mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-24 12:35:55 +08:00
f3806e3b6c
if a '(' is found in varstring, Looking for ')' at the end of varstring did fail with demangled const member functions, which have a trailing `const'. * remote.c (get_offsets, putpkt): Change to `char' buffers, to avoid errors when compiling with DEC c89. (remote_wait): Cast to `char *' before passing buffer to fputs_filtered, to avoid errors when compiling with DEC c89. (remote_wait): Do not return inferior_pid by default, this statement is never reached, which causes warnings from some compilers. * stabsread.c (scan_file_globals): Ignore static minimal symbols. * symfile.c (load_command): If called with no argument, try to get the filename from the executable file. (generic_load): Remove check for NULL filename, it is done in load_command now.
3958 lines
113 KiB
C
3958 lines
113 KiB
C
/* Support routines for decoding "stabs" debugging information format.
|
||
Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
/* Support routines for reading and decoding debugging information in
|
||
the "stabs" format. This format is used with many systems that use
|
||
the a.out object file format, as well as some systems that use
|
||
COFF or ELF where the stabs data is placed in a special section.
|
||
Avoid placing any object file format specific code in this file. */
|
||
|
||
#include "defs.h"
|
||
#include <string.h>
|
||
#include "bfd.h"
|
||
#include "obstack.h"
|
||
#include "symtab.h"
|
||
#include "gdbtypes.h"
|
||
#include "symfile.h"
|
||
#include "objfiles.h"
|
||
#include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
|
||
#include "libaout.h"
|
||
#include "aout/aout64.h"
|
||
#include "gdb-stabs.h"
|
||
#include "buildsym.h"
|
||
#include "complaints.h"
|
||
#include "demangle.h"
|
||
|
||
#include <ctype.h>
|
||
|
||
/* Ask stabsread.h to define the vars it normally declares `extern'. */
|
||
#define EXTERN /**/
|
||
#include "stabsread.h" /* Our own declarations */
|
||
#undef EXTERN
|
||
|
||
/* The routines that read and process a complete stabs for a C struct or
|
||
C++ class pass lists of data member fields and lists of member function
|
||
fields in an instance of a field_info structure, as defined below.
|
||
This is part of some reorganization of low level C++ support and is
|
||
expected to eventually go away... (FIXME) */
|
||
|
||
struct field_info
|
||
{
|
||
struct nextfield
|
||
{
|
||
struct nextfield *next;
|
||
|
||
/* This is the raw visibility from the stab. It is not checked
|
||
for being one of the visibilities we recognize, so code which
|
||
examines this field better be able to deal. */
|
||
int visibility;
|
||
|
||
struct field field;
|
||
} *list;
|
||
struct next_fnfieldlist
|
||
{
|
||
struct next_fnfieldlist *next;
|
||
struct fn_fieldlist fn_fieldlist;
|
||
} *fnlist;
|
||
};
|
||
|
||
static struct type *
|
||
dbx_alloc_type PARAMS ((int [2], struct objfile *));
|
||
|
||
static long read_huge_number PARAMS ((char **, int, int *));
|
||
|
||
static struct type *error_type PARAMS ((char **));
|
||
|
||
static void
|
||
patch_block_stabs PARAMS ((struct pending *, struct pending_stabs *,
|
||
struct objfile *));
|
||
|
||
static void
|
||
fix_common_block PARAMS ((struct symbol *, int));
|
||
|
||
static int
|
||
read_type_number PARAMS ((char **, int *));
|
||
|
||
static struct type *
|
||
read_range_type PARAMS ((char **, int [2], struct objfile *));
|
||
|
||
static struct type *
|
||
read_sun_builtin_type PARAMS ((char **, int [2], struct objfile *));
|
||
|
||
static struct type *
|
||
read_sun_floating_type PARAMS ((char **, int [2], struct objfile *));
|
||
|
||
static struct type *
|
||
read_enum_type PARAMS ((char **, struct type *, struct objfile *));
|
||
|
||
static struct type *
|
||
rs6000_builtin_type PARAMS ((int));
|
||
|
||
static int
|
||
read_member_functions PARAMS ((struct field_info *, char **, struct type *,
|
||
struct objfile *));
|
||
|
||
static int
|
||
read_struct_fields PARAMS ((struct field_info *, char **, struct type *,
|
||
struct objfile *));
|
||
|
||
static int
|
||
read_baseclasses PARAMS ((struct field_info *, char **, struct type *,
|
||
struct objfile *));
|
||
|
||
static int
|
||
read_tilde_fields PARAMS ((struct field_info *, char **, struct type *,
|
||
struct objfile *));
|
||
|
||
static int
|
||
attach_fn_fields_to_type PARAMS ((struct field_info *, struct type *));
|
||
|
||
static int
|
||
attach_fields_to_type PARAMS ((struct field_info *, struct type *,
|
||
struct objfile *));
|
||
|
||
static struct type *
|
||
read_struct_type PARAMS ((char **, struct type *, struct objfile *));
|
||
|
||
static struct type *
|
||
read_array_type PARAMS ((char **, struct type *, struct objfile *));
|
||
|
||
static struct type **
|
||
read_args PARAMS ((char **, int, struct objfile *));
|
||
|
||
static int
|
||
read_cpp_abbrev PARAMS ((struct field_info *, char **, struct type *,
|
||
struct objfile *));
|
||
|
||
static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER,'\0' };
|
||
static const char vb_name[] = { '_','v','b',CPLUS_MARKER,'\0' };
|
||
|
||
/* Define this as 1 if a pcc declaration of a char or short argument
|
||
gives the correct address. Otherwise assume pcc gives the
|
||
address of the corresponding int, which is not the same on a
|
||
big-endian machine. */
|
||
|
||
#ifndef BELIEVE_PCC_PROMOTION
|
||
#define BELIEVE_PCC_PROMOTION 0
|
||
#endif
|
||
|
||
struct complaint invalid_cpp_abbrev_complaint =
|
||
{"invalid C++ abbreviation `%s'", 0, 0};
|
||
|
||
struct complaint invalid_cpp_type_complaint =
|
||
{"C++ abbreviated type name unknown at symtab pos %d", 0, 0};
|
||
|
||
struct complaint member_fn_complaint =
|
||
{"member function type missing, got '%c'", 0, 0};
|
||
|
||
struct complaint const_vol_complaint =
|
||
{"const/volatile indicator missing, got '%c'", 0, 0};
|
||
|
||
struct complaint error_type_complaint =
|
||
{"debug info mismatch between compiler and debugger", 0, 0};
|
||
|
||
struct complaint invalid_member_complaint =
|
||
{"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
|
||
|
||
struct complaint range_type_base_complaint =
|
||
{"base type %d of range type is not defined", 0, 0};
|
||
|
||
struct complaint reg_value_complaint =
|
||
{"register number too large in symbol %s", 0, 0};
|
||
|
||
struct complaint vtbl_notfound_complaint =
|
||
{"virtual function table pointer not found when defining class `%s'", 0, 0};
|
||
|
||
struct complaint unrecognized_cplus_name_complaint =
|
||
{"Unknown C++ symbol name `%s'", 0, 0};
|
||
|
||
struct complaint rs6000_builtin_complaint =
|
||
{"Unknown builtin type %d", 0, 0};
|
||
|
||
struct complaint stabs_general_complaint =
|
||
{"%s", 0, 0};
|
||
|
||
/* Make a list of forward references which haven't been defined. */
|
||
|
||
static struct type **undef_types;
|
||
static int undef_types_allocated;
|
||
static int undef_types_length;
|
||
|
||
/* Check for and handle cretinous stabs symbol name continuation! */
|
||
#define STABS_CONTINUE(pp) \
|
||
do { \
|
||
if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
|
||
*(pp) = next_symbol_text (); \
|
||
} while (0)
|
||
|
||
/* FIXME: These probably should be our own types (like rs6000_builtin_type
|
||
has its own types) rather than builtin_type_*. */
|
||
static struct type **os9k_type_vector[] = {
|
||
0,
|
||
&builtin_type_int,
|
||
&builtin_type_char,
|
||
&builtin_type_long,
|
||
&builtin_type_short,
|
||
&builtin_type_unsigned_char,
|
||
&builtin_type_unsigned_short,
|
||
&builtin_type_unsigned_long,
|
||
&builtin_type_unsigned_int,
|
||
&builtin_type_float,
|
||
&builtin_type_double,
|
||
&builtin_type_void,
|
||
&builtin_type_long_double
|
||
};
|
||
|
||
static void os9k_init_type_vector PARAMS ((struct type **));
|
||
|
||
static void
|
||
os9k_init_type_vector(tv)
|
||
struct type **tv;
|
||
{
|
||
int i;
|
||
for (i=0; i<sizeof(os9k_type_vector)/sizeof(struct type **); i++)
|
||
tv[i] = (os9k_type_vector[i] == 0 ? 0 : *(os9k_type_vector[i]));
|
||
}
|
||
|
||
/* Look up a dbx type-number pair. Return the address of the slot
|
||
where the type for that number-pair is stored.
|
||
The number-pair is in TYPENUMS.
|
||
|
||
This can be used for finding the type associated with that pair
|
||
or for associating a new type with the pair. */
|
||
|
||
struct type **
|
||
dbx_lookup_type (typenums)
|
||
int typenums[2];
|
||
{
|
||
register int filenum = typenums[0];
|
||
register int index = typenums[1];
|
||
unsigned old_len;
|
||
register int real_filenum;
|
||
register struct header_file *f;
|
||
int f_orig_length;
|
||
|
||
if (filenum == -1) /* -1,-1 is for temporary types. */
|
||
return 0;
|
||
|
||
if (filenum < 0 || filenum >= n_this_object_header_files)
|
||
{
|
||
static struct complaint msg = {"\
|
||
Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
|
||
0, 0};
|
||
complain (&msg, filenum, index, symnum);
|
||
goto error_return;
|
||
}
|
||
|
||
if (filenum == 0)
|
||
{
|
||
if (index < 0)
|
||
{
|
||
/* Caller wants address of address of type. We think
|
||
that negative (rs6k builtin) types will never appear as
|
||
"lvalues", (nor should they), so we stuff the real type
|
||
pointer into a temp, and return its address. If referenced,
|
||
this will do the right thing. */
|
||
static struct type *temp_type;
|
||
|
||
temp_type = rs6000_builtin_type(index);
|
||
return &temp_type;
|
||
}
|
||
|
||
/* Type is defined outside of header files.
|
||
Find it in this object file's type vector. */
|
||
if (index >= type_vector_length)
|
||
{
|
||
old_len = type_vector_length;
|
||
if (old_len == 0)
|
||
{
|
||
type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
|
||
type_vector = (struct type **)
|
||
malloc (type_vector_length * sizeof (struct type *));
|
||
}
|
||
while (index >= type_vector_length)
|
||
{
|
||
type_vector_length *= 2;
|
||
}
|
||
type_vector = (struct type **)
|
||
xrealloc ((char *) type_vector,
|
||
(type_vector_length * sizeof (struct type *)));
|
||
memset (&type_vector[old_len], 0,
|
||
(type_vector_length - old_len) * sizeof (struct type *));
|
||
|
||
if (os9k_stabs)
|
||
/* Deal with OS9000 fundamental types. */
|
||
os9k_init_type_vector (type_vector);
|
||
}
|
||
return (&type_vector[index]);
|
||
}
|
||
else
|
||
{
|
||
real_filenum = this_object_header_files[filenum];
|
||
|
||
if (real_filenum >= n_header_files)
|
||
{
|
||
struct type *temp_type;
|
||
struct type **temp_type_p;
|
||
|
||
warning ("GDB internal error: bad real_filenum");
|
||
|
||
error_return:
|
||
temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
|
||
temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
|
||
*temp_type_p = temp_type;
|
||
return temp_type_p;
|
||
}
|
||
|
||
f = &header_files[real_filenum];
|
||
|
||
f_orig_length = f->length;
|
||
if (index >= f_orig_length)
|
||
{
|
||
while (index >= f->length)
|
||
{
|
||
f->length *= 2;
|
||
}
|
||
f->vector = (struct type **)
|
||
xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
|
||
memset (&f->vector[f_orig_length], 0,
|
||
(f->length - f_orig_length) * sizeof (struct type *));
|
||
}
|
||
return (&f->vector[index]);
|
||
}
|
||
}
|
||
|
||
/* Make sure there is a type allocated for type numbers TYPENUMS
|
||
and return the type object.
|
||
This can create an empty (zeroed) type object.
|
||
TYPENUMS may be (-1, -1) to return a new type object that is not
|
||
put into the type vector, and so may not be referred to by number. */
|
||
|
||
static struct type *
|
||
dbx_alloc_type (typenums, objfile)
|
||
int typenums[2];
|
||
struct objfile *objfile;
|
||
{
|
||
register struct type **type_addr;
|
||
|
||
if (typenums[0] == -1)
|
||
{
|
||
return (alloc_type (objfile));
|
||
}
|
||
|
||
type_addr = dbx_lookup_type (typenums);
|
||
|
||
/* If we are referring to a type not known at all yet,
|
||
allocate an empty type for it.
|
||
We will fill it in later if we find out how. */
|
||
if (*type_addr == 0)
|
||
{
|
||
*type_addr = alloc_type (objfile);
|
||
}
|
||
|
||
return (*type_addr);
|
||
}
|
||
|
||
/* for all the stabs in a given stab vector, build appropriate types
|
||
and fix their symbols in given symbol vector. */
|
||
|
||
static void
|
||
patch_block_stabs (symbols, stabs, objfile)
|
||
struct pending *symbols;
|
||
struct pending_stabs *stabs;
|
||
struct objfile *objfile;
|
||
{
|
||
int ii;
|
||
char *name;
|
||
char *pp;
|
||
struct symbol *sym;
|
||
|
||
if (stabs)
|
||
{
|
||
|
||
/* for all the stab entries, find their corresponding symbols and
|
||
patch their types! */
|
||
|
||
for (ii = 0; ii < stabs->count; ++ii)
|
||
{
|
||
name = stabs->stab[ii];
|
||
pp = (char*) strchr (name, ':');
|
||
while (pp[1] == ':')
|
||
{
|
||
pp += 2;
|
||
pp = (char *)strchr(pp, ':');
|
||
}
|
||
sym = find_symbol_in_list (symbols, name, pp-name);
|
||
if (!sym)
|
||
{
|
||
/* FIXME-maybe: it would be nice if we noticed whether
|
||
the variable was defined *anywhere*, not just whether
|
||
it is defined in this compilation unit. But neither
|
||
xlc or GCC seem to need such a definition, and until
|
||
we do psymtabs (so that the minimal symbols from all
|
||
compilation units are available now), I'm not sure
|
||
how to get the information. */
|
||
|
||
/* On xcoff, if a global is defined and never referenced,
|
||
ld will remove it from the executable. There is then
|
||
a N_GSYM stab for it, but no regular (C_EXT) symbol. */
|
||
sym = (struct symbol *)
|
||
obstack_alloc (&objfile->symbol_obstack,
|
||
sizeof (struct symbol));
|
||
|
||
memset (sym, 0, sizeof (struct symbol));
|
||
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
||
SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
|
||
SYMBOL_NAME (sym) =
|
||
obstack_copy0 (&objfile->symbol_obstack, name, pp - name);
|
||
pp += 2;
|
||
if (*(pp-1) == 'F' || *(pp-1) == 'f')
|
||
{
|
||
/* I don't think the linker does this with functions,
|
||
so as far as I know this is never executed.
