sigreturn (pc, get_next_frame (fi), NULL, &sigcaller_pc))
|
|
{
|
|
pc = sigcaller_pc;
|
|
}
|
|
return pc;
|
|
}
|
|
|
|
static void
|
|
s390_init_extra_frame_info (int fromleaf, struct frame_info *fi)
|
|
{
|
|
frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
|
|
if (get_frame_pc (fi))
|
|
s390_get_frame_info (s390_sniff_pc_function_start (get_frame_pc (fi), fi),
|
|
get_frame_extra_info (fi), fi, 1);
|
|
else
|
|
s390_memset_extra_info (get_frame_extra_info (fi));
|
|
}
|
|
|
|
/* If saved registers of frame FI are not known yet, read and cache them.
|
|
&FEXTRA_INFOP contains struct frame_extra_info; TDATAP can be NULL,
|
|
in which case the framedata are read. */
|
|
|
|
static void
|
|
s390_frame_init_saved_regs (struct frame_info *fi)
|
|
{
|
|
|
|
int quick;
|
|
|
|
if (get_frame_saved_regs (fi) == NULL)
|
|
{
|
|
/* zalloc memsets the saved regs */
|
|
frame_saved_regs_zalloc (fi);
|
|
if (get_frame_pc (fi))
|
|
{
|
|
quick = (get_frame_extra_info (fi)
|
|
&& get_frame_extra_info (fi)->initialised
|
|
&& get_frame_extra_info (fi)->good_prologue);
|
|
s390_get_frame_info (quick
|
|
? get_frame_extra_info (fi)->function_start
|
|
: s390_sniff_pc_function_start (get_frame_pc (fi), fi),
|
|
get_frame_extra_info (fi), fi, !quick);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
static CORE_ADDR
|
|
s390_frame_saved_pc_nofix (struct frame_info *fi)
|
|
{
|
|
if (get_frame_extra_info (fi) && get_frame_extra_info (fi)->saved_pc_valid)
|
|
return get_frame_extra_info (fi)->saved_pc;
|
|
|
|
if (deprecated_generic_find_dummy_frame (get_frame_pc (fi),
|
|
get_frame_base (fi)))
|
|
return deprecated_read_register_dummy (get_frame_pc (fi),
|
|
get_frame_base (fi), S390_PC_REGNUM);
|
|
|
|
s390_frame_init_saved_regs (fi);
|
|
if (get_frame_extra_info (fi))
|
|
{
|
|
get_frame_extra_info (fi)->saved_pc_valid = 1;
|
|
if (get_frame_extra_info (fi)->good_prologue
|
|
&& get_frame_saved_regs (fi)[S390_RETADDR_REGNUM])
|
|
get_frame_extra_info (fi)->saved_pc
|
|
= ADDR_BITS_REMOVE (read_memory_integer
|
|
(get_frame_saved_regs (fi)[S390_RETADDR_REGNUM],
|
|
S390_GPR_SIZE));
|
|
else
|
|
get_frame_extra_info (fi)->saved_pc
|
|
= ADDR_BITS_REMOVE (read_register (S390_RETADDR_REGNUM));
|
|
return get_frame_extra_info (fi)->saved_pc;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
s390_frame_saved_pc (struct frame_info *fi)
|
|
{
|
|
CORE_ADDR saved_pc = 0, sig_pc;
|
|
|
|
if (get_frame_extra_info (fi)
|
|
&& get_frame_extra_info (fi)->sig_fixed_saved_pc_valid)
|
|
return get_frame_extra_info (fi)->sig_fixed_saved_pc;
|
|
saved_pc = s390_frame_saved_pc_nofix (fi);
|
|
|
|
if (get_frame_extra_info (fi))
|
|
{
|
|
get_frame_extra_info (fi)->sig_fixed_saved_pc_valid = 1;
|
|
if (saved_pc)
|
|
{
|
|
if (s390_is_sigreturn (saved_pc, fi, NULL, &sig_pc))
|
|
saved_pc = sig_pc;
|
|
}
|
|
get_frame_extra_info (fi)->sig_fixed_saved_pc = saved_pc;
|
|
}
|
|
return saved_pc;
|
|
}
|
|
|
|
|
|
|
|
|
|
/* We want backtraces out of signal handlers so we don't set
|
|
(get_frame_type (thisframe) == SIGTRAMP_FRAME) to 1 */
|
|
|
|
static CORE_ADDR
|
|
s390_frame_chain (struct frame_info *thisframe)
|
|
{
|
|
CORE_ADDR prev_fp = 0;
|
|
|
|
if (deprecated_generic_find_dummy_frame (get_frame_pc (thisframe),
|
|
get_frame_base (thisframe)))
|
|
return deprecated_read_register_dummy (get_frame_pc (thisframe),
|
|
get_frame_base (thisframe),
|
|
S390_SP_REGNUM);
|
|
else
|
|
{
|
|
int sigreturn = 0;
|
|
CORE_ADDR sregs = 0;
|
|
struct frame_extra_info prev_fextra_info;
|
|
|
|
memset (&prev_fextra_info, 0, sizeof (prev_fextra_info));
|
|
if (get_frame_pc (thisframe))
|
|
{
|
|
CORE_ADDR saved_pc, sig_pc;
|
|
|
|
saved_pc = s390_frame_saved_pc_nofix (thisframe);
|
|
if (saved_pc)
|
|
{
|
|
if ((sigreturn =
|
|
s390_is_sigreturn (saved_pc, thisframe, &sregs, &sig_pc)))
|
|
saved_pc = sig_pc;
|
|
s390_get_frame_info (s390_sniff_pc_function_start
|
|
(saved_pc, NULL), &prev_fextra_info, NULL,
|
|
1);
|
|
}
|
|
}
|
|
if (sigreturn)
|
|
{
|
|
/* read sigregs,regs.gprs[11 or 15] */
|
|
prev_fp = read_memory_integer (sregs +
|
|
REGISTER_BYTE (S390_GP0_REGNUM +
|
|
(prev_fextra_info.
|
|
frame_pointer_saved_pc
|
|
? 11 : 15)),
|
|
S390_GPR_SIZE);
|
|
get_frame_extra_info (thisframe)->sigcontext = sregs;
|
|
}
|
|
else
|
|
{
|
|
if (get_frame_saved_regs (thisframe))
|
|
{
|
|
int regno;
|
|
|
|
if (prev_fextra_info.frame_pointer_saved_pc
|
|
&& get_frame_saved_regs (thisframe)[S390_FRAME_REGNUM])
|
|
regno = S390_FRAME_REGNUM;
|
|
else
|
|
regno = S390_SP_REGNUM;
|
|
|
|
if (get_frame_saved_regs (thisframe)[regno])
|
|
{
|
|
/* The SP's entry of `saved_regs' is special. */
|
|
if (regno == S390_SP_REGNUM)
|
|
prev_fp = get_frame_saved_regs (thisframe)[regno];
|
|
else
|
|
prev_fp =
|
|
read_memory_integer (get_frame_saved_regs (thisframe)[regno],
|
|
S390_GPR_SIZE);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return ADDR_BITS_REMOVE (prev_fp);
|
|
}
|
|
|
|
/*
|
|
Whether struct frame_extra_info is actually needed I'll have to figure
|
|
out as our frames are similar to rs6000 there is a possibility
|
|
i386 dosen't need it. */
|
|
|
|
|
|
|
|
/* a given return value in `regbuf' with a type `valtype', extract and copy its
|
|
value into `valbuf' */
|
|
static void
|
|
s390_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
|
|
{
|
|
/* floats and doubles are returned in fpr0. fpr's have a size of 8 bytes.
|
|
We need to truncate the return value into float size (4 byte) if
|
|
necessary. */
|
|
int len = TYPE_LENGTH (valtype);
|
|
|
|
if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
|
|
memcpy (valbuf, ®buf[REGISTER_BYTE (S390_FP0_REGNUM)], len);
|
|
else
|
|
{
|
|
int offset = 0;
|
|
/* return value is copied starting from r2. */
|
|
if (TYPE_LENGTH (valtype) < S390_GPR_SIZE)
|
|
offset = S390_GPR_SIZE - TYPE_LENGTH (valtype);
|
|
memcpy (valbuf,
|
|
regbuf + REGISTER_BYTE (S390_GP0_REGNUM + 2) + offset,
|
|
TYPE_LENGTH (valtype));
|
|
}
|
|
}
|
|
|
|
|
|
static char *
|
|
s390_promote_integer_argument (struct type *valtype, char *valbuf,
|
|
char *reg_buff, int *arglen)
|
|
{
|
|
char *value = valbuf;
|
|
int len = TYPE_LENGTH (valtype);
|
|
|
|
if (len < S390_GPR_SIZE)
|
|
{
|
|
/* We need to upgrade this value to a register to pass it correctly */
|
|
int idx, diff = S390_GPR_SIZE - len, negative =
|
|
(!TYPE_UNSIGNED (valtype) && value[0] & 0x80);
|
|
for (idx = 0; idx < S390_GPR_SIZE; idx++)
|
|
{
|
|
reg_buff[idx] = (idx < diff ? (negative ? 0xff : 0x0) :
|
|
value[idx - diff]);
|
|
}
|
|
value = reg_buff;
|
|
*arglen = S390_GPR_SIZE;
|
|
}
|
|
else
|
|
{
|
|
if (len & (S390_GPR_SIZE - 1))
|
|
{
|
|
fprintf_unfiltered (gdb_stderr,
|
|
"s390_promote_integer_argument detected an argument not "
|
|
"a multiple of S390_GPR_SIZE & greater than S390_GPR_SIZE "
|
|
"we might not deal with this correctly.\n");
|
|
}
|
|
*arglen = len;
|
|
}
|
|
|
|
return (value);
|
|
}
|
|
|
|
static void
|
|
s390_store_return_value (struct type *valtype, char *valbuf)
|
|
{
|
|
int arglen;
|
|
char *reg_buff = alloca (max (S390_FPR_SIZE, DEPRECATED_REGISTER_SIZE)), *value;
|
|
|
|
if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
|
|
{
|
|
if (TYPE_LENGTH (valtype) == 4
|
|
|| TYPE_LENGTH (valtype) == 8)
|
|
deprecated_write_register_bytes (REGISTER_BYTE (S390_FP0_REGNUM),
|
|
valbuf, TYPE_LENGTH (valtype));
|
|
else
|
|
error ("GDB is unable to return `long double' values "
|
|
"on this architecture.");
|
|
}
|
|
else
|
|
{
|
|
value =
|
|
s390_promote_integer_argument (valtype, valbuf, reg_buff, &arglen);
|
|
/* Everything else is returned in GPR2 and up. */
|
|
deprecated_write_register_bytes (REGISTER_BYTE (S390_GP0_REGNUM + 2),
|
|
value, arglen);
|
|
}
|
|
}
|
|
static int
|
|
gdb_print_insn_s390 (bfd_vma memaddr, disassemble_info * info)
|
|
{
|
|
bfd_byte instrbuff[S390_MAX_INSTR_SIZE];
|
|