|
||
But it doesn't hurt to check. */
|
||
SYMBOL_TYPE (sym) =
|
||
lookup_function_type (read_type (&pp, objfile));
|
||
}
|
||
else
|
||
{
|
||
SYMBOL_TYPE (sym) = read_type (&pp, objfile);
|
||
}
|
||
add_symbol_to_list (sym, &global_symbols);
|
||
}
|
||
else
|
||
{
|
||
pp += 2;
|
||
if (*(pp-1) == 'F' || *(pp-1) == 'f')
|
||
{
|
||
SYMBOL_TYPE (sym) =
|
||
lookup_function_type (read_type (&pp, objfile));
|
||
}
|
||
else
|
||
{
|
||
SYMBOL_TYPE (sym) = read_type (&pp, objfile);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Read a number by which a type is referred to in dbx data,
|
||
or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
|
||
Just a single number N is equivalent to (0,N).
|
||
Return the two numbers by storing them in the vector TYPENUMS.
|
||
TYPENUMS will then be used as an argument to dbx_lookup_type.
|
||
|
||
Returns 0 for success, -1 for error. */
|
||
|
||
static int
|
||
read_type_number (pp, typenums)
|
||
register char **pp;
|
||
register int *typenums;
|
||
{
|
||
int nbits;
|
||
if (**pp == '(')
|
||
{
|
||
(*pp)++;
|
||
typenums[0] = read_huge_number (pp, ',', &nbits);
|
||
if (nbits != 0) return -1;
|
||
typenums[1] = read_huge_number (pp, ')', &nbits);
|
||
if (nbits != 0) return -1;
|
||
}
|
||
else
|
||
{
|
||
typenums[0] = 0;
|
||
typenums[1] = read_huge_number (pp, 0, &nbits);
|
||
if (nbits != 0) return -1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* To handle GNU C++ typename abbreviation, we need to be able to
|
||
fill in a type's name as soon as space for that type is allocated.
|
||
`type_synonym_name' is the name of the type being allocated.
|
||
It is cleared as soon as it is used (lest all allocated types
|
||
get this name). */
|
||
|
||
static char *type_synonym_name;
|
||
|
||
#if !defined (REG_STRUCT_HAS_ADDR)
|
||
#define REG_STRUCT_HAS_ADDR(gcc_p,type) 0
|
||
#endif
|
||
|
||
/* ARGSUSED */
|
||
struct symbol *
|
||
define_symbol (valu, string, desc, type, objfile)
|
||
CORE_ADDR valu;
|
||
char *string;
|
||
int desc;
|
||
int type;
|
||
struct objfile *objfile;
|
||
{
|
||
register struct symbol *sym;
|
||
char *p = (char *) strchr (string, ':');
|
||
int deftype;
|
||
int synonym = 0;
|
||
register int i;
|
||
|
||
/* We would like to eliminate nameless symbols, but keep their types.
|
||
E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
|
||
to type 2, but, should not create a symbol to address that type. Since
|
||
the symbol will be nameless, there is no way any user can refer to it. */
|
||
|
||
int nameless;
|
||
|
||
/* Ignore syms with empty names. */
|
||
if (string[0] == 0)
|
||
return 0;
|
||
|
||
/* Ignore old-style symbols from cc -go */
|
||
if (p == 0)
|
||
return 0;
|
||
|
||
while (p[1] == ':')
|
||
{
|
||
p += 2;
|
||
p = strchr(p, ':');
|
||
}
|
||
|
||
/* If a nameless stab entry, all we need is the type, not the symbol.
|
||
e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
|
||
nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
|
||
|
||
sym = (struct symbol *)
|
||
obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
|
||
memset (sym, 0, sizeof (struct symbol));
|
||
|
||
switch (type & N_TYPE)
|
||
{
|
||
case N_TEXT:
|
||
SYMBOL_SECTION(sym) = SECT_OFF_TEXT;
|
||
break;
|
||
case N_DATA:
|
||
SYMBOL_SECTION(sym) = SECT_OFF_DATA;
|
||
break;
|
||
case N_BSS:
|
||
SYMBOL_SECTION(sym) = SECT_OFF_BSS;
|
||
break;
|
||
}
|
||
|
||
if (processing_gcc_compilation)
|
||
{
|
||
/* GCC 2.x puts the line number in desc. SunOS apparently puts in the
|
||
number of bytes occupied by a type or object, which we ignore. */
|
||
SYMBOL_LINE(sym) = desc;
|
||
}
|
||
else
|
||
{
|
||
SYMBOL_LINE(sym) = 0; /* unknown */
|
||
}
|
||
|
||
if (string[0] == CPLUS_MARKER)
|
||
{
|
||
/* Special GNU C++ names. */
|
||
switch (string[1])
|
||
{
|
||
case 't':
|
||
SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
|
||
&objfile -> symbol_obstack);
|
||
break;
|
||
|
||
case 'v': /* $vtbl_ptr_type */
|
||
/* Was: SYMBOL_NAME (sym) = "vptr"; */
|
||
goto normal;
|
||
|
||
case 'e':
|
||
SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
|
||
&objfile -> symbol_obstack);
|
||
break;
|
||
|
||
case '_':
|
||
/* This was an anonymous type that was never fixed up. */
|
||
goto normal;
|
||
|
||
default:
|
||
complain (&unrecognized_cplus_name_complaint, string);
|
||
goto normal; /* Do *something* with it */
|
||
}
|
||
}
|
||
else
|
||
{
|
||
normal:
|
||
SYMBOL_LANGUAGE (sym) = current_subfile -> language;
|
||
SYMBOL_NAME (sym) = (char *)
|
||
obstack_alloc (&objfile -> symbol_obstack, ((p - string) + 1));
|
||
/* Open-coded memcpy--saves function call time. */
|
||
/* FIXME: Does it really? Try replacing with simple strcpy and
|
||
try it on an executable with a large symbol table. */
|
||
/* FIXME: considering that gcc can open code memcpy anyway, I
|
||
doubt it. xoxorich. */
|
||
{
|
||
register char *p1 = string;
|
||
register char *p2 = SYMBOL_NAME (sym);
|
||
while (p1 != p)
|
||
{
|
||
*p2++ = *p1++;
|
||
}
|
||
*p2++ = '\0';
|
||
}
|
||
|
||
/* If this symbol is from a C++ compilation, then attempt to cache the
|
||
demangled form for future reference. This is a typical time versus
|
||
space tradeoff, that was decided in favor of time because it sped up
|
||
C++ symbol lookups by a factor of about 20. */
|
||
|
||
SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
|
||
}
|
||
p++;
|
||
|
||
/* Determine the type of name being defined. */
|
||
#if 0
|
||
/* Getting GDB to correctly skip the symbol on an undefined symbol
|
||
descriptor and not ever dump core is a very dodgy proposition if
|
||
we do things this way. I say the acorn RISC machine can just
|
||
fix their compiler. */
|
||
/* The Acorn RISC machine's compiler can put out locals that don't
|
||
start with "234=" or "(3,4)=", so assume anything other than the
|
||
deftypes we know how to handle is a local. */
|
||
if (!strchr ("cfFGpPrStTvVXCR", *p))
|
||
#else
|
||
if (isdigit (*p) || *p == '(' || *p == '-')
|
||
#endif
|
||
deftype = 'l';
|
||
else
|
||
deftype = *p++;
|
||
|
||
switch (deftype)
|
||
{
|
||
case 'c':
|
||
/* c is a special case, not followed by a type-number.
|
||
SYMBOL:c=iVALUE for an integer constant symbol.
|
||
SYMBOL:c=rVALUE for a floating constant symbol.
|
||
SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
|
||
e.g. "b:c=e6,0" for "const b = blob1"
|
||
(where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
|
||
if (*p != '=')
|
||
{
|
||
SYMBOL_CLASS (sym) = LOC_CONST;
|
||
SYMBOL_TYPE (sym) = error_type (&p);
|
||
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
||
add_symbol_to_list (sym, &file_symbols);
|
||
return sym;
|
||
}
|
||
++p;
|
||
switch (*p++)
|
||
{
|
||
case 'r':
|
||
{
|
||
double d = atof (p);
|
||
char *dbl_valu;
|
||
|
||
/* FIXME-if-picky-about-floating-accuracy: Should be using
|
||
target arithmetic to get the value. real.c in GCC
|
||
probably has the necessary code. */
|
||
|
||
/* FIXME: lookup_fundamental_type is a hack. We should be
|
||
creating a type especially for the type of float constants.
|
||
Problem is, what type should it be?
|
||
|
||
Also, what should the name of this type be? Should we
|
||
be using 'S' constants (see stabs.texinfo) instead? */
|
||
|
||
SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
|
||
FT_DBL_PREC_FLOAT);
|
||
dbl_valu = (char *)
|
||
obstack_alloc (&objfile -> symbol_obstack,
|
||
TYPE_LENGTH (SYMBOL_TYPE (sym)));
|
||
store_floating (dbl_valu, TYPE_LENGTH (SYMBOL_TYPE (sym)), d);
|
||
SYMBOL_VALUE_BYTES (sym) = dbl_valu;
|
||
SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
|
||
}
|
||
break;
|
||
case 'i':
|
||
{
|
||
/* Defining integer constants this way is kind of silly,
|
||
since 'e' constants allows the compiler to give not
|
||
only the value, but the type as well. C has at least
|
||
int, long, unsigned int, and long long as constant
|
||
types; other languages probably should have at least
|
||
unsigned as well as signed constants. */
|
||
|
||
/* We just need one int constant type for all objfiles.
|
||
It doesn't depend on languages or anything (arguably its
|
||
name should be a language-specific name for a type of
|
||
that size, but I'm inclined to say that if the compiler
|
||
wants a nice name for the type, it can use 'e'). */
|
||
static struct type *int_const_type;
|
||
|
||
/* Yes, this is as long as a *host* int. That is because we
|
||
use atoi. */
|
||
if (int_const_type == NULL)
|
||
int_const_type =
|
||
init_type (TYPE_CODE_INT,
|
||
sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
|
||
"integer constant",
|
||
(struct objfile *)NULL);
|
||
SYMBOL_TYPE (sym) = int_const_type;
|
||
SYMBOL_VALUE (sym) = atoi (p);
|
||
SYMBOL_CLASS (sym) = LOC_CONST;
|
||
}
|
||
break;
|
||
case 'e':
|
||
/* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
|
||
can be represented as integral.
|
||
e.g. "b:c=e6,0" for "const b = blob1"
|
||
(where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
|
||
{
|
||
SYMBOL_CLASS (sym) = LOC_CONST;
|
||
SYMBOL_TYPE (sym) = read_type (&p, objfile);
|
||
|
||
if (*p != ',')
|
||
{
|
||
SYMBOL_TYPE (sym) = error_type (&p);
|
||
break;
|
||
}
|
||
++p;
|
||
|
||
/* If the value is too big to fit in an int (perhaps because
|
||
it is unsigned), or something like that, we silently get
|
||
a bogus value. The type and everything else about it is
|
||
correct. Ideally, we should be using whatever we have
|
||
available for parsing unsigned and long long values,
|
||
however. */
|
||
SYMBOL_VALUE (sym) = atoi (p);
|
||
}
|
||
break;
|
||
default:
|
||
{
|
||
SYMBOL_CLASS (sym) = LOC_CONST;
|
||
SYMBOL_TYPE (sym) = error_type (&p);
|
||
}
|
||
}
|
||
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
||
add_symbol_to_list (sym, &file_symbols);
|
||
return sym;
|
||
|
||
case 'C':
|
||
/* The name of a caught exception. */
|
||
SYMBOL_TYPE (sym) = read_type (&p, objfile);
|
||
SYMBOL_CLASS (sym) = LOC_LABEL;
|
||
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
||
SYMBOL_VALUE_ADDRESS (sym) = valu;
|
||
add_symbol_to_list (sym, &local_symbols);
|
||
break;
|
||
|
||
case 'f':
|
||
/* A static function definition. */
|
||
SYMBOL_TYPE (sym) = read_type (&p, objfile);
|
||
SYMBOL_CLASS (sym) = LOC_BLOCK;
|
||
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
||
add_symbol_to_list (sym, &file_symbols);
|
||
/* fall into process_function_types. */
|
||
|
||
process_function_types:
|
||
/* Function result types are described as the result type in stabs.
|
||
We need to convert this to the function-returning-type-X type
|
||
in GDB. E.g. "int" is converted to "function returning int". */
|
||
if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
|
||
{
|
||
#if 0
|
||
/* This code doesn't work -- it needs to realloc and can't. */
|
||
/* Attempt to set up to record a function prototype... */
|
||
struct type *new = alloc_type (objfile);
|
||
|
||
/* Generate a template for the type of this function. The
|
||
types of the arguments will be added as we read the symbol
|
||
table. */
|
||
*new = *lookup_function_type (SYMBOL_TYPE(sym));
|
||
SYMBOL_TYPE(sym) = new;
|
||
TYPE_OBJFILE (new) = objfile;
|
||
in_function_type = new;
|
||
#else
|
||
SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
|
||
#endif
|
||
}
|
||
/* fall into process_prototype_types */
|
||
|
||
process_prototype_types:
|
||
/* Sun acc puts declared types of arguments here. We don't care
|
||
about their actual types (FIXME -- we should remember the whole
|
||
function prototype), but the list may define some new types
|
||
that we have to remember, so we must scan it now. */
|
||
while (*p == ';') {
|
||
p++;
|
||
read_type (&p, objfile);
|
||
}
|
||
break;
|
||
|
||
case 'F':
|
||
/* A global function definition. */
|
||
SYMBOL_TYPE (sym) = read_type (&p, objfile);
|
||
SYMBOL_CLASS (sym) = LOC_BLOCK;
|
||
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
||
add_symbol_to_list (sym, &global_symbols);
|
||
goto process_function_types;
|
||
|
||
case 'G':
|
||
/* For a class G (global) symbol, it appears that the
|
||
value is not correct. It is necessary to search for the
|
||
corresponding linker definition to find the value.