int instrlen, cnt;
|
|
|
|
instrlen = s390_readinstruction (instrbuff, (CORE_ADDR) memaddr, info);
|
|
if (instrlen < 0)
|
|
{
|
|
(*info->memory_error_func) (instrlen, memaddr, info);
|
|
return -1;
|
|
}
|
|
for (cnt = 0; cnt < instrlen; cnt++)
|
|
info->fprintf_func (info->stream, "%02X ", instrbuff[cnt]);
|
|
for (cnt = instrlen; cnt < S390_MAX_INSTR_SIZE; cnt++)
|
|
info->fprintf_func (info->stream, " ");
|
|
instrlen = print_insn_s390 (memaddr, info);
|
|
return instrlen;
|
|
}
|
|
|
|
|
|
|
|
/* Not the most efficent code in the world */
|
|
static int
|
|
s390_fp_regnum (void)
|
|
{
|
|
int regno = S390_SP_REGNUM;
|
|
struct frame_extra_info fextra_info;
|
|
|
|
CORE_ADDR pc = ADDR_BITS_REMOVE (read_register (S390_PC_REGNUM));
|
|
|
|
s390_get_frame_info (s390_sniff_pc_function_start (pc, NULL), &fextra_info,
|
|
NULL, 1);
|
|
if (fextra_info.frame_pointer_saved_pc)
|
|
regno = S390_FRAME_REGNUM;
|
|
return regno;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
s390_read_fp (void)
|
|
{
|
|
return read_register (s390_fp_regnum ());
|
|
}
|
|
|
|
|
|
static void
|
|
s390_pop_frame_regular (struct frame_info *frame)
|
|
{
|
|
int regnum;
|
|
|
|
write_register (S390_PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame));
|
|
|
|
/* Restore any saved registers. */
|
|
if (get_frame_saved_regs (frame))
|
|
{
|
|
for (regnum = 0; regnum < NUM_REGS; regnum++)
|
|
if (get_frame_saved_regs (frame)[regnum] != 0)
|
|
{
|
|
ULONGEST value;
|
|
|
|
value = read_memory_unsigned_integer (get_frame_saved_regs (frame)[regnum],
|
|
REGISTER_RAW_SIZE (regnum));
|
|
write_register (regnum, value);
|
|
}
|
|
|
|
/* Actually cut back the stack. Remember that the SP's element of
|
|
saved_regs is the old SP itself, not the address at which it is
|
|
saved. */
|
|
write_register (S390_SP_REGNUM, get_frame_saved_regs (frame)[S390_SP_REGNUM]);
|
|
}
|
|
|
|
/* Throw away any cached frame information. */
|
|
flush_cached_frames ();
|
|
}
|
|
|
|
|
|
/* Destroy the innermost (Top-Of-Stack) stack frame, restoring the
|
|
machine state that was in effect before the frame was created.
|
|
Used in the contexts of the "return" command, and of
|
|
target function calls from the debugger. */
|
|
static void
|
|
s390_pop_frame (void)
|
|
{
|
|
/* This function checks for and handles generic dummy frames, and
|
|
calls back to our function for ordinary frames. */
|
|
generic_pop_current_frame (s390_pop_frame_regular);
|
|
}
|
|
|
|
|
|
/* Return non-zero if TYPE is an integer-like type, zero otherwise.
|
|
"Integer-like" types are those that should be passed the way
|
|
integers are: integers, enums, ranges, characters, and booleans. */
|
|
static int
|
|
is_integer_like (struct type *type)
|
|
{
|
|
enum type_code code = TYPE_CODE (type);
|
|
|
|
return (code == TYPE_CODE_INT
|
|
|| code == TYPE_CODE_ENUM
|
|
|| code == TYPE_CODE_RANGE
|
|
|| code == TYPE_CODE_CHAR
|
|
|| code == TYPE_CODE_BOOL);
|
|
}
|
|
|
|
|
|
/* Return non-zero if TYPE is a pointer-like type, zero otherwise.
|
|
"Pointer-like" types are those that should be passed the way
|
|
pointers are: pointers and references. */
|
|
static int
|
|
is_pointer_like (struct type *type)
|
|
{
|
|
enum type_code code = TYPE_CODE (type);
|
|
|
|
return (code == TYPE_CODE_PTR
|
|
|| code == TYPE_CODE_REF);
|
|
}
|
|
|
|
|
|
/* Return non-zero if TYPE is a `float singleton' or `double
|
|
singleton', zero otherwise.
|
|
|
|
A `T singleton' is a struct type with one member, whose type is
|
|
either T or a `T singleton'. So, the following are all float
|
|
singletons:
|
|
|
|
struct { float x };
|
|
struct { struct { float x; } x; };
|
|
struct { struct { struct { float x; } x; } x; };
|
|
|
|
... and so on.
|
|
|
|
WHY THE HECK DO WE CARE ABOUT THIS??? Well, it turns out that GCC
|
|
passes all float singletons and double singletons as if they were
|
|
simply floats or doubles. This is *not* what the ABI says it
|
|
should do. */
|
|
static int
|
|
is_float_singleton (struct type *type)
|
|
{
|
|
return (TYPE_CODE (type) == TYPE_CODE_STRUCT
|
|
&& TYPE_NFIELDS (type) == 1
|
|
&& (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_FLT
|
|
|| is_float_singleton (TYPE_FIELD_TYPE (type, 0))));
|
|
}
|
|
|
|
|
|
/* Return non-zero if TYPE is a struct-like type, zero otherwise.
|
|
"Struct-like" types are those that should be passed as structs are:
|
|
structs and unions.
|
|
|
|
As an odd quirk, not mentioned in the ABI, GCC passes float and
|
|
double singletons as if they were a plain float, double, etc. (The
|
|
corresponding union types are handled normally.) So we exclude
|
|
those types here. *shrug* */
|
|
static int
|
|
is_struct_like (struct type *type)
|
|
{
|
|
enum type_code code = TYPE_CODE (type);
|
|
|
|
return (code == TYPE_CODE_UNION
|
|
|| (code == TYPE_CODE_STRUCT && ! is_float_singleton (type)));
|
|
}
|
|
|
|
|
|
/* Return non-zero if TYPE is a float-like type, zero otherwise.
|
|
"Float-like" types are those that should be passed as
|
|
floating-point values are.
|
|
|
|
You'd think this would just be floats, doubles, long doubles, etc.
|
|
But as an odd quirk, not mentioned in the ABI, GCC passes float and
|
|
double singletons as if they were a plain float, double, etc. (The
|
|
corresponding union types are handled normally.) So we include
|
|
those types here. *shrug* */
|
|
static int
|
|
is_float_like (struct type *type)
|
|
{
|
|
return (TYPE_CODE (type) == TYPE_CODE_FLT
|
|
|| is_float_singleton (type));
|
|
}
|
|
|
|
|
|
/* Return non-zero if TYPE is considered a `DOUBLE_OR_FLOAT', as
|
|
defined by the parameter passing conventions described in the
|
|
"GNU/Linux for S/390 ELF Application Binary Interface Supplement".
|
|
Otherwise, return zero. */
|
|
static int
|
|
is_double_or_float (struct type *type)
|
|
{
|
|
return (is_float_like (type)
|
|
&& (TYPE_LENGTH (type) == 4
|
|
|| TYPE_LENGTH (type) == 8));
|
|
}
|
|
|
|
|
|
/* Return non-zero if TYPE is a `DOUBLE_ARG', as defined by the
|
|
parameter passing conventions described in the "GNU/Linux for S/390
|
|
ELF Application Binary Interface Supplement". Return zero
|
|
otherwise. */
|
|
static int
|
|
is_double_arg (struct type *type)
|
|
{
|
|
unsigned length = TYPE_LENGTH (type);
|
|
|
|
/* The s390x ABI doesn't handle DOUBLE_ARGS specially. */
|
|
if (GDB_TARGET_IS_ESAME)
|
|
return 0;
|
|
|
|
return ((is_integer_like (type)
|
|
|| is_struct_like (type))
|
|
&& length == 8);
|
|
}
|
|
|
|
|
|
/* Return non-zero if TYPE is considered a `SIMPLE_ARG', as defined by
|
|
the parameter passing conventions described in the "GNU/Linux for
|
|
S/390 ELF Application Binary Interface Supplement". Return zero
|
|
otherwise. */
|
|
static int
|
|
is_simple_arg (struct type *type)
|
|
{
|
|
unsigned length = TYPE_LENGTH (type);
|
|
|
|
/* This is almost a direct translation of the ABI's language, except
|
|
that we have to exclude 8-byte structs; those are DOUBLE_ARGs. */
|
|
return ((is_integer_like (type) && length <= DEPRECATED_REGISTER_SIZE)
|
|
|| is_pointer_like (type)
|
|
|| (is_struct_like (type) && !is_double_arg (type)));
|
|
}
|
|
|
|
|
|
static int
|
|
is_power_of_two (unsigned int n)
|
|
{
|
|
return ((n & (n - 1)) == 0);
|
|
}
|
|
|
|
/* Return non-zero if TYPE should be passed as a pointer to a copy,
|
|
zero otherwise. TYPE must be a SIMPLE_ARG, as recognized by
|
|
`is_simple_arg'. */
|
|
static int
|
|
pass_by_copy_ref (struct type *type)
|
|
{
|
|
unsigned length = TYPE_LENGTH (type);
|
|
|
|
return (is_struct_like (type)
|
|
&& !(is_power_of_two (length) && length <= DEPRECATED_REGISTER_SIZE));
|
|
}
|
|
|
|
|
|
/* Return ARG, a `SIMPLE_ARG', sign-extended or zero-extended to a full
|
|
word as required for the ABI. */
|
|
static LONGEST
|
|
extend_simple_arg (struct value *arg)