|
||
These definitions appear at the end of the namelist. */
|
||
SYMBOL_TYPE (sym) = read_type (&p, objfile);
|
||
i = hashname (SYMBOL_NAME (sym));
|
||
SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
|
||
global_sym_chain[i] = sym;
|
||
SYMBOL_CLASS (sym) = LOC_STATIC;
|
||
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
||
add_symbol_to_list (sym, &global_symbols);
|
||
break;
|
||
|
||
/* This case is faked by a conditional above,
|
||
when there is no code letter in the dbx data.
|
||
Dbx data never actually contains 'l'. */
|
||
case 's':
|
||
case 'l':
|
||
SYMBOL_TYPE (sym) = read_type (&p, objfile);
|
||
SYMBOL_CLASS (sym) = LOC_LOCAL;
|
||
SYMBOL_VALUE (sym) = valu;
|
||
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
||
add_symbol_to_list (sym, &local_symbols);
|
||
break;
|
||
|
||
case 'p':
|
||
if (*p == 'F')
|
||
/* pF is a two-letter code that means a function parameter in Fortran.
|
||
The type-number specifies the type of the return value.
|
||
Translate it into a pointer-to-function type. */
|
||
{
|
||
p++;
|
||
SYMBOL_TYPE (sym)
|
||
= lookup_pointer_type
|
||
(lookup_function_type (read_type (&p, objfile)));
|
||
}
|
||
else
|
||
SYMBOL_TYPE (sym) = read_type (&p, objfile);
|
||
|
||
/* Normally this is a parameter, a LOC_ARG. On the i960, it
|
||
can also be a LOC_LOCAL_ARG depending on symbol type. */
|
||
#ifndef DBX_PARM_SYMBOL_CLASS
|
||
#define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
|
||
#endif
|
||
|
||
SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
|
||
SYMBOL_VALUE (sym) = valu;
|
||
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
||
#if 0
|
||
/* This doesn't work yet. */
|
||
add_param_to_type (&in_function_type, sym);
|
||
#endif
|
||
add_symbol_to_list (sym, &local_symbols);
|
||
|
||
#if TARGET_BYTE_ORDER == LITTLE_ENDIAN
|
||
/* On little-endian machines, this crud is never necessary, and,
|
||
if the extra bytes contain garbage, is harmful. */
|
||
break;
|
||
#else /* Big endian. */
|
||
/* If it's gcc-compiled, if it says `short', believe it. */
|
||
if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
|
||
break;
|
||
|
||
#if !BELIEVE_PCC_PROMOTION
|
||
{
|
||
/* This is the signed type which arguments get promoted to. */
|
||
static struct type *pcc_promotion_type;
|
||
/* This is the unsigned type which arguments get promoted to. */
|
||
static struct type *pcc_unsigned_promotion_type;
|
||
|
||
/* Call it "int" because this is mainly C lossage. */
|
||
if (pcc_promotion_type == NULL)
|
||
pcc_promotion_type =
|
||
init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
|
||
0, "int", NULL);
|
||
|
||
if (pcc_unsigned_promotion_type == NULL)
|
||
pcc_unsigned_promotion_type =
|
||
init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
|
||
TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
|
||
|
||
#if defined(BELIEVE_PCC_PROMOTION_TYPE)
|
||
/* This macro is defined on machines (e.g. sparc) where
|
||
we should believe the type of a PCC 'short' argument,
|
||
but shouldn't believe the address (the address is
|
||
the address of the corresponding int).
|
||
|
||
My guess is that this correction, as opposed to changing
|
||
the parameter to an 'int' (as done below, for PCC
|
||
on most machines), is the right thing to do
|
||
on all machines, but I don't want to risk breaking
|
||
something that already works. On most PCC machines,
|
||
the sparc problem doesn't come up because the calling
|
||
function has to zero the top bytes (not knowing whether
|
||
the called function wants an int or a short), so there
|
||
is little practical difference between an int and a short
|
||
(except perhaps what happens when the GDB user types
|
||
"print short_arg = 0x10000;").
|
||
|
||
Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the compiler
|
||
actually produces the correct address (we don't need to fix it
|
||
up). I made this code adapt so that it will offset the symbol
|
||
if it was pointing at an int-aligned location and not
|
||
otherwise. This way you can use the same gdb for 4.0.x and
|
||
4.1 systems.
|
||
|
||
If the parameter is shorter than an int, and is integral
|
||
(e.g. char, short, or unsigned equivalent), and is claimed to
|
||
be passed on an integer boundary, don't believe it! Offset the
|
||
parameter's address to the tail-end of that integer. */
|
||
|
||
if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
|
||
&& TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
|
||
&& 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (pcc_promotion_type))
|
||
{
|
||
SYMBOL_VALUE (sym) += TYPE_LENGTH (pcc_promotion_type)
|
||
- TYPE_LENGTH (SYMBOL_TYPE (sym));
|
||
}
|
||
break;
|
||
|
||
#else /* no BELIEVE_PCC_PROMOTION_TYPE. */
|
||
|
||
/* If PCC says a parameter is a short or a char,
|
||
it is really an int. */
|
||
if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
|
||
&& TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
|
||
{
|
||
SYMBOL_TYPE (sym) =
|
||
TYPE_UNSIGNED (SYMBOL_TYPE (sym))
|
||
? pcc_unsigned_promotion_type
|
||
: pcc_promotion_type;
|
||
}
|
||
break;
|
||
|
||
#endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
|
||
}
|
||
#endif /* !BELIEVE_PCC_PROMOTION. */
|
||
#endif /* Big endian. */
|
||
|
||
case 'P':
|
||
/* acc seems to use P to delare the prototypes of functions that
|
||
are referenced by this file. gdb is not prepared to deal
|
||
with this extra information. FIXME, it ought to. */
|
||
if (type == N_FUN)
|
||
{
|
||
read_type (&p, objfile);
|
||
goto process_prototype_types;
|
||
}
|
||
/*FALLTHROUGH*/
|
||
|
||
case 'R':
|
||
/* Parameter which is in a register. */
|
||
SYMBOL_TYPE (sym) = read_type (&p, objfile);
|
||
SYMBOL_CLASS (sym) = LOC_REGPARM;
|
||
SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
|
||
if (SYMBOL_VALUE (sym) >= NUM_REGS)
|
||
{
|
||
complain (®_value_complaint, SYMBOL_SOURCE_NAME (sym));
|
||
SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
|
||
}
|
||
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
||
add_symbol_to_list (sym, &local_symbols);
|
||
break;
|
||
|
||
case 'r':
|
||
/* Register variable (either global or local). */
|
||
SYMBOL_TYPE (sym) = read_type (&p, objfile);
|
||
SYMBOL_CLASS (sym) = LOC_REGISTER;
|
||
SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
|
||
if (SYMBOL_VALUE (sym) >= NUM_REGS)
|
||
{
|
||
complain (®_value_complaint, SYMBOL_SOURCE_NAME (sym));
|
||
SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
|
||
}
|
||
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
||
if (within_function)
|
||
{
|
||
/* Sun cc uses a pair of symbols, one 'p' and one 'r' with the same
|
||
name to represent an argument passed in a register.
|
||
GCC uses 'P' for the same case. So if we find such a symbol pair
|
||
we combine it into one 'P' symbol. For Sun cc we need to do this
|
||
regardless of REG_STRUCT_HAS_ADDR, because the compiler puts out
|
||
the 'p' symbol even if it never saves the argument onto the stack.
|
||
|
||
On most machines, we want to preserve both symbols, so that
|
||
we can still get information about what is going on with the
|
||
stack (VAX for computing args_printed, using stack slots instead
|
||
of saved registers in backtraces, etc.).
|
||
|
||
Note that this code illegally combines
|
||
main(argc) struct foo argc; { register struct foo argc; }
|
||
but this case is considered pathological and causes a warning
|
||
from a decent compiler. */
|
||
|
||
if (local_symbols
|
||
&& local_symbols->nsyms > 0
|
||
#ifndef USE_REGISTER_NOT_ARG
|
||
&& REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
|
||
SYMBOL_TYPE (sym))
|
||
&& (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
|
||
|| TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
|
||
#endif
|
||
)
|
||
{
|
||
struct symbol *prev_sym;
|
||
prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
|
||
if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
|
||
|| SYMBOL_CLASS (prev_sym) == LOC_ARG)
|
||
&& STREQ (SYMBOL_NAME (prev_sym), SYMBOL_NAME(sym)))
|
||
{
|
||
SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
|
||
/* Use the type from the LOC_REGISTER; that is the type
|
||
that is actually in that register. */
|
||
SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
|
||
SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
|
||
sym = prev_sym;
|
||
break;
|
||
}
|
||
}
|
||
add_symbol_to_list (sym, &local_symbols);
|
||
}
|
||
else
|
||
add_symbol_to_list (sym, &file_symbols);
|
||
break;
|
||
|
||
case 'S':
|
||
/* Static symbol at top level of file */
|
||
SYMBOL_TYPE (sym) = read_type (&p, objfile);
|
||
SYMBOL_CLASS (sym) = LOC_STATIC;
|
||
SYMBOL_VALUE_ADDRESS (sym) = valu;
|
||
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
||
add_symbol_to_list (sym, &file_symbols);
|
||
break;
|
||
|
||
case 't':
|
||
SYMBOL_TYPE (sym) = read_type (&p, objfile);
|
||
|
||
/* For a nameless type, we don't want a create a symbol, thus we
|
||
did not use `sym'. Return without further processing. */
|
||
if (nameless) return NULL;
|
||
|
||
SYMBOL_CLASS (sym) = LOC_TYPEDEF;
|
||
SYMBOL_VALUE (sym) = valu;
|
||
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
||
/* C++ vagaries: we may have a type which is derived from
|
||
a base type which did not have its name defined when the
|
||
derived class was output. We fill in the derived class's
|
||
base part member's name here in that case. */
|
||
if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
|
||
if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
|
||
|| TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
|
||
&& TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
|
||
{
|
||
int j;
|
||
for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
|
||
if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
|
||
TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
|
||
type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
|
||
}
|
||
|
||
if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
|
||
{
|
||
/* gcc-2.6 or later (when using -fvtable-thunks)
|
||
emits a unique named type for a vtable entry.
|
||
Some gdb code depends on that specific name. */
|
||
extern const char vtbl_ptr_name[];
|
||
|
||
if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
|
||
&& strcmp (SYMBOL_NAME (sym), vtbl_ptr_name))
|
||
|| TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
|
||
{
|
||
/* If we are giving a name to a type such as "pointer to
|
||
foo" or "function returning foo", we better not set
|
||
the TYPE_NAME. If the program contains "typedef char
|
||
*caddr_t;", we don't want all variables of type char
|
||
* to print as caddr_t. This is not just a
|
||
consequence of GDB's type management; PCC and GCC (at
|
||
least through version 2.4) both output variables of
|
||
either type char * or caddr_t with the type number
|
||
defined in the 't' symbol for caddr_t. If a future
|
||
compiler cleans this up it GDB is not ready for it
|
||
yet, but if it becomes ready we somehow need to
|
||
disable this check (without breaking the PCC/GCC2.4
|
||
case).
|
||
|
||
Sigh.
|
||
|
||
Fortunately, this check seems not to be necessary
|
||
for anything except pointers or functions. */
|
||
}
|
||
else
|
||
TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NAME (sym);
|
||
}
|
||
|
||
add_symbol_to_list (sym, &file_symbols);
|
||
break;
|
||
|
||
case 'T':
|
||
/* Struct, union, or enum tag. For GNU C++, this can be be followed
|
||
by 't' which means we are typedef'ing it as well. */
|
||
synonym = *p == 't';
|
||
|
||
if (synonym)
|
||
{
|
||
p++;
|
||
type_synonym_name = obsavestring (SYMBOL_NAME (sym),
|
||
strlen (SYMBOL_NAME (sym)),
|
||
&objfile -> symbol_obstack);
|
||
}
|
||
/* The semantics of C++ state that "struct foo { ... }" also defines
|
||
a typedef for "foo". Unfortunately, cfront never makes the typedef
|
||
when translating C++ into C. We make the typedef here so that
|
||
"ptype foo" works as expected for cfront translated code. */
|
||
else if (current_subfile->language == language_cplus)
|
||
{
|
||
synonym = 1;
|
||
type_synonym_name = obsavestring (SYMBOL_NAME (sym),
|
||
strlen (SYMBOL_NAME (sym)),
|
||
&objfile -> symbol_obstack);
|
||
}
|
||
|
||
SYMBOL_TYPE (sym) = read_type (&p, objfile);
|
||
|
||
/* For a nameless type, we don't want a create a symbol, thus we
|
||
did not use `sym'. Return without further processing. */
|
||
if (nameless) return NULL;
|
||
|
||
SYMBOL_CLASS (sym) = LOC_TYPEDEF;
|
||
SYMBOL_VALUE (sym) = valu;
|
||
SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
|
||
if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
|
||
TYPE_TAG_NAME (SYMBOL_TYPE (sym))
|
||
= obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
|
||
add_symbol_to_list (sym, &file_symbols);
|
||
|
||
if (synonym)
|
||
{
|
||
/* Clone the sym and then modify it. */
|
||
register struct symbol *typedef_sym = (struct symbol *)
|
||
obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
|
||
*typedef_sym = *sym;
|
||
SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
|
||
SYMBOL_VALUE (typedef_sym) = valu;
|
||
SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
|
||
if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
|
||
TYPE_NAME (SYMBOL_TYPE (sym))
|
||
= obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
|
||
add_symbol_to_list (typedef_sym, &file_symbols);
|
||
}
|
||
break;
|
||
|
||
case 'V':
|
||
/* Static symbol of local scope */
|
||
SYMBOL_TYPE (sym) = read_type (&p, objfile);
|
||
SYMBOL_CLASS (sym) = LOC_STATIC;
|
||
SYMBOL_VALUE_ADDRESS (sym) = valu;
|
||
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
||
if (os9k_stabs)
|
||
add_symbol_to_list (sym, &global_symbols);
|
||
else
|
||
add_symbol_to_list (sym, &local_symbols);
|
||
break;
|
||
|
||
case 'v':
|
||
/* Reference parameter */
|
||
SYMBOL_TYPE (sym) = read_type (&p, objfile);
|
||
SYMBOL_CLASS (sym) = LOC_REF_ARG;
|
||
SYMBOL_VALUE (sym) = valu;
|
||
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
||
add_symbol_to_list (sym, &local_symbols);
|
||
break;
|
||
|
||
case 'X':
|
||
/* This is used by Sun FORTRAN for "function result value".
|
||
Sun claims ("dbx and dbxtool interfaces", 2nd ed)
|
||
that Pascal uses it too, but when I tried it Pascal used
|
||
"x:3" (local symbol) instead. */
|
||
SYMBOL_TYPE (sym) = read_type (&p, objfile);
|
||
SYMBOL_CLASS (sym) = LOC_LOCAL;
|
||
SYMBOL_VALUE (sym) = valu;
|
||
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
||
add_symbol_to_list (sym, &local_symbols);
|
||
break;
|
||
|
||
default:
|
||
SYMBOL_TYPE (sym) = error_type (&p);
|
||
SYMBOL_CLASS (sym) = LOC_CONST;
|
||
SYMBOL_VALUE (sym) = 0;
|
||
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
||
add_symbol_to_list (sym, &file_symbols);
|
||
break;
|
||
}
|
||
|
||
/* When passing structures to a function, some systems sometimes pass
|
||
the address in a register, not the structure itself.
|
||
|
||
If REG_STRUCT_HAS_ADDR yields non-zero we have to convert LOC_REGPARM
|
||
to LOC_REGPARM_ADDR for structures and unions. */
|
||
|
||
if (SYMBOL_CLASS (sym) == LOC_REGPARM
|
||
&& REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
|
||
SYMBOL_TYPE (sym))
|
||
&& ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT)
|
||
|| (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)))
|
||
SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
|
||
|
||
/* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th and
|
||
subsequent arguments on the sparc, for example). */
|
||
if (SYMBOL_CLASS (sym) == LOC_ARG
|
||
&& REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
|
||
SYMBOL_TYPE (sym))
|
||
&& ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT)
|
||
|| (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)))
|
||
SYMBOL_CLASS (sym) = LOC_REF_ARG;
|
||
|
||
return sym;
|
||
}
|
||
|
||
|
||
/* Skip rest of this symbol and return an error type.
|
||
|
||
General notes on error recovery: error_type always skips to the
|
||
end of the symbol (modulo cretinous dbx symbol name continuation).
|
||
Thus code like this:
|
||
|
||
if (*(*pp)++ != ';')
|
||
return error_type (pp);
|
||
|
||
is wrong because if *pp starts out pointing at '\0' (typically as the
|
||
result of an earlier error), it will be incremented to point to the
|
||
start of the next symbol, which might produce strange results, at least
|
||
if you run off the end of the string table. Instead use
|
||
|
||
if (**pp != ';')
|
||
return error_type (pp);
|
||
++*pp;
|
||
|
||
or
|
||
|
||
if (**pp != ';')
|
||
foo = error_type (pp);
|
||
else
|
||
++*pp;
|
||
|
||
And in case it isn't obvious, the point of all this hair is so the compiler
|
||
can define new types and new syntaxes, and old versions of the
|
||
debugger will be able to read the new symbol tables. */
|
||
|
||
static struct type *
|
||
error_type (pp)
|
||
char **pp;
|
||
{
|
||
complain (&error_type_complaint);
|
||
while (1)
|
||
{
|
||
/* Skip to end of symbol. */
|
||
while (**pp != '\0')
|
||
{
|
||
(*pp)++;
|
||
}
|
||
|
||
/* Check for and handle cretinous dbx symbol name continuation! */
|
||
if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
|
||
{
|
||
*pp = next_symbol_text ();
|
||
}
|
||
else
|
||
{
|
||
break;
|
||
}
|
||
}
|
||
return (builtin_type_error);
|
||
}
|
||
|
||
|
||
/* Read type information or a type definition; return the type. Even
|
||
though this routine accepts either type information or a type
|
||
definition, the distinction is relevant--some parts of stabsread.c
|
||
assume that type information starts with a digit, '-', or '(' in
|
||
deciding whether to call read_type. */
|
||
|
||
struct type *
|
||
read_type (pp, objfile)
|
||
register char **pp;
|
||
struct objfile *objfile;
|
||
{
|
||
register struct type *type = 0;
|
||
struct type *type1;
|
||
int typenums[2];
|
||
int xtypenums[2];
|
||
char type_descriptor;
|
||
|
||
/* Size in bits of type if specified by a type attribute, or -1 if
|
||
there is no size attribute. */
|
||
int type_size = -1;
|
||
|
||
/* Used to distinguish string and bitstring from char-array and set. */
|
||
int is_string = 0;
|
||
|
||
/* Read type number if present. The type number may be omitted.
|
||
for instance in a two-dimensional array declared with type
|
||
"ar1;1;10;ar1;1;10;4". */
|
||
if ((**pp >= '0' && **pp <= '9')
|
||
|| **pp == '('
|
||
|| **pp == '-')
|
||
{
|
||
if (read_type_number (pp, typenums) != 0)
|
||
return error_type (pp);
|
||
|
||
/* Type is not being defined here. Either it already exists,
|
||
or this is a forward reference to it. dbx_alloc_type handles
|
||
both cases. */
|
||
if (**pp != '=')
|
||
return dbx_alloc_type (typenums, objfile);
|
||
|
||
/* Type is being defined here. */
|
||
/* Skip the '='. */
|
||
++(*pp);
|
||
|
||
while (**pp == '@')
|
||
{
|
||
char *p = *pp + 1;
|
||
/* It might be a type attribute or a member type. */
|
||
if (isdigit (*p) || *p == '(' || *p == '-')
|
||
/* Member type. */
|
||
break;
|
||
else
|
||
{
|
||
/* Type attributes. */
|
||
char *attr = p;
|
||
|
||
/* Skip to the semicolon. */
|
||
while (*p != ';' && *p != '\0')
|
||
++p;
|
||
*pp = p;
|
||
if (*p == '\0')
|
||
return error_type (pp);
|
||
else
|
||
/* Skip the semicolon. */
|
||
++*pp;
|
||
|
||
switch (*attr)
|
||
{
|
||
case 's':
|
||
type_size = atoi (attr + 1);
|
||
if (type_size <= 0)
|
||
type_size = -1;
|
||
break;
|
||
|
||
case 'S':
|
||
is_string = 1;
|
||
break;
|
||
|
||
default:
|
||
/* Ignore unrecognized type attributes, so future compilers
|
||
can invent new ones. */
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
/* Skip the type descriptor, we get it below with (*pp)[-1]. */
|
||
++(*pp);
|
||
}
|
||
else
|
||
{
|
||
/* 'typenums=' not present, type is anonymous. Read and return
|
||
the definition, but don't put it in the type vector. */
|
||
typenums[0] = typenums[1] = -1;
|
||
(*pp)++;
|
||
}
|
||
|
||
type_descriptor = (*pp)[-1];
|
||
switch (type_descriptor)
|
||
{
|
||
case 'x':
|
||
{
|
||
enum type_code code;
|
||
|
||
/* Used to index through file_symbols. */
|
||
struct pending *ppt;
|
||
int i;
|
||
|
||
/* Name including "struct", etc. */
|
||
char *type_name;
|
||
|
||
{
|
||
char *from, *to, *p, *q1, *q2;
|
||
|
||
/* Set the type code according to the following letter. */
|
||
switch ((*pp)[0])
|
||
{
|
||
case 's':
|
||
code = TYPE_CODE_STRUCT;
|
||
break;
|
||
case 'u':
|
||
code = TYPE_CODE_UNION;
|
||
break;
|
||
case 'e':
|
||
code = TYPE_CODE_ENUM;
|
||
break;
|
||
default:
|
||
{
|
||
/* Complain and keep going, so compilers can invent new
|
||
cross-reference types. */
|
||
static struct complaint msg =
|
||
{"Unrecognized cross-reference type `%c'", 0, 0};
|
||
complain (&msg, (*pp)[0]);
|
||
code = TYPE_CODE_STRUCT;
|
||
break;
|
||
}
|
||
}
|
||
|
||
q1 = strchr(*pp, '<');
|
||
p = strchr(*pp, ':');
|
||
if (p == NULL)
|
||
return error_type (pp);
|
||
while (q1 && p > q1 && p[1] == ':')
|
||
{
|
||
q2 = strchr(q1, '>');
|
||
if (!q2 || q2 < p)
|
||
break;
|
||
p += 2;
|
||
p = strchr(p, ':');
|
||
if (p == NULL)
|
||
return error_type (pp);
|
||
}
|
||
to = type_name =
|
||
(char *)obstack_alloc (&objfile->type_obstack, p - *pp + 1);
|
||
|
||
/* Copy the name. */
|
||
from = *pp + 1;
|
||
while (from < p)
|
||
*to++ = *from++;
|
||
*to = '\0';
|
||
|
||
/* Set the pointer ahead of the name which we just read, and
|
||
the colon. */
|
||
*pp = from + 1;
|
||
}
|
||
|
||
/* Now check to see whether the type has already been
|
||
declared. This was written for arrays of cross-referenced
|
||
types before we had TYPE_CODE_TARGET_STUBBED, so I'm pretty
|
||
sure it is not necessary anymore. But it might be a good
|
||
idea, to save a little memory. */
|
||
|
||
for (ppt = file_symbols; ppt; ppt = ppt->next)
|
||
for (i = 0; i < ppt->nsyms; i++)
|
||
{
|
||
struct symbol *sym = ppt->symbol[i];
|
||
|
||
if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
|
||
&& SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
|
||
&& (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
|
||
&& STREQ (SYMBOL_NAME (sym), type_name))
|
||
{
|
||
obstack_free (&objfile -> type_obstack, type_name);
|
||
type = SYMBOL_TYPE (sym);
|
||
return type;
|
||
}
|
||
}
|
||
|
||
/* Didn't find the type to which this refers, so we must
|
||
be dealing with a forward reference. Allocate a type
|
||
structure for it, and keep track of it so we can
|
||
fill in the rest of the fields when we get the full
|
||
type. */
|
||
type = dbx_alloc_type (typenums, objfile);
|
||
TYPE_CODE (type) = code;
|
||
TYPE_TAG_NAME (type) = type_name;
|
||
INIT_CPLUS_SPECIFIC(type);
|
||
TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
|
||
|
||
add_undefined_type (type);
|
||
return type;
|
||
}
|
||
|
||
case '-': /* RS/6000 built-in type */
|
||
case '0':
|
||
case '1':
|
||
case '2':
|
||
case '3':
|
||
case '4':
|
||
case '5':
|
||
case '6':
|
||
case '7':
|
||
case '8':
|
||
case '9':
|
||
case '(':
|
||
|
||
{
|
||
char *pp_saved;
|
||
|
||
(*pp)--;
|
||
pp_saved = *pp;
|
||
|
||
/* Peek ahead at the number to detect void. */
|
||
if (read_type_number (pp, xtypenums) != 0)
|
||
return error_type (pp);
|
||
|
||
if (typenums[0] == xtypenums[0] && typenums[1] == xtypenums[1])
|
||
/* It's being defined as itself. That means it is "void". */
|
||
type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
|
||
else
|
||
{
|
||
struct type *xtype;
|
||
|
||
/* Go back to the number and have read_type get it. This means
|
||
that we can deal with something like t(1,2)=(3,4)=... which
|
||
the Lucid compiler uses. */
|
||
*pp = pp_saved;
|
||
xtype = read_type (pp, objfile);
|
||
|
||
/* The type is being defined to another type. So we copy the type.
|
||
This loses if we copy a C++ class and so we lose track of how
|
||
the names are mangled (but g++ doesn't output stabs like this
|
||
now anyway). */
|
||
|
||
type = alloc_type (objfile);
|
||
memcpy (type, xtype, sizeof (struct type));
|
||
|
||
/* The idea behind clearing the names is that the only purpose
|
||
for defining a type to another type is so that the name of
|
||
one can be different. So we probably don't need to worry much
|
||
about the case where the compiler doesn't give a name to the
|
||
new type. */
|
||
TYPE_NAME (type) = NULL;
|
||
TYPE_TAG_NAME (type) = NULL;
|
||
}
|
||
if (typenums[0] != -1)
|
||
*dbx_lookup_type (typenums) = type;
|
||
break;
|
||
}
|
||
|
||
/* In the following types, we must be sure to overwrite any existing
|
||
type that the typenums refer to, rather than allocating a new one
|
||
and making the typenums point to the new one. This is because there
|
||
may already be pointers to the existing type (if it had been
|
||
forward-referenced), and we must change it to a pointer, function,
|
||
reference, or whatever, *in-place*. */
|
||
|
||
case '*':
|
||
type1 = read_type (pp, objfile);
|
||
type = make_pointer_type (type1, dbx_lookup_type (typenums));
|
||
break;
|
||
|
||
case '&': /* Reference to another type */
|
||
type1 = read_type (pp, objfile);
|
||
type = make_reference_type (type1, dbx_lookup_type (typenums));
|
||
break;
|
||
|
||
case 'f': /* Function returning another type */
|
||
if (os9k_stabs && **pp == '(')
|
||
{
|
||
/* Function prototype; parse it.