|
|
{
|
|
struct type *type = VALUE_TYPE (arg);
|
|
|
|
/* Even structs get passed in the least significant bits of the
|
|
register / memory word. It's not really right to extract them as
|
|
an integer, but it does take care of the extension. */
|
|
if (TYPE_UNSIGNED (type))
|
|
return extract_unsigned_integer (VALUE_CONTENTS (arg),
|
|
TYPE_LENGTH (type));
|
|
else
|
|
return extract_signed_integer (VALUE_CONTENTS (arg),
|
|
TYPE_LENGTH (type));
|
|
}
|
|
|
|
|
|
/* Round ADDR up to the next N-byte boundary. N must be a power of
|
|
two. */
|
|
static CORE_ADDR
|
|
round_up (CORE_ADDR addr, int n)
|
|
{
|
|
/* Check that N is really a power of two. */
|
|
gdb_assert (n && (n & (n-1)) == 0);
|
|
return ((addr + n - 1) & -n);
|
|
}
|
|
|
|
|
|
/* Round ADDR down to the next N-byte boundary. N must be a power of
|
|
two. */
|
|
static CORE_ADDR
|
|
round_down (CORE_ADDR addr, int n)
|
|
{
|
|
/* Check that N is really a power of two. */
|
|
gdb_assert (n && (n & (n-1)) == 0);
|
|
return (addr & -n);
|
|
}
|
|
|
|
|
|
/* Return the alignment required by TYPE. */
|
|
static int
|
|
alignment_of (struct type *type)
|
|
{
|
|
int alignment;
|
|
|
|
if (is_integer_like (type)
|
|
|| is_pointer_like (type)
|
|
|| TYPE_CODE (type) == TYPE_CODE_FLT)
|
|
alignment = TYPE_LENGTH (type);
|
|
else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
|
|
|| TYPE_CODE (type) == TYPE_CODE_UNION)
|
|
{
|
|
int i;
|
|
|
|
alignment = 1;
|
|
for (i = 0; i < TYPE_NFIELDS (type); i++)
|
|
{
|
|
int field_alignment = alignment_of (TYPE_FIELD_TYPE (type, i));
|
|
|
|
if (field_alignment > alignment)
|
|
alignment = field_alignment;
|
|
}
|
|
}
|
|
else
|
|
alignment = 1;
|
|
|
|
/* Check that everything we ever return is a power of two. Lots of
|
|
code doesn't want to deal with aligning things to arbitrary
|
|
boundaries. */
|
|
gdb_assert ((alignment & (alignment - 1)) == 0);
|
|
|
|
return alignment;
|
|
}
|
|
|
|
|
|
/* Put the actual parameter values pointed to by ARGS[0..NARGS-1] in
|
|
place to be passed to a function, as specified by the "GNU/Linux
|
|
for S/390 ELF Application Binary Interface Supplement".
|
|
|
|
SP is the current stack pointer. We must put arguments, links,
|
|
padding, etc. whereever they belong, and return the new stack
|
|
pointer value.
|
|
|
|
If STRUCT_RETURN is non-zero, then the function we're calling is
|
|
going to return a structure by value; STRUCT_ADDR is the address of
|
|
a block we've allocated for it on the stack.
|
|
|
|
Our caller has taken care of any type promotions needed to satisfy
|
|
prototypes or the old K&R argument-passing rules. */
|
|
static CORE_ADDR
|
|
s390_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
|
|
int struct_return, CORE_ADDR struct_addr)
|
|
{
|
|
int i;
|
|
int pointer_size = (TARGET_PTR_BIT / TARGET_CHAR_BIT);
|
|
|
|
/* The number of arguments passed by reference-to-copy. */
|
|
int num_copies;
|
|
|
|
/* If the i'th argument is passed as a reference to a copy, then
|
|
copy_addr[i] is the address of the copy we made. */
|
|
CORE_ADDR *copy_addr = alloca (nargs * sizeof (CORE_ADDR));
|
|
|
|
/* Build the reference-to-copy area. */
|
|
num_copies = 0;
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
struct value *arg = args[i];
|
|
struct type *type = VALUE_TYPE (arg);
|
|
unsigned length = TYPE_LENGTH (type);
|
|
|
|
if (is_simple_arg (type)
|
|
&& pass_by_copy_ref (type))
|
|
{
|
|
sp -= length;
|
|
sp = round_down (sp, alignment_of (type));
|
|
write_memory (sp, VALUE_CONTENTS (arg), length);
|
|
copy_addr[i] = sp;
|
|
num_copies++;
|
|
}
|
|
}
|
|
|
|
/* Reserve space for the parameter area. As a conservative
|
|
simplification, we assume that everything will be passed on the
|
|
stack. */
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
struct value *arg = args[i];
|
|
struct type *type = VALUE_TYPE (arg);
|
|
int length = TYPE_LENGTH (type);
|
|
|
|
sp = round_down (sp, alignment_of (type));
|
|
|
|
/* SIMPLE_ARG values get extended to DEPRECATED_REGISTER_SIZE bytes.
|
|
Assume every argument is. */
|
|
if (length < DEPRECATED_REGISTER_SIZE) length = DEPRECATED_REGISTER_SIZE;
|
|
sp -= length;
|
|
}
|
|
}
|
|
|
|
/* Include space for any reference-to-copy pointers. */
|
|
sp = round_down (sp, pointer_size);
|
|
sp -= num_copies * pointer_size;
|
|
|
|
/* After all that, make sure it's still aligned on an eight-byte
|
|
boundary. */
|
|
sp = round_down (sp, 8);
|
|
|
|
/* Finally, place the actual parameters, working from SP towards
|
|
higher addresses. The code above is supposed to reserve enough
|
|
space for this. */
|
|
{
|
|
int fr = 0;
|
|
int gr = 2;
|
|
CORE_ADDR starg = sp;
|
|
|
|
/* A struct is returned using general register 2 */
|
|
if (struct_return)
|
|
gr++;
|
|
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
struct value *arg = args[i];
|
|
struct type *type = VALUE_TYPE (arg);
|
|
|
|
if (is_double_or_float (type)
|
|
&& fr <= S390_NUM_FP_PARAMETER_REGISTERS * 2 - 2)
|
|
{
|
|
/* When we store a single-precision value in an FP register,
|
|
it occupies the leftmost bits. */
|
|
deprecated_write_register_bytes (REGISTER_BYTE (S390_FP0_REGNUM + fr),
|
|
VALUE_CONTENTS (arg),
|
|
TYPE_LENGTH (type));
|
|
fr += 2;
|
|
}
|
|
else if (is_simple_arg (type)
|
|
&& gr <= 6)
|
|
{
|
|
/* Do we need to pass a pointer to our copy of this
|
|
argument? */
|
|
if (pass_by_copy_ref (type))
|
|
write_register (S390_GP0_REGNUM + gr, copy_addr[i]);
|
|
else
|
|
write_register (S390_GP0_REGNUM + gr, extend_simple_arg (arg));
|
|
|
|
gr++;
|
|
}
|
|
else if (is_double_arg (type)
|
|
&& gr <= 5)
|
|
{
|
|
deprecated_write_register_gen (S390_GP0_REGNUM + gr,
|
|
VALUE_CONTENTS (arg));
|
|
deprecated_write_register_gen (S390_GP0_REGNUM + gr + 1,
|
|
VALUE_CONTENTS (arg) + DEPRECATED_REGISTER_SIZE);
|
|
gr += 2;
|
|
}
|
|
else
|
|
{
|
|
/* The `OTHER' case. */
|
|
enum type_code code = TYPE_CODE (type);
|
|
unsigned length = TYPE_LENGTH (type);
|
|
|
|
/* If we skipped r6 because we couldn't fit a DOUBLE_ARG
|
|
in it, then don't go back and use it again later. */
|
|
if (is_double_arg (type) && gr == 6)
|
|
gr = 7;
|
|
|
|
if (is_simple_arg (type))
|
|
{
|
|
/* Simple args are always extended to
|
|
DEPRECATED_REGISTER_SIZE bytes. */
|
|
starg = round_up (starg, DEPRECATED_REGISTER_SIZE);
|
|
|
|
/* Do we need to pass a pointer to our copy of this
|
|
argument? */
|
|
if (pass_by_copy_ref (type))
|
|
write_memory_signed_integer (starg, pointer_size,
|
|
copy_addr[i]);
|
|
else
|
|
/* Simple args are always extended to
|
|
DEPRECATED_REGISTER_SIZE bytes. */
|
|
write_memory_signed_integer (starg, DEPRECATED_REGISTER_SIZE,
|
|
extend_simple_arg (arg));
|
|
starg += DEPRECATED_REGISTER_SIZE;
|
|
}
|
|
else
|
|
{
|
|
/* You'd think we should say:
|
|
starg = round_up (starg, alignment_of (type));
|
|
Unfortunately, GCC seems to simply align the stack on
|
|
a four/eight-byte boundary, even when passing doubles. */
|
|
starg = round_up (starg, S390_STACK_PARAMETER_ALIGNMENT);
|
|
write_memory (starg, VALUE_CONTENTS (arg), length);
|
|
starg += length;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Allocate the standard frame areas: the register save area, the
|
|
word reserved for the compiler (which seems kind of meaningless),
|
|
and the back chain pointer. */
|
|
sp -= S390_STACK_FRAME_OVERHEAD;
|
|
|
|
/* Write the back chain pointer into the first word of the stack
|
|
frame. This will help us get backtraces from within functions
|
|
called from GDB. */
|
|
write_memory_unsigned_integer (sp, (TARGET_PTR_BIT / TARGET_CHAR_BIT),
|
|
deprecated_read_fp ());
|
|
|
|
return sp;
|
|
}
|
|
|
|
|
|
static CORE_ADDR
|
|
s390_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
|
|
{
|
|
/* Both the 32- and 64-bit ABI's say that the stack pointer should
|
|
always be aligned on an eight-byte boundary. */
|
|
return (addr & -8);
|
|
}
|
|
|
|
|
|
static int
|
|
s390_use_struct_convention (int gcc_p, struct type *value_type)
|
|
{
|
|
enum type_code code = TYPE_CODE (value_type);
|
|
|
|
return (code == TYPE_CODE_STRUCT
|
|
|| code == TYPE_CODE_UNION);
|
|
}
|
|
|
|
|
|
/* Return the GDB type object for the "standard" data type
|
|
of data in register N. */
|
|
static struct type *
|
|
s390_register_virtual_type (int regno)
|
|
{
|
|
if (S390_FP0_REGNUM <= regno && regno < S390_FP0_REGNUM + S390_NUM_FPRS)
|
|
return builtin_type_double;
|
|
else
|
|
return builtin_type_int;
|
|
}
|
|
|
|
|
|
static struct type *
|
|
s390x_register_virtual_type (int regno)
|
|
{
|
|
return (regno == S390_FPC_REGNUM) ||
|
|
(regno >= S390_FIRST_ACR && regno <= S390_LAST_ACR) ? builtin_type_int :
|
|
(regno >= S390_FP0_REGNUM) ? builtin_type_double : builtin_type_long;
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
s390_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
|
|
{
|
|
write_register (S390_GP0_REGNUM + 2, addr);
|
|
}
|
|
|
|
|
|
|
|
static const unsigned char *
|
|
s390_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
|
|
{
|
|
static unsigned char breakpoint[] = { 0x0, 0x1 };
|
|
|
|
*lenptr = sizeof (breakpoint);
|
|
return breakpoint;
|
|
}
|
|
|
|
/* Advance PC across any function entry prologue instructions to reach some
|
|
"real" code. */
|
|
static CORE_ADDR
|
|
s390_skip_prologue (CORE_ADDR pc)
|
|
{
|
|
struct frame_extra_info fextra_info;
|
|
|
|
s390_get_frame_info (pc, &fextra_info, NULL, 1);
|
|
return fextra_info.skip_prologue_function_start;
|
|
}
|
|
|
|
/* Immediately after a function call, return the saved pc.