|
||
We must conditionalize this on os9k_stabs because otherwise
|
||
it could be confused with a Sun-style (1,3) typenumber
|
||
(I think). */
|
||
struct type *t;
|
||
++*pp;
|
||
while (**pp != ')')
|
||
{
|
||
t = read_type(pp, objfile);
|
||
if (**pp == ',') ++*pp;
|
||
}
|
||
}
|
||
type1 = read_type (pp, objfile);
|
||
type = make_function_type (type1, dbx_lookup_type (typenums));
|
||
break;
|
||
|
||
case 'k': /* Const qualifier on some type (Sun) */
|
||
case 'c': /* Const qualifier on some type (OS9000) */
|
||
/* Because 'c' means other things to AIX and 'k' is perfectly good,
|
||
only accept 'c' in the os9k_stabs case. */
|
||
if (type_descriptor == 'c' && !os9k_stabs)
|
||
return error_type (pp);
|
||
type = read_type (pp, objfile);
|
||
/* FIXME! For now, we ignore const and volatile qualifiers. */
|
||
break;
|
||
|
||
case 'B': /* Volatile qual on some type (Sun) */
|
||
case 'i': /* Volatile qual on some type (OS9000) */
|
||
/* Because 'i' means other things to AIX and 'B' is perfectly good,
|
||
only accept 'i' in the os9k_stabs case. */
|
||
if (type_descriptor == 'i' && !os9k_stabs)
|
||
return error_type (pp);
|
||
type = read_type (pp, objfile);
|
||
/* FIXME! For now, we ignore const and volatile qualifiers. */
|
||
break;
|
||
|
||
/* FIXME -- we should be doing smash_to_XXX types here. */
|
||
case '@': /* Member (class & variable) type */
|
||
{
|
||
struct type *domain = read_type (pp, objfile);
|
||
struct type *memtype;
|
||
|
||
if (**pp != ',')
|
||
/* Invalid member type data format. */
|
||
return error_type (pp);
|
||
++*pp;
|
||
|
||
memtype = read_type (pp, objfile);
|
||
type = dbx_alloc_type (typenums, objfile);
|
||
smash_to_member_type (type, domain, memtype);
|
||
}
|
||
break;
|
||
|
||
case '#': /* Method (class & fn) type */
|
||
if ((*pp)[0] == '#')
|
||
{
|
||
/* We'll get the parameter types from the name. */
|
||
struct type *return_type;
|
||
|
||
(*pp)++;
|
||
return_type = read_type (pp, objfile);
|
||
if (*(*pp)++ != ';')
|
||
complain (&invalid_member_complaint, symnum);
|
||
type = allocate_stub_method (return_type);
|
||
if (typenums[0] != -1)
|
||
*dbx_lookup_type (typenums) = type;
|
||
}
|
||
else
|
||
{
|
||
struct type *domain = read_type (pp, objfile);
|
||
struct type *return_type;
|
||
struct type **args;
|
||
|
||
if (**pp != ',')
|
||
/* Invalid member type data format. */
|
||
return error_type (pp);
|
||
else
|
||
++(*pp);
|
||
|
||
return_type = read_type (pp, objfile);
|
||
args = read_args (pp, ';', objfile);
|
||
type = dbx_alloc_type (typenums, objfile);
|
||
smash_to_method_type (type, domain, return_type, args);
|
||
}
|
||
break;
|
||
|
||
case 'r': /* Range type */
|
||
type = read_range_type (pp, typenums, objfile);
|
||
if (typenums[0] != -1)
|
||
*dbx_lookup_type (typenums) = type;
|
||
break;
|
||
|
||
case 'b':
|
||
if (os9k_stabs)
|
||
/* Const and volatile qualified type. */
|
||
type = read_type (pp, objfile);
|
||
else
|
||
{
|
||
/* Sun ACC builtin int type */
|
||
type = read_sun_builtin_type (pp, typenums, objfile);
|
||
if (typenums[0] != -1)
|
||
*dbx_lookup_type (typenums) = type;
|
||
}
|
||
break;
|
||
|
||
case 'R': /* Sun ACC builtin float type */
|
||
type = read_sun_floating_type (pp, typenums, objfile);
|
||
if (typenums[0] != -1)
|
||
*dbx_lookup_type (typenums) = type;
|
||
break;
|
||
|
||
case 'e': /* Enumeration type */
|
||
type = dbx_alloc_type (typenums, objfile);
|
||
type = read_enum_type (pp, type, objfile);
|
||
if (typenums[0] != -1)
|
||
*dbx_lookup_type (typenums) = type;
|
||
break;
|
||
|
||
case 's': /* Struct type */
|
||
case 'u': /* Union type */
|
||
type = dbx_alloc_type (typenums, objfile);
|
||
if (!TYPE_NAME (type))
|
||
{
|
||
TYPE_NAME (type) = type_synonym_name;
|
||
}
|
||
type_synonym_name = NULL;
|
||
switch (type_descriptor)
|
||
{
|
||
case 's':
|
||
TYPE_CODE (type) = TYPE_CODE_STRUCT;
|
||
break;
|
||
case 'u':
|
||
TYPE_CODE (type) = TYPE_CODE_UNION;
|
||
break;
|
||
}
|
||
type = read_struct_type (pp, type, objfile);
|
||
break;
|
||
|
||
case 'a': /* Array type */
|
||
if (**pp != 'r')
|
||
return error_type (pp);
|
||
++*pp;
|
||
|
||
type = dbx_alloc_type (typenums, objfile);
|
||
type = read_array_type (pp, type, objfile);
|
||
if (is_string)
|
||
TYPE_CODE (type) = TYPE_CODE_STRING;
|
||
break;
|
||
|
||
case 'S':
|
||
type1 = read_type (pp, objfile);
|
||
type = create_set_type ((struct type*) NULL, type1);
|
||
if (is_string)
|
||
TYPE_CODE (type) = TYPE_CODE_BITSTRING;
|
||
if (typenums[0] != -1)
|
||
*dbx_lookup_type (typenums) = type;
|
||
break;
|
||
|
||
default:
|
||
--*pp; /* Go back to the symbol in error */
|
||
/* Particularly important if it was \0! */
|
||
return error_type (pp);
|
||
}
|
||
|
||
if (type == 0)
|
||
{
|
||
warning ("GDB internal error, type is NULL in stabsread.c\n");
|
||
return error_type (pp);
|
||
}
|
||
|
||
/* Size specified in a type attribute overrides any other size. */
|
||
if (type_size != -1)
|
||
TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
|
||
|
||
return type;
|
||
}
|
||
|
||
/* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
|
||
Return the proper type node for a given builtin type number. */
|
||
|
||
static struct type *
|
||
rs6000_builtin_type (typenum)
|
||
int typenum;
|
||
{
|
||
/* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
|
||
#define NUMBER_RECOGNIZED 30
|
||
/* This includes an empty slot for type number -0. */
|
||
static struct type *negative_types[NUMBER_RECOGNIZED + 1];
|
||
struct type *rettype = NULL;
|
||
|
||
if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
|
||
{
|
||
complain (&rs6000_builtin_complaint, typenum);
|
||
return builtin_type_error;
|
||
}
|
||
if (negative_types[-typenum] != NULL)
|
||
return negative_types[-typenum];
|
||
|
||
#if TARGET_CHAR_BIT != 8
|
||
#error This code wrong for TARGET_CHAR_BIT not 8
|
||
/* These definitions all assume that TARGET_CHAR_BIT is 8. I think
|
||
that if that ever becomes not true, the correct fix will be to
|
||
make the size in the struct type to be in bits, not in units of
|
||
TARGET_CHAR_BIT. */
|
||
#endif
|
||
|
||
switch (-typenum)
|
||
{
|
||
case 1:
|
||
/* The size of this and all the other types are fixed, defined
|
||
by the debugging format. If there is a type called "int" which
|
||
is other than 32 bits, then it should use a new negative type
|
||
number (or avoid negative type numbers for that case).
|
||
See stabs.texinfo. */
|
||
rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
|
||
break;
|
||
case 2:
|
||
rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
|
||
break;
|
||
case 3:
|
||
rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
|
||
break;
|
||
case 4:
|
||
rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
|
||
break;
|
||
case 5:
|
||
rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
|
||
"unsigned char", NULL);
|
||
break;
|
||
case 6:
|
||
rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
|
||
break;
|
||
case 7:
|
||
rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
|
||
"unsigned short", NULL);
|
||
break;
|
||
case 8:
|
||
rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
|
||
"unsigned int", NULL);
|
||
break;
|
||
case 9:
|
||
rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
|
||
"unsigned", NULL);
|
||
case 10:
|
||
rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
|
||
"unsigned long", NULL);
|
||
break;
|
||
case 11:
|
||
rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
|
||
break;
|
||
case 12:
|
||
/* IEEE single precision (32 bit). */
|
||
rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
|
||
break;
|
||
case 13:
|
||
/* IEEE double precision (64 bit). */
|
||
rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
|
||
break;
|
||
case 14:
|
||
/* This is an IEEE double on the RS/6000, and different machines with
|
||
different sizes for "long double" should use different negative
|
||
type numbers. See stabs.texinfo. */
|
||
rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
|
||
break;
|
||
case 15:
|
||
rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
|
||
break;
|
||
case 16:
|
||
rettype = init_type (TYPE_CODE_BOOL, 4, 0, "boolean", NULL);
|
||
break;
|
||
case 17:
|
||
rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
|
||
break;
|
||
case 18:
|
||
rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
|
||
break;
|
||
case 19:
|
||
rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
|
||
break;
|
||
case 20:
|
||
rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
|
||
"character", NULL);
|
||
break;
|
||
case 21:
|
||
rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
|
||
"logical*1", NULL);
|
||
break;
|
||
case 22:
|
||
rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
|
||
"logical*2", NULL);
|
||
break;
|
||
case 23:
|
||
rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
|
||
"logical*4", NULL);
|
||
break;
|
||
case 24:
|
||
rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
|
||
"logical", NULL);
|
||
break;
|
||
case 25:
|
||
/* Complex type consisting of two IEEE single precision values. */
|
||
rettype = init_type (TYPE_CODE_ERROR, 8, 0, "complex", NULL);
|
||
break;
|
||
case 26:
|
||
/* Complex type consisting of two IEEE double precision values. */
|
||
rettype = init_type (TYPE_CODE_ERROR, 16, 0, "double complex", NULL);
|
||
break;
|
||
case 27:
|
||
rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
|
||
break;
|
||
case 28:
|
||
rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
|
||
break;
|
||
case 29:
|
||
rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
|
||
break;
|
||
case 30:
|
||
rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
|
||
break;
|
||
}
|
||
negative_types[-typenum] = rettype;
|
||
return rettype;
|
||
}
|
||
|
||
/* This page contains subroutines of read_type. */
|
||
|
||
#define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
|
||
#define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
|
||
#define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
|
||
#define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
|
||
|
||
/* Read member function stabs info for C++ classes. The form of each member
|
||
function data is:
|
||
|
||
NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
|
||
|
||
An example with two member functions is:
|
||
|
||
afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
|
||
|
||
For the case of overloaded operators, the format is op$::*.funcs, where
|
||
$ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
|
||
name (such as `+=') and `.' marks the end of the operator name.
|
||
|
||
Returns 1 for success, 0 for failure. */
|
||
|
||
static int
|
||
read_member_functions (fip, pp, type, objfile)
|
||
struct field_info *fip;
|
||
char **pp;
|
||
struct type *type;
|
||
struct objfile *objfile;
|
||
{
|
||
int nfn_fields = 0;
|
||
int length = 0;
|
||
/* Total number of member functions defined in this class. If the class
|
||
defines two `f' functions, and one `g' function, then this will have
|
||
the value 3. */
|
||
int total_length = 0;
|
||
int i;
|
||
struct next_fnfield
|
||
{
|
||
struct next_fnfield *next;
|
||
struct fn_field fn_field;
|
||
} *sublist;
|
||
struct type *look_ahead_type;
|
||
struct next_fnfieldlist *new_fnlist;
|
||
struct next_fnfield *new_sublist;
|
||
char *main_fn_name;
|
||
register char *p;
|
||
|
||
/* Process each list until we find something that is not a member function
|
||
or find the end of the functions. */
|
||
|
||
while (**pp != ';')
|
||
{
|
||
/* We should be positioned at the start of the function name.
|
||
Scan forward to find the first ':' and if it is not the
|
||
first of a "::" delimiter, then this is not a member function. */
|
||
p = *pp;
|
||
while (*p != ':')
|
||
{
|
||
p++;
|
||
}
|
||
if (p[1] != ':')
|
||
{
|
||
break;
|
||
}
|
||
|
||
sublist = NULL;
|
||
look_ahead_type = NULL;
|
||
length = 0;
|
||
|
||
new_fnlist = (struct next_fnfieldlist *)
|
||
xmalloc (sizeof (struct next_fnfieldlist));
|
||
make_cleanup (free, new_fnlist);
|
||
memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
|
||
|
||
if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && (*pp)[2] == CPLUS_MARKER)
|
||
{
|
||
/* This is a completely wierd case. In order to stuff in the
|
||
names that might contain colons (the usual name delimiter),
|
||
Mike Tiemann defined a different name format which is
|
||
signalled if the identifier is "op$". In that case, the
|
||
format is "op$::XXXX." where XXXX is the name. This is
|
||
used for names like "+" or "=". YUUUUUUUK! FIXME! */
|
||
/* This lets the user type "break operator+".
|
||
We could just put in "+" as the name, but that wouldn't
|
||
work for "*". */
|
||
static char opname[32] = {'o', 'p', CPLUS_MARKER};
|
||
char *o = opname + 3;
|
||
|
||
/* Skip past '::'. */
|
||
*pp = p + 2;
|
||
|
||
STABS_CONTINUE (pp);
|
||
p = *pp;
|
||
while (*p != '.')
|
||
{
|
||
*o++ = *p++;
|
||
}
|
||
main_fn_name = savestring (opname, o - opname);
|
||
/* Skip past '.' */
|
||
*pp = p + 1;
|
||
}
|
||
else
|
||
{
|
||
main_fn_name = savestring (*pp, p - *pp);
|
||
/* Skip past '::'. */
|
||
*pp = p + 2;
|
||
}
|
||
new_fnlist -> fn_fieldlist.name = main_fn_name;
|
||
|
||
do
|
||
{
|
||
new_sublist =
|
||
(struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
|
||
make_cleanup (free, new_sublist);
|
||
memset (new_sublist, 0, sizeof (struct next_fnfield));
|
||
|
||
/* Check for and handle cretinous dbx symbol name continuation! */
|
||
if (look_ahead_type == NULL)
|
||
{
|
||
/* Normal case. */
|
||
STABS_CONTINUE (pp);
|
||
|
||
new_sublist -> fn_field.type = read_type (pp, objfile);
|
||
if (**pp != ':')
|
||
{
|
||
/* Invalid symtab info for member function. */
|
||
return 0;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* g++ version 1 kludge */
|
||
new_sublist -> fn_field.type = look_ahead_type;
|
||
look_ahead_type = NULL;
|
||
}
|
||
|
||
(*pp)++;
|
||
p = *pp;
|
||
while (*p != ';')
|
||
{
|
||
p++;
|
||
}
|
||
|
||
/* If this is just a stub, then we don't have the real name here. */
|
||
|
||
if (TYPE_FLAGS (new_sublist -> fn_field.type) & TYPE_FLAG_STUB)
|
||
{
|
||
if (!TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type))
|
||
TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type) = type;
|
||
new_sublist -> fn_field.is_stub = 1;
|
||
}
|
||
new_sublist -> fn_field.physname = savestring (*pp, p - *pp);
|
||
*pp = p + 1;
|
||
|
||
/* Set this member function's visibility fields. */
|
||
switch (*(*pp)++)
|
||
{
|
||
case VISIBILITY_PRIVATE:
|
||
new_sublist -> fn_field.is_private = 1;
|
||
break;
|
||
case VISIBILITY_PROTECTED:
|
||
new_sublist -> fn_field.is_protected = 1;
|
||
break;
|
||
}
|
||
|
||
STABS_CONTINUE (pp);
|
||
switch (**pp)
|
||
{
|
||
case 'A': /* Normal functions. */
|
||
new_sublist -> fn_field.is_const = 0;
|
||
new_sublist -> fn_field.is_volatile = 0;
|
||
(*pp)++;
|
||
break;
|
||
case 'B': /* `const' member functions. */
|
||
new_sublist -> fn_field.is_const = 1;
|
||
new_sublist -> fn_field.is_volatile = 0;
|
||
(*pp)++;
|
||
break;
|
||
case 'C': /* `volatile' member function. */
|
||
new_sublist -> fn_field.is_const = 0;
|
||
new_sublist -> fn_field.is_volatile = 1;
|
||
(*pp)++;
|
||
break;
|
||
case 'D': /* `const volatile' member function. */
|
||
new_sublist -> fn_field.is_const = 1;
|
||
new_sublist -> fn_field.is_volatile = 1;
|
||
(*pp)++;
|
||
break;
|
||
case '*': /* File compiled with g++ version 1 -- no info */
|
||
case '?':
|
||
case '.':
|
||
break;
|
||
default:
|
||
complain (&const_vol_complaint, **pp);
|
||
break;
|
||
}
|
||
|
||
switch (*(*pp)++)
|
||
{
|
||
case '*':
|
||
{
|
||
int nbits;
|
||
/* virtual member function, followed by index.
|
||
The sign bit is set to distinguish pointers-to-methods
|
||
from virtual function indicies. Since the array is
|
||
in words, the quantity must be shifted left by 1
|
||
on 16 bit machine, and by 2 on 32 bit machine, forcing
|
||
the sign bit out, and usable as a valid index into
|
||
the array. Remove the sign bit here. */
|
||
new_sublist -> fn_field.voffset =
|
||
(0x7fffffff & read_huge_number (pp, ';', &nbits)) + 2;
|
||
if (nbits != 0)
|
||
return 0;
|
||
|
||
STABS_CONTINUE (pp);
|
||
if (**pp == ';' || **pp == '\0')
|
||
{
|
||
/* Must be g++ version 1. */
|
||
new_sublist -> fn_field.fcontext = 0;
|
||
}
|
||
else
|
||
{
|
||
/* Figure out from whence this virtual function came.
|
||
It may belong to virtual function table of
|
||
one of its baseclasses. */
|
||
look_ahead_type = read_type (pp, objfile);
|
||
if (**pp == ':')
|
||
{
|
||
/* g++ version 1 overloaded methods. */
|
||
}
|
||
else
|
||
{
|
||
new_sublist -> fn_field.fcontext = look_ahead_type;
|
||
if (**pp != ';')
|
||
{
|
||
return 0;
|
||
}
|
||
else
|
||
{
|
||
++*pp;
|
||
}
|
||
look_ahead_type = NULL;
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
case '?':
|
||
/* static member function. */
|
||
new_sublist -> fn_field.voffset = VOFFSET_STATIC;
|
||
if (strncmp (new_sublist -> fn_field.physname,
|
||
main_fn_name, strlen (main_fn_name)))
|
||
{
|
||
new_sublist -> fn_field.is_stub = 1;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
/* error */
|
||
complain (&member_fn_complaint, (*pp)[-1]);
|
||
/* Fall through into normal member function. */
|
||
|
||
case '.':
|
||
/* normal member function. */
|
||
new_sublist -> fn_field.voffset = 0;
|
||
new_sublist -> fn_field.fcontext = 0;
|
||
break;
|
||
}
|
||
|
||
new_sublist -> next = sublist;
|
||
sublist = new_sublist;
|
||
length++;
|
||
STABS_CONTINUE (pp);
|
||
}
|
||
while (**pp != ';' && **pp != '\0');
|
||
|
||
(*pp)++;
|
||
|
||
new_fnlist -> fn_fieldlist.fn_fields = (struct fn_field *)
|
||
obstack_alloc (&objfile -> type_obstack,
|
||
sizeof (struct fn_field) * length);
|
||
memset (new_fnlist -> fn_fieldlist.fn_fields, 0,
|
||
sizeof (struct fn_field) * length);
|
||
for (i = length; (i--, sublist); sublist = sublist -> next)
|
||
{
|
||
new_fnlist -> fn_fieldlist.fn_fields[i] = sublist -> fn_field;
|
||
}
|
||
|
||
new_fnlist -> fn_fieldlist.length = length;
|
||
new_fnlist -> next = fip -> fnlist;
|
||
fip -> fnlist = new_fnlist;
|
||
nfn_fields++;
|
||
total_length += length;
|
||
STABS_CONTINUE (pp);
|
||
}
|
||
|
||
if (nfn_fields)
|
||
{
|
||
ALLOCATE_CPLUS_STRUCT_TYPE (type);
|
||
TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
|
||
TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
|
||
memset (TYPE_FN_FIELDLISTS (type), 0,
|
||
sizeof (struct fn_fieldlist) * nfn_fields);
|
||
TYPE_NFN_FIELDS (type) = nfn_fields;
|
||
TYPE_NFN_FIELDS_TOTAL (type) = total_length;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Special GNU C++ name.
|
||
|
||
Returns 1 for success, 0 for failure. "failure" means that we can't
|
||
keep parsing and it's time for error_type(). */
|
||
|
||
static int
|
||
read_cpp_abbrev (fip, pp, type, objfile)
|
||
struct field_info *fip;
|
||
char **pp;
|
||
struct type *type;
|
||
struct objfile *objfile;
|
||
{
|
||
register char *p;
|
||
char *name;
|
||
char cpp_abbrev;
|
||
struct type *context;
|
||
|
||
p = *pp;
|
||
if (*++p == 'v')
|
||
{
|
||
name = NULL;
|
||
cpp_abbrev = *++p;
|
||
|
||
*pp = p + 1;
|
||
|
||
/* At this point, *pp points to something like "22:23=*22...",
|
||
where the type number before the ':' is the "context" and
|
||
everything after is a regular type definition. Lookup the
|
||
type, find it's name, and construct the field name. */
|
||
|
||
context = read_type (pp, objfile);
|
||
|
||
switch (cpp_abbrev)
|
||
{
|
||
case 'f': /* $vf -- a virtual function table pointer */
|
||
fip->list->field.name =
|
||
obconcat (&objfile->type_obstack, vptr_name, "", "");
|
||
break;
|
||
|
||
case 'b': /* $vb -- a virtual bsomethingorother */
|
||
name = type_name_no_tag (context);
|
||
if (name == NULL)
|
||
{
|
||
complain (&invalid_cpp_type_complaint, symnum);
|
||
name = "FOO";
|
||
}
|
||
fip->list->field.name =
|
||
obconcat (&objfile->type_obstack, vb_name, name, "");
|
||
break;
|
||
|
||
default:
|
||
complain (&invalid_cpp_abbrev_complaint, *pp);
|
||
fip->list->field.name =
|
||
obconcat (&objfile->type_obstack,
|
||
"INVALID_CPLUSPLUS_ABBREV", "", "");
|
||
break;
|
||
}
|
||
|
||
/* At this point, *pp points to the ':'. Skip it and read the
|
||
field type. */
|
||
|
||
p = ++(*pp);
|
||
if (p[-1] != ':')
|
||
{
|
||
complain (&invalid_cpp_abbrev_complaint, *pp);
|
||
return 0;
|
||
}
|
||
fip->list->field.type = read_type (pp, objfile);
|
||
if (**pp == ',')
|
||
(*pp)++; /* Skip the comma. */
|
||
else
|
||
return 0;
|
||
|
||
{
|
||
int nbits;
|
||
fip->list->field.bitpos = read_huge_number (pp, ';', &nbits);
|
||
if (nbits != 0)
|
||
return 0;
|
||
}
|
||
/* This field is unpacked. */
|
||
fip->list->field.bitsize = 0;
|
||
fip->list->visibility = VISIBILITY_PRIVATE;
|
||
}
|
||
else
|
||
{
|
||
complain (&invalid_cpp_abbrev_complaint, *pp);
|
||
/* We have no idea what syntax an unrecognized abbrev would have, so
|
||
better return 0. If we returned 1, we would need to at least advance
|
||
*pp to avoid an infinite loop. */
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
static void
|
||
read_one_struct_field (fip, pp, p, type, objfile)
|
||
struct field_info *fip;
|
||
char **pp;
|
||
char *p;
|
||
struct type *type;
|
||
struct objfile *objfile;
|
||
{
|
||
fip -> list -> field.name =
|
||
obsavestring (*pp, p - *pp, &objfile -> type_obstack);
|
||
*pp = p + 1;
|
||
|
||
/* This means we have a visibility for a field coming. */
|
||
if (**pp == '/')
|
||
{
|
||
(*pp)++;
|
||
fip -> list -> visibility = *(*pp)++;
|
||
}
|
||
else
|
||
{
|
||
/* normal dbx-style format, no explicit visibility */
|
||
fip -> list -> visibility = VISIBILITY_PUBLIC;
|
||
}
|
||
|
||
fip -> list -> field.type = read_type (pp, objfile);
|
||
if (**pp == ':')
|
||
{
|
||
p = ++(*pp);
|
||
#if 0
|
||
/* Possible future hook for nested types. */
|
||
if (**pp == '!')
|
||
{
|
||
fip -> list -> field.bitpos = (long)-2; /* nested type */
|
||
p = ++(*pp);
|
||
}
|
||
else
|
||
#endif
|
||
{
|
||
/* Static class member. */
|
||
fip -> list -> field.bitpos = (long) -1;
|
||
}
|
||
while (*p != ';')
|
||
{
|
||
p++;
|
||
}
|
||
fip -> list -> field.bitsize = (long) savestring (*pp, p - *pp);
|
||
*pp = p + 1;
|
||
return;
|
||
}
|
||
else if (**pp != ',')
|
||
{
|
||
/* Bad structure-type format. */
|
||
complain (&stabs_general_complaint, "bad structure-type format");
|
||
return;
|
||
}
|
||
|
||
(*pp)++; /* Skip the comma. */
|
||
|
||
{
|
||
int nbits;
|
||
fip -> list -> field.bitpos = read_huge_number (pp, ',', &nbits);
|
||
if (nbits != 0)
|
||
{
|
||
complain (&stabs_general_complaint, "bad structure-type format");
|
||
return;
|
||
}
|
||
fip -> list -> field.bitsize = read_huge_number (pp, ';', &nbits);
|
||
if (nbits != 0)
|
||
{
|
||
complain (&stabs_general_complaint, "bad structure-type format");
|
||
return;
|
||
}
|
||
}
|
||
|
||
if (fip -> list -> field.bitpos == 0 && fip -> list -> field.bitsize == 0)
|
||
{
|
||
/* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
|
||
it is a field which has been optimized out. The correct stab for
|
||
this case is to use VISIBILITY_IGNORE, but that is a recent
|
||
invention. (2) It is a 0-size array. For example
|
||
union { int num; char str[0]; } foo. Printing "<no value>" for
|
||
str in "p foo" is OK, since foo.str (and thus foo.str[3])
|
||
will continue to work, and a 0-size array as a whole doesn't
|
||
have any contents to print.
|
||
|
||
I suspect this probably could also happen with gcc -gstabs (not
|
||
-gstabs+) for static fields, and perhaps other C++ extensions.
|
||
Hopefully few people use -gstabs with gdb, since it is intended
|
||
for dbx compatibility. */
|
||
|
||
/* Ignore this field. */
|
||
fip -> list-> visibility = VISIBILITY_IGNORE;
|
||
}
|
||
else
|
||
{
|
||
/* Detect an unpacked field and mark it as such.
|
||
dbx gives a bit size for all fields.
|
||
Note that forward refs cannot be packed,
|
||
and treat enums as if they had the width of ints. */
|
||
|
||
if (TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_INT
|
||
&& TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_ENUM)
|
||
{
|
||
fip -> list -> field.bitsize = 0;
|
||
}
|
||
if ((fip -> list -> field.bitsize
|
||
== TARGET_CHAR_BIT * TYPE_LENGTH (fip -> list -> field.type)
|
||
|| (TYPE_CODE (fip -> list -> field.type) == TYPE_CODE_ENUM
|
||
&& (fip -> list -> field.bitsize
|
||
== TARGET_INT_BIT)
|
||
)
|
||
)
|
||
&&
|
||
fip -> list -> field.bitpos % 8 == 0)
|
||
{
|
||
fip -> list -> field.bitsize = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Read struct or class data fields. They have the form:
|
||
|
||
NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
|
||
|
||
At the end, we see a semicolon instead of a field.
|
||
|
||
In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
|
||
a static field.
|
||
|
||
The optional VISIBILITY is one of:
|
||
|
||
'/0' (VISIBILITY_PRIVATE)
|
||
'/1' (VISIBILITY_PROTECTED)
|
||
'/2' (VISIBILITY_PUBLIC)
|
||
'/9' (VISIBILITY_IGNORE)
|
||
|
||
or nothing, for C style fields with public visibility.
|
||
|
||
Returns 1 for success, 0 for failure. */
|
||
|
||
static int
|
||
read_struct_fields (fip, pp, type, objfile)
|
||
struct field_info *fip;
|
||
char **pp;
|
||
struct type *type;
|
||
struct objfile *objfile;
|
||
{
|
||
register char *p;
|
||
struct nextfield *new;
|
||
|
||
/* We better set p right now, in case there are no fields at all... */
|
||
|
||
p = *pp;
|
||
|
||
/* Read each data member type until we find the terminating ';' at the end of
|
||
the data member list, or break for some other reason such as finding the
|
||
start of the member function list. */
|
||
|
||
while (**pp != ';')
|
||
{
|
||
if (os9k_stabs && **pp == ',') break;
|
||
STABS_CONTINUE (pp);
|
||
/* Get space to record the next field's data. */
|
||
new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
|
||
make_cleanup (free, new);
|
||
memset (new, 0, sizeof (struct nextfield));
|
||
new -> next = fip -> list;
|
||
fip -> list = new;
|
||
|
||
/* Get the field name. */
|
||
p = *pp;
|
||
|
||
/* If is starts with CPLUS_MARKER it is a special abbreviation,
|
||
unless the CPLUS_MARKER is followed by an underscore, in
|
||
which case it is just the name of an anonymous type, which we
|
||
should handle like any other type name. We accept either '$'
|
||
or '.', because a field name can never contain one of these
|
||
characters except as a CPLUS_MARKER (we probably should be
|
||
doing that in most parts of GDB). */
|
||
|
||
if ((*p == '$' || *p == '.') && p[1] != '_')
|
||
{
|
||
if (!read_cpp_abbrev (fip, pp, type, objfile))
|
||
return 0;
|
||
continue;
|
||
}
|
||
|
||
/* Look for the ':' that separates the field name from the field
|
||
values. Data members are delimited by a single ':', while member
|
||
functions are delimited by a pair of ':'s. When we hit the member
|
||
functions (if any), terminate scan loop and return. */
|
||
|
||
while (*p != ':' && *p != '\0')
|
||
{
|
||
p++;
|
||
}
|
||
if (*p == '\0')
|
||
return 0;
|
||
|
||
/* Check to see if we have hit the member functions yet. */
|
||
if (p[1] == ':')
|
||
{
|
||
break;
|
||
}
|
||
read_one_struct_field (fip, pp, p, type, objfile);
|
||
}
|
||
if (p[0] == ':' && p[1] == ':')
|
||
{
|
||
/* chill the list of fields: the last entry (at the head) is a
|
||
partially constructed entry which we now scrub. */
|
||
fip -> list = fip -> list -> next;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* The stabs for C++ derived classes contain baseclass information which
|
||
is marked by a '!' character after the total size. This function is
|
||
called when we encounter the baseclass marker, and slurps up all the
|
||
baseclass information.