|
|
Can't go through the frames for this because on some machines
|
|
the new frame is not set up until the new function executes
|
|
some instructions. */
|
|
static CORE_ADDR
|
|
s390_saved_pc_after_call (struct frame_info *frame)
|
|
{
|
|
return ADDR_BITS_REMOVE (read_register (S390_RETADDR_REGNUM));
|
|
}
|
|
|
|
static CORE_ADDR
|
|
s390_addr_bits_remove (CORE_ADDR addr)
|
|
{
|
|
return (addr) & 0x7fffffff;
|
|
}
|
|
|
|
|
|
static CORE_ADDR
|
|
s390_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
|
|
{
|
|
write_register (S390_RETADDR_REGNUM, CALL_DUMMY_ADDRESS ());
|
|
return sp;
|
|
}
|
|
|
|
static int
|
|
s390_address_class_type_flags (int byte_size, int dwarf2_addr_class)
|
|
{
|
|
if (byte_size == 4)
|
|
return TYPE_FLAG_ADDRESS_CLASS_1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static const char *
|
|
s390_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
|
|
{
|
|
if (type_flags & TYPE_FLAG_ADDRESS_CLASS_1)
|
|
return "mode32";
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
static int
|
|
s390_address_class_name_to_type_flags (struct gdbarch *gdbarch, const char *name,
|
|
int *type_flags_ptr)
|
|
{
|
|
if (strcmp (name, "mode32") == 0)
|
|
{
|
|
*type_flags_ptr = TYPE_FLAG_ADDRESS_CLASS_1;
|
|
return 1;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static struct gdbarch *
|
|
s390_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
|
{
|
|
static LONGEST s390_call_dummy_words[] = { 0 };
|
|
struct gdbarch *gdbarch;
|
|
struct gdbarch_tdep *tdep;
|
|
int elf_flags;
|
|
|
|
/* First see if there is already a gdbarch that can satisfy the request. */
|
|
arches = gdbarch_list_lookup_by_info (arches, &info);
|
|
if (arches != NULL)
|
|
return arches->gdbarch;
|
|
|
|
/* None found: is the request for a s390 architecture? */
|
|
if (info.bfd_arch_info->arch != bfd_arch_s390)
|
|
return NULL; /* No; then it's not for us. */
|
|
|
|
/* Yes: create a new gdbarch for the specified machine type. */
|
|
gdbarch = gdbarch_alloc (&info, NULL);
|
|
|
|
/* NOTE: cagney/2002-12-06: This can be deleted when this arch is
|
|
ready to unwind the PC first (see frame.c:get_prev_frame()). */
|
|
set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
|
|
|
|
set_gdbarch_believe_pcc_promotion (gdbarch, 0);
|
|
set_gdbarch_char_signed (gdbarch, 0);
|
|
|
|
set_gdbarch_frame_args_skip (gdbarch, 0);
|
|
set_gdbarch_deprecated_frame_chain (gdbarch, s390_frame_chain);
|
|
set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, s390_frame_init_saved_regs);
|
|
set_gdbarch_deprecated_store_struct_return (gdbarch, s390_store_struct_return);
|
|
set_gdbarch_deprecated_extract_return_value (gdbarch, s390_extract_return_value);
|
|
set_gdbarch_deprecated_store_return_value (gdbarch, s390_store_return_value);
|
|
/* Amount PC must be decremented by after a breakpoint. This is
|
|
often the number of bytes returned by BREAKPOINT_FROM_PC but not
|
|
always. */
|
|
set_gdbarch_decr_pc_after_break (gdbarch, 2);
|
|
set_gdbarch_deprecated_pop_frame (gdbarch, s390_pop_frame);
|
|
/* Stack grows downward. */
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
|
/* Offset from address of function to start of its code.