|
||
|
||
Immediately following the '!' marker is the number of base classes that
|
||
the class is derived from, followed by information for each base class.
|
||
For each base class, there are two visibility specifiers, a bit offset
|
||
to the base class information within the derived class, a reference to
|
||
the type for the base class, and a terminating semicolon.
|
||
|
||
A typical example, with two base classes, would be "!2,020,19;0264,21;".
|
||
^^ ^ ^ ^ ^ ^ ^
|
||
Baseclass information marker __________________|| | | | | | |
|
||
Number of baseclasses __________________________| | | | | | |
|
||
Visibility specifiers (2) ________________________| | | | | |
|
||
Offset in bits from start of class _________________| | | | |
|
||
Type number for base class ___________________________| | | |
|
||
Visibility specifiers (2) _______________________________| | |
|
||
Offset in bits from start of class ________________________| |
|
||
Type number of base class ____________________________________|
|
||
|
||
Return 1 for success, 0 for (error-type-inducing) failure. */
|
||
|
||
static int
|
||
read_baseclasses (fip, pp, type, objfile)
|
||
struct field_info *fip;
|
||
char **pp;
|
||
struct type *type;
|
||
struct objfile *objfile;
|
||
{
|
||
int i;
|
||
struct nextfield *new;
|
||
|
||
if (**pp != '!')
|
||
{
|
||
return 1;
|
||
}
|
||
else
|
||
{
|
||
/* Skip the '!' baseclass information marker. */
|
||
(*pp)++;
|
||
}
|
||
|
||
ALLOCATE_CPLUS_STRUCT_TYPE (type);
|
||
{
|
||
int nbits;
|
||
TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits);
|
||
if (nbits != 0)
|
||
return 0;
|
||
}
|
||
|
||
#if 0
|
||
/* Some stupid compilers have trouble with the following, so break
|
||
it up into simpler expressions. */
|
||
TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
|
||
TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
|
||
#else
|
||
{
|
||
int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
|
||
char *pointer;
|
||
|
||
pointer = (char *) TYPE_ALLOC (type, num_bytes);
|
||
TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
|
||
}
|
||
#endif /* 0 */
|
||
|
||
B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
|
||
|
||
for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
|
||
{
|
||
new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
|
||
make_cleanup (free, new);
|
||
memset (new, 0, sizeof (struct nextfield));
|
||
new -> next = fip -> list;
|
||
fip -> list = new;
|
||
new -> field.bitsize = 0; /* this should be an unpacked field! */
|
||
|
||
STABS_CONTINUE (pp);
|
||
switch (**pp)
|
||
{
|
||
case '0':
|
||
/* Nothing to do. */
|
||
break;
|
||
case '1':
|
||
SET_TYPE_FIELD_VIRTUAL (type, i);
|
||
break;
|
||
default:
|
||
/* Unknown character. Complain and treat it as non-virtual. */
|
||
{
|
||
static struct complaint msg = {
|
||
"Unknown virtual character `%c' for baseclass", 0, 0};
|
||
complain (&msg, **pp);
|
||
}
|
||
}
|
||
++(*pp);
|
||
|
||
new -> visibility = *(*pp)++;
|
||
switch (new -> visibility)
|
||
{
|
||
case VISIBILITY_PRIVATE:
|
||
case VISIBILITY_PROTECTED:
|
||
case VISIBILITY_PUBLIC:
|
||
break;
|
||
default:
|
||
/* Bad visibility format. Complain and treat it as
|
||
public. */
|
||
{
|
||
static struct complaint msg = {
|
||
"Unknown visibility `%c' for baseclass", 0, 0};
|
||
complain (&msg, new -> visibility);
|
||
new -> visibility = VISIBILITY_PUBLIC;
|
||
}
|
||
}
|
||
|
||
{
|
||
int nbits;
|
||
|
||
/* The remaining value is the bit offset of the portion of the object
|
||
corresponding to this baseclass. Always zero in the absence of
|
||
multiple inheritance. */
|
||
|
||
new -> field.bitpos = read_huge_number (pp, ',', &nbits);
|
||
if (nbits != 0)
|
||
return 0;
|
||
}
|
||
|
||
/* The last piece of baseclass information is the type of the
|
||
base class. Read it, and remember it's type name as this
|
||
field's name. */
|
||
|
||
new -> field.type = read_type (pp, objfile);
|
||
new -> field.name = type_name_no_tag (new -> field.type);
|
||
|
||
/* skip trailing ';' and bump count of number of fields seen */
|
||
if (**pp == ';')
|
||
(*pp)++;
|
||
else
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* The tail end of stabs for C++ classes that contain a virtual function
|
||
pointer contains a tilde, a %, and a type number.
|
||
The type number refers to the base class (possibly this class itself) which
|
||
contains the vtable pointer for the current class.
|
||
|
||
This function is called when we have parsed all the method declarations,
|
||
so we can look for the vptr base class info. */
|
||
|
||
static int
|
||
read_tilde_fields (fip, pp, type, objfile)
|
||
struct field_info *fip;
|
||
char **pp;
|
||
struct type *type;
|
||
struct objfile *objfile;
|
||
{
|
||
register char *p;
|
||
|
||
STABS_CONTINUE (pp);
|
||
|
||
/* If we are positioned at a ';', then skip it. */
|
||
if (**pp == ';')
|
||
{
|
||
(*pp)++;
|
||
}
|
||
|
||
if (**pp == '~')
|
||
{
|
||
(*pp)++;
|
||
|
||
if (**pp == '=' || **pp == '+' || **pp == '-')
|
||
{
|
||
/* Obsolete flags that used to indicate the presence
|
||
of constructors and/or destructors. */
|
||
(*pp)++;
|
||
}
|
||
|
||
/* Read either a '%' or the final ';'. */
|
||
if (*(*pp)++ == '%')
|
||
{
|
||
/* The next number is the type number of the base class
|
||
(possibly our own class) which supplies the vtable for
|
||
this class. Parse it out, and search that class to find
|
||
its vtable pointer, and install those into TYPE_VPTR_BASETYPE
|
||
and TYPE_VPTR_FIELDNO. */
|
||
|
||
struct type *t;
|
||
int i;
|
||
|
||
t = read_type (pp, objfile);
|
||
p = (*pp)++;
|
||
while (*p != '\0' && *p != ';')
|
||
{
|
||
p++;
|
||
}
|
||
if (*p == '\0')
|
||
{
|
||
/* Premature end of symbol. */
|
||
return 0;
|
||
}
|
||
|
||
TYPE_VPTR_BASETYPE (type) = t;
|
||
if (type == t) /* Our own class provides vtbl ptr */
|
||
{
|
||
for (i = TYPE_NFIELDS (t) - 1;
|
||
i >= TYPE_N_BASECLASSES (t);
|
||
--i)
|
||
{
|
||
if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
|
||
sizeof (vptr_name) - 1))
|
||
{
|
||
TYPE_VPTR_FIELDNO (type) = i;
|
||
goto gotit;
|
||
}
|
||
}
|
||
/* Virtual function table field not found. */
|
||
complain (&vtbl_notfound_complaint, TYPE_NAME (type));
|
||
return 0;
|
||
}
|
||
else
|
||
{
|
||
TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
|
||
}
|
||
|
||
gotit:
|
||
*pp = p + 1;
|
||
}
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
static int
|
||
attach_fn_fields_to_type (fip, type)
|
||
struct field_info *fip;
|
||
register struct type *type;
|
||
{
|
||
register int n;
|
||
|
||
for (n = 0; n < TYPE_N_BASECLASSES (type); n++)
|
||
{
|
||
if (TYPE_CODE (TYPE_BASECLASS (type, n)) == TYPE_CODE_UNDEF)
|
||
{
|
||
/* @@ Memory leak on objfile -> type_obstack? */
|
||
return 0;
|
||
}
|
||
TYPE_NFN_FIELDS_TOTAL (type) +=
|
||
TYPE_NFN_FIELDS_TOTAL (TYPE_BASECLASS (type, n));
|
||
}
|
||
|
||
for (n = TYPE_NFN_FIELDS (type);
|
||
fip -> fnlist != NULL;
|
||
fip -> fnlist = fip -> fnlist -> next)
|
||
{
|
||
--n; /* Circumvent Sun3 compiler bug */
|
||
TYPE_FN_FIELDLISTS (type)[n] = fip -> fnlist -> fn_fieldlist;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Create the vector of fields, and record how big it is.
|
||
We need this info to record proper virtual function table information
|
||
for this class's virtual functions. */
|
||
|
||
static int
|
||
attach_fields_to_type (fip, type, objfile)
|
||
struct field_info *fip;
|
||
register struct type *type;
|
||
struct objfile *objfile;
|
||
{
|
||
register int nfields = 0;
|
||
register int non_public_fields = 0;
|
||
register struct nextfield *scan;
|
||
|
||
/* Count up the number of fields that we have, as well as taking note of
|
||
whether or not there are any non-public fields, which requires us to
|
||
allocate and build the private_field_bits and protected_field_bits
|
||
bitfields. */
|
||
|
||
for (scan = fip -> list; scan != NULL; scan = scan -> next)
|
||
{
|
||
nfields++;
|
||
if (scan -> visibility != VISIBILITY_PUBLIC)
|
||
{
|
||
non_public_fields++;
|
||
}
|
||
}
|
||
|
||
/* Now we know how many fields there are, and whether or not there are any
|
||
non-public fields. Record the field count, allocate space for the
|
||
array of fields, and create blank visibility bitfields if necessary. */
|
||
|
||
TYPE_NFIELDS (type) = nfields;
|
||
TYPE_FIELDS (type) = (struct field *)
|
||
TYPE_ALLOC (type, sizeof (struct field) * nfields);
|
||
memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
|
||
|
||
if (non_public_fields)
|
||
{
|
||
ALLOCATE_CPLUS_STRUCT_TYPE (type);
|
||
|
||
TYPE_FIELD_PRIVATE_BITS (type) =
|
||
(B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
|
||
B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
|
||
|
||
TYPE_FIELD_PROTECTED_BITS (type) =
|
||
(B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
|
||
B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
|
||
|
||
TYPE_FIELD_IGNORE_BITS (type) =
|
||
(B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
|
||
B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
|
||
}
|
||
|
||
/* Copy the saved-up fields into the field vector. Start from the head
|
||
of the list, adding to the tail of the field array, so that they end
|
||
up in the same order in the array in which they were added to the list. */
|
||
|
||
while (nfields-- > 0)
|
||
{
|
||
TYPE_FIELD (type, nfields) = fip -> list -> field;
|
||
switch (fip -> list -> visibility)
|
||
{
|
||
case VISIBILITY_PRIVATE:
|
||
SET_TYPE_FIELD_PRIVATE (type, nfields);
|
||
break;
|
||
|
||
case VISIBILITY_PROTECTED:
|
||
SET_TYPE_FIELD_PROTECTED (type, nfields);
|
||
break;
|
||
|
||
case VISIBILITY_IGNORE:
|
||
SET_TYPE_FIELD_IGNORE (type, nfields);
|
||
break;
|
||
|
||
case VISIBILITY_PUBLIC:
|
||
break;
|
||
|
||
default:
|
||
/* Unknown visibility. Complain and treat it as public. */
|
||
{
|
||
static struct complaint msg = {
|
||
"Unknown visibility `%c' for field", 0, 0};
|
||
complain (&msg, fip -> list -> visibility);
|
||
}
|
||
break;
|
||
}
|
||
fip -> list = fip -> list -> next;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Read the description of a structure (or union type) and return an object
|
||
describing the type.
|
||
|
||
PP points to a character pointer that points to the next unconsumed token
|
||
in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
|
||
*PP will point to "4a:1,0,32;;".
|
||
|
||
TYPE points to an incomplete type that needs to be filled in.
|
||
|
||
OBJFILE points to the current objfile from which the stabs information is
|
||
being read. (Note that it is redundant in that TYPE also contains a pointer
|
||
to this same objfile, so it might be a good idea to eliminate it. FIXME).
|
||
*/
|
||
|
||
static struct type *
|
||
read_struct_type (pp, type, objfile)
|
||
char **pp;
|
||
struct type *type;
|
||
struct objfile *objfile;
|
||
{
|
||
struct cleanup *back_to;
|
||
struct field_info fi;
|
||
|
||
fi.list = NULL;
|
||
fi.fnlist = NULL;
|
||
|
||
back_to = make_cleanup (null_cleanup, 0);
|
||
|
||
INIT_CPLUS_SPECIFIC (type);
|
||
TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
|
||
|
||
/* First comes the total size in bytes. */
|
||
|
||
{
|
||
int nbits;
|
||
TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits);
|
||
if (nbits != 0)
|
||
return error_type (pp);
|
||
}
|
||
|
||
/* Now read the baseclasses, if any, read the regular C struct or C++
|
||
class member fields, attach the fields to the type, read the C++
|
||
member functions, attach them to the type, and then read any tilde
|
||
field (baseclass specifier for the class holding the main vtable). */
|
||
|
||
if (!read_baseclasses (&fi, pp, type, objfile)
|
||
|| !read_struct_fields (&fi, pp, type, objfile)
|
||
|| !attach_fields_to_type (&fi, type, objfile)
|
||
|| !read_member_functions (&fi, pp, type, objfile)
|
||
|| !attach_fn_fields_to_type (&fi, type)
|
||
|| !read_tilde_fields (&fi, pp, type, objfile))
|
||
{
|
||
do_cleanups (back_to);
|
||
return (error_type (pp));
|
||
}
|
||
|
||
do_cleanups (back_to);
|
||
return (type);
|
||
}
|
||
|
||
/* Read a definition of an array type,
|
||
and create and return a suitable type object.
|
||
Also creates a range type which represents the bounds of that
|
||
array. */
|
||
|
||
static struct type *
|
||
read_array_type (pp, type, objfile)
|
||
register char **pp;
|
||
register struct type *type;
|
||
struct objfile *objfile;
|
||
{
|
||
struct type *index_type, *element_type, *range_type;
|
||
int lower, upper;
|
||
int adjustable = 0;
|
||
int nbits;
|
||
|
||
/* Format of an array type:
|
||
"ar<index type>;lower;upper;<array_contents_type>".
|
||
OS9000: "arlower,upper;<array_contents_type>".