|
|
Zero on most machines. */
|
|
set_gdbarch_function_start_offset (gdbarch, 0);
|
|
set_gdbarch_deprecated_max_register_raw_size (gdbarch, 8);
|
|
set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 8);
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, s390_breakpoint_from_pc);
|
|
set_gdbarch_skip_prologue (gdbarch, s390_skip_prologue);
|
|
set_gdbarch_deprecated_init_extra_frame_info (gdbarch, s390_init_extra_frame_info);
|
|
set_gdbarch_deprecated_init_frame_pc_first (gdbarch, s390_init_frame_pc_first);
|
|
set_gdbarch_deprecated_target_read_fp (gdbarch, s390_read_fp);
|
|
/* This function that tells us whether the function invocation represented
|
|
by FI does not have a frame on the stack associated with it. If it
|
|
does not, FRAMELESS is set to 1, else 0. */
|
|
set_gdbarch_frameless_function_invocation (gdbarch,
|
|
s390_frameless_function_invocation);
|
|
/* Return saved PC from a frame */
|
|
set_gdbarch_deprecated_frame_saved_pc (gdbarch, s390_frame_saved_pc);
|
|
/* DEPRECATED_FRAME_CHAIN takes a frame's nominal address and
|
|
produces the frame's chain-pointer. */
|
|
set_gdbarch_deprecated_frame_chain (gdbarch, s390_frame_chain);
|
|
set_gdbarch_deprecated_saved_pc_after_call (gdbarch, s390_saved_pc_after_call);
|
|
set_gdbarch_deprecated_register_byte (gdbarch, s390_register_byte);
|
|
set_gdbarch_pc_regnum (gdbarch, S390_PC_REGNUM);
|
|
set_gdbarch_sp_regnum (gdbarch, S390_SP_REGNUM);
|
|
set_gdbarch_deprecated_fp_regnum (gdbarch, S390_FP_REGNUM);
|
|
set_gdbarch_fp0_regnum (gdbarch, S390_FP0_REGNUM);
|
|
set_gdbarch_num_regs (gdbarch, S390_NUM_REGS);
|
|
set_gdbarch_cannot_fetch_register (gdbarch, s390_cannot_fetch_register);
|
|
set_gdbarch_cannot_store_register (gdbarch, s390_cannot_fetch_register);
|
|
set_gdbarch_use_struct_convention (gdbarch, s390_use_struct_convention);
|
|
set_gdbarch_register_name (gdbarch, s390_register_name);
|
|
set_gdbarch_stab_reg_to_regnum (gdbarch, s390_stab_reg_to_regnum);
|
|
set_gdbarch_dwarf_reg_to_regnum (gdbarch, s390_stab_reg_to_regnum);
|
|
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, s390_stab_reg_to_regnum);
|
|
set_gdbarch_deprecated_extract_struct_value_address
|
|
(gdbarch, generic_cannot_extract_struct_value_address);
|
|
|
|
/* Parameters for inferior function calls. */
|
|
set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_at_entry_point);
|
|
set_gdbarch_frame_align (gdbarch, s390_frame_align);
|
|
set_gdbarch_deprecated_push_arguments (gdbarch, s390_push_arguments);
|
|
set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
|
|
set_gdbarch_deprecated_push_return_address (gdbarch,
|
|
s390_push_return_address);
|
|
set_gdbarch_deprecated_sizeof_call_dummy_words (gdbarch, sizeof (s390_call_dummy_words));
|
|
set_gdbarch_deprecated_call_dummy_words (gdbarch, s390_call_dummy_words);
|
|
|
|
switch (info.bfd_arch_info->mach)
|
|
{
|
|
case bfd_mach_s390_31:
|
|
set_gdbarch_deprecated_register_size (gdbarch, 4);
|
|
set_gdbarch_deprecated_register_raw_size (gdbarch, s390_register_raw_size);
|
|
set_gdbarch_deprecated_register_virtual_size (gdbarch, s390_register_raw_size);
|
|
set_gdbarch_deprecated_register_virtual_type (gdbarch, s390_register_virtual_type);
|
|
|
|
set_gdbarch_addr_bits_remove (gdbarch, s390_addr_bits_remove);
|
|
set_gdbarch_deprecated_register_bytes (gdbarch, S390_REGISTER_BYTES);
|
|
break;
|
|
case bfd_mach_s390_64:
|
|
set_gdbarch_deprecated_register_size (gdbarch, 8);
|
|
set_gdbarch_deprecated_register_raw_size (gdbarch, s390x_register_raw_size);
|
|
set_gdbarch_deprecated_register_virtual_size (gdbarch, s390x_register_raw_size);
|
|
set_gdbarch_deprecated_register_virtual_type (gdbarch, s390x_register_virtual_type);
|
|
|
|
set_gdbarch_long_bit (gdbarch, 64);
|
|
set_gdbarch_long_long_bit (gdbarch, 64);
|
|
set_gdbarch_ptr_bit (gdbarch, 64);
|
|
set_gdbarch_deprecated_register_bytes (gdbarch, S390X_REGISTER_BYTES);
|
|
set_gdbarch_address_class_type_flags (gdbarch,
|
|
s390_address_class_type_flags);
|
|
set_gdbarch_address_class_type_flags_to_name (gdbarch,
|
|
s390_address_class_type_flags_to_name);
|
|
set_gdbarch_address_class_name_to_type_flags (gdbarch,
|
|
s390_address_class_name_to_type_flags);
|
|
break;
|
|
}
|
|
|
|
/* Should be using push_dummy_call. */
|
|
set_gdbarch_deprecated_dummy_write_sp (gdbarch, deprecated_write_sp);
|
|
|
|
return gdbarch;
|
|
}
|
|
|
|
|
|
|
|
extern initialize_file_ftype _initialize_s390_tdep; /* -Wmissing-prototypes */
|
|
|
|
void
|
|
_initialize_s390_tdep (void)
|
|
{
|
|
|
|
/* Hook us into the gdbarch mechanism. */
|
|
register_gdbarch_init (bfd_arch_s390, s390_gdbarch_init);
|
|
if (!deprecated_tm_print_insn) /* Someone may have already set it */
|
|
deprecated_tm_print_insn = gdb_print_insn_s390;
|
|
}
|