|
||
|
||
Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
|
||
for these, produce a type like float[][]. */
|
||
|
||
if (os9k_stabs)
|
||
index_type = builtin_type_int;
|
||
else
|
||
{
|
||
index_type = read_type (pp, objfile);
|
||
if (**pp != ';')
|
||
/* Improper format of array type decl. */
|
||
return error_type (pp);
|
||
++*pp;
|
||
}
|
||
|
||
if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
|
||
{
|
||
(*pp)++;
|
||
adjustable = 1;
|
||
}
|
||
lower = read_huge_number (pp, os9k_stabs ? ',' : ';', &nbits);
|
||
if (nbits != 0)
|
||
return error_type (pp);
|
||
|
||
if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
|
||
{
|
||
(*pp)++;
|
||
adjustable = 1;
|
||
}
|
||
upper = read_huge_number (pp, ';', &nbits);
|
||
if (nbits != 0)
|
||
return error_type (pp);
|
||
|
||
element_type = read_type (pp, objfile);
|
||
|
||
if (adjustable)
|
||
{
|
||
lower = 0;
|
||
upper = -1;
|
||
}
|
||
|
||
range_type =
|
||
create_range_type ((struct type *) NULL, index_type, lower, upper);
|
||
type = create_array_type (type, element_type, range_type);
|
||
|
||
/* If we have an array whose element type is not yet known, but whose
|
||
bounds *are* known, record it to be adjusted at the end of the file. */
|
||
/* FIXME: Why check for zero length rather than TYPE_FLAG_STUB? I think
|
||
the two have the same effect except that the latter is cleaner and the
|
||
former would be wrong for types which really are zero-length (if we
|
||
have any). */
|
||
|
||
if (TYPE_LENGTH (element_type) == 0 && !adjustable)
|
||
{
|
||
TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
|
||
add_undefined_type (type);
|
||
}
|
||
|
||
return type;
|
||
}
|
||
|
||
|
||
/* Read a definition of an enumeration type,
|
||
and create and return a suitable type object.
|
||
Also defines the symbols that represent the values of the type. */
|
||
|
||
static struct type *
|
||
read_enum_type (pp, type, objfile)
|
||
register char **pp;
|
||
register struct type *type;
|
||
struct objfile *objfile;
|
||
{
|
||
register char *p;
|
||
char *name;
|
||
register long n;
|
||
register struct symbol *sym;
|
||
int nsyms = 0;
|
||
struct pending **symlist;
|
||
struct pending *osyms, *syms;
|
||
int o_nsyms;
|
||
int nbits;
|
||
|
||
#if 0
|
||
/* FIXME! The stabs produced by Sun CC merrily define things that ought
|
||
to be file-scope, between N_FN entries, using N_LSYM. What's a mother
|
||
to do? For now, force all enum values to file scope. */
|
||
if (within_function)
|
||
symlist = &local_symbols;
|
||
else
|
||
#endif
|
||
symlist = &file_symbols;
|
||
osyms = *symlist;
|
||
o_nsyms = osyms ? osyms->nsyms : 0;
|
||
|
||
if (os9k_stabs)
|
||
{
|
||
/* Size. Perhaps this does not have to be conditionalized on
|
||
os9k_stabs (assuming the name of an enum constant can't start
|
||
with a digit). */
|
||
read_huge_number (pp, 0, &nbits);
|
||
if (nbits != 0)
|
||
return error_type (pp);
|
||
}
|
||
|
||
/* Read the value-names and their values.
|
||
The input syntax is NAME:VALUE,NAME:VALUE, and so on.
|
||
A semicolon or comma instead of a NAME means the end. */
|
||
while (**pp && **pp != ';' && **pp != ',')
|
||
{
|
||
STABS_CONTINUE (pp);
|
||
p = *pp;
|
||
while (*p != ':') p++;
|
||
name = obsavestring (*pp, p - *pp, &objfile -> symbol_obstack);
|
||
*pp = p + 1;
|
||
n = read_huge_number (pp, ',', &nbits);
|
||
if (nbits != 0)
|
||
return error_type (pp);
|
||
|
||
sym = (struct symbol *)
|
||
obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
|
||
memset (sym, 0, sizeof (struct symbol));
|
||
SYMBOL_NAME (sym) = name;
|
||
SYMBOL_LANGUAGE (sym) = current_subfile -> language;
|
||
SYMBOL_CLASS (sym) = LOC_CONST;
|
||
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
||
SYMBOL_VALUE (sym) = n;
|
||
add_symbol_to_list (sym, symlist);
|
||
nsyms++;
|
||
}
|
||
|
||
if (**pp == ';')
|
||
(*pp)++; /* Skip the semicolon. */
|
||
|
||
/* Now fill in the fields of the type-structure. */
|
||
|
||
TYPE_LENGTH (type) = TARGET_INT_BIT / HOST_CHAR_BIT;
|
||
TYPE_CODE (type) = TYPE_CODE_ENUM;
|
||
TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
|
||
TYPE_NFIELDS (type) = nsyms;
|
||
TYPE_FIELDS (type) = (struct field *)
|
||
TYPE_ALLOC (type, sizeof (struct field) * nsyms);
|
||
memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
|
||
|
||
/* Find the symbols for the values and put them into the type.
|
||
The symbols can be found in the symlist that we put them on
|
||
to cause them to be defined. osyms contains the old value
|
||
of that symlist; everything up to there was defined by us. */
|
||
/* Note that we preserve the order of the enum constants, so
|
||
that in something like "enum {FOO, LAST_THING=FOO}" we print
|
||
FOO, not LAST_THING. */
|
||
|
||
for (syms = *symlist, n = 0; syms; syms = syms->next)
|
||
{
|
||
int j = 0;
|
||
if (syms == osyms)
|
||
j = o_nsyms;
|
||
for (; j < syms->nsyms; j++,n++)
|
||
{
|
||
struct symbol *xsym = syms->symbol[j];
|
||
SYMBOL_TYPE (xsym) = type;
|
||
TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
|
||
TYPE_FIELD_VALUE (type, n) = 0;
|
||
TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
|
||
TYPE_FIELD_BITSIZE (type, n) = 0;
|
||
}
|
||
if (syms == osyms)
|
||
break;
|
||
}
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Sun's ACC uses a somewhat saner method for specifying the builtin
|
||
typedefs in every file (for int, long, etc):
|
||
|
||
type = b <signed> <width>; <offset>; <nbits>
|
||
signed = u or s. Possible c in addition to u or s (for char?).
|
||
offset = offset from high order bit to start bit of type.
|
||
width is # bytes in object of this type, nbits is # bits in type.
|
||
|
||
The width/offset stuff appears to be for small objects stored in
|
||
larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
|
||
FIXME. */
|
||
|
||
static struct type *
|
||
read_sun_builtin_type (pp, typenums, objfile)
|
||
char **pp;
|
||
int typenums[2];
|
||
struct objfile *objfile;
|
||
{
|
||
int type_bits;
|
||
int nbits;
|
||
int signed_type;
|
||
|
||
switch (**pp)
|
||
{
|
||
case 's':
|
||
signed_type = 1;
|
||
break;
|
||
case 'u':
|
||
signed_type = 0;
|
||
break;
|
||
default:
|
||
return error_type (pp);
|
||
}
|
||
(*pp)++;
|
||
|
||
/* For some odd reason, all forms of char put a c here. This is strange
|
||
because no other type has this honor. We can safely ignore this because
|
||
we actually determine 'char'acterness by the number of bits specified in
|
||
the descriptor. */
|
||
|
||
if (**pp == 'c')
|
||
(*pp)++;
|
||
|
||
/* The first number appears to be the number of bytes occupied
|
||
by this type, except that unsigned short is 4 instead of 2.
|
||
Since this information is redundant with the third number,
|
||
we will ignore it. */
|
||
read_huge_number (pp, ';', &nbits);
|
||
if (nbits != 0)
|
||
return error_type (pp);
|
||
|
||
/* The second number is always 0, so ignore it too. */
|
||
read_huge_number (pp, ';', &nbits);
|
||
if (nbits != 0)
|
||
return error_type (pp);
|
||
|
||
/* The third number is the number of bits for this type. */
|
||
type_bits = read_huge_number (pp, 0, &nbits);
|
||
if (nbits != 0)
|
||
return error_type (pp);
|
||
/* The type *should* end with a semicolon. If it are embedded
|
||
in a larger type the semicolon may be the only way to know where
|
||
the type ends. If this type is at the end of the stabstring we
|
||
can deal with the omitted semicolon (but we don't have to like
|
||
it). Don't bother to complain(), Sun's compiler omits the semicolon
|
||
for "void". */
|
||
if (**pp == ';')
|
||
++(*pp);
|
||
|
||
if (type_bits == 0)
|
||
return init_type (TYPE_CODE_VOID, 1,
|
||
signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *)NULL,
|
||
objfile);
|
||
else
|
||
return init_type (TYPE_CODE_INT,
|
||
type_bits / TARGET_CHAR_BIT,
|
||
signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *)NULL,
|
||
objfile);
|
||
}
|
||
|
||
static struct type *
|
||
read_sun_floating_type (pp, typenums, objfile)
|
||
char **pp;
|
||
int typenums[2];
|
||
struct objfile *objfile;
|
||
{
|
||
int nbits;
|
||
int details;
|
||
int nbytes;
|
||
|
||
/* The first number has more details about the type, for example
|
||
FN_COMPLEX. */
|
||
details = read_huge_number (pp, ';', &nbits);
|
||
if (nbits != 0)
|
||
return error_type (pp);
|
||
|
||
/* The second number is the number of bytes occupied by this type */
|
||
nbytes = read_huge_number (pp, ';', &nbits);
|
||
if (nbits != 0)
|
||
return error_type (pp);
|
||
|
||
if (details == NF_COMPLEX || details == NF_COMPLEX16
|
||
|| details == NF_COMPLEX32)
|
||
/* This is a type we can't handle, but we do know the size.
|
||
We also will be able to give it a name. */
|
||
return init_type (TYPE_CODE_ERROR, nbytes, 0, NULL, objfile);
|
||
|
||
return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
|
||
}
|
||
|
||
/* Read a number from the string pointed to by *PP.
|
||
The value of *PP is advanced over the number.
|
||
If END is nonzero, the character that ends the
|
||
number must match END, or an error happens;
|
||
and that character is skipped if it does match.
|
||
If END is zero, *PP is left pointing to that character.
|
||
|
||
If the number fits in a long, set *BITS to 0 and return the value.
|
||
If not, set *BITS to be the number of bits in the number and return 0.
|
||
|
||
If encounter garbage, set *BITS to -1 and return 0. */
|
||
|
||
static long
|
||
read_huge_number (pp, end, bits)
|
||
char **pp;
|
||
int end;
|
||
int *bits;
|
||
{
|
||
char *p = *pp;
|
||
int sign = 1;
|
||
long n = 0;
|
||
int radix = 10;
|
||
char overflow = 0;
|
||
int nbits = 0;
|
||
int c;
|
||
long upper_limit;
|
||
|
||
if (*p == '-')
|
||
{
|
||
sign = -1;
|
||
p++;
|
||
}
|
||
|
||
/* Leading zero means octal. GCC uses this to output values larger
|
||
than an int (because that would be hard in decimal). */
|
||
if (*p == '0')
|
||
{
|
||
radix = 8;
|
||
p++;
|
||
}
|
||
|
||
if (os9k_stabs)
|
||
upper_limit = ULONG_MAX / radix;
|
||
else
|
||
upper_limit = LONG_MAX / radix;
|
||
|
||
while ((c = *p++) >= '0' && c < ('0' + radix))
|
||
{
|
||
if (n <= upper_limit)
|
||
{
|
||
n *= radix;
|
||
n += c - '0'; /* FIXME this overflows anyway */
|
||
}
|
||
else
|
||
overflow = 1;
|
||
|
||
/* This depends on large values being output in octal, which is
|
||
what GCC does. */
|
||
if (radix == 8)
|
||
{
|
||
if (nbits == 0)
|
||
{
|
||
if (c == '0')
|
||
/* Ignore leading zeroes. */
|
||
;
|
||
else if (c == '1')
|
||
nbits = 1;
|
||
else if (c == '2' || c == '3')
|
||
nbits = 2;
|
||
else
|
||
nbits = 3;
|
||
}
|
||
else
|
||
nbits += 3;
|
||
}
|
||
}
|
||
if (end)
|
||
{
|
||
if (c && c != end)
|
||
{
|
||
if (bits != NULL)
|
||
*bits = -1;
|
||
return 0;
|
||
}
|
||
}
|
||
else
|
||
--p;
|
||
|
||
*pp = p;
|
||
if (overflow)
|
||
{
|
||
if (nbits == 0)
|
||
{
|
||
/* Large decimal constants are an error (because it is hard to
|
||
count how many bits are in them). */
|
||
if (bits != NULL)
|
||
*bits = -1;
|
||
return 0;
|
||
}
|
||
|
||
/* -0x7f is the same as 0x80. So deal with it by adding one to
|
||
the number of bits. */
|
||
if (sign == -1)
|
||
++nbits;
|
||
if (bits)
|
||
*bits = nbits;
|
||
}
|
||
else
|
||
{
|
||
if (bits)
|
||
*bits = 0;
|
||
return n * sign;
|
||
}
|
||
/* It's *BITS which has the interesting information. */
|
||
return 0;
|
||
}
|
||
|
||
static struct type *
|
||
read_range_type (pp, typenums, objfile)
|
||
char **pp;
|
||
int typenums[2];
|
||
struct objfile *objfile;
|
||
{
|
||
int rangenums[2];
|
||
long n2, n3;
|
||
int n2bits, n3bits;
|
||
int self_subrange;
|
||
struct type *result_type;
|
||
struct type *index_type;
|
||
|
||
/* First comes a type we are a subrange of.
|
||
In C it is usually 0, 1 or the type being defined. */
|
||
/* FIXME: according to stabs.texinfo and AIX doc, this can be a type-id
|
||
not just a type number. */
|
||
if (read_type_number (pp, rangenums) != 0)
|
||
return error_type (pp);
|
||
self_subrange = (rangenums[0] == typenums[0] &&
|
||
rangenums[1] == typenums[1]);
|
||
|
||
/* A semicolon should now follow; skip it. */
|
||
if (**pp == ';')
|
||
(*pp)++;
|
||
|
||
/* The remaining two operands are usually lower and upper bounds
|
||
of the range. But in some special cases they mean something else. */
|
||
n2 = read_huge_number (pp, ';', &n2bits);
|
||
n3 = read_huge_number (pp, ';', &n3bits);
|
||
|
||
if (n2bits == -1 || n3bits == -1)
|
||
return error_type (pp);
|
||
|
||
/* If limits are huge, must be large integral type. */
|
||
if (n2bits != 0 || n3bits != 0)
|
||
{
|
||
char got_signed = 0;
|
||
char got_unsigned = 0;
|
||
/* Number of bits in the type. */
|
||
int nbits = 0;
|
||
|
||
/* Range from 0 to <large number> is an unsigned large integral type. */
|
||
if ((n2bits == 0 && n2 == 0) && n3bits != 0)
|
||
{
|
||
got_unsigned = 1;
|
||
nbits = n3bits;
|
||
}
|
||
/* Range from <large number> to <large number>-1 is a large signed
|
||
integral type. Take care of the case where <large number> doesn't
|
||
fit in a long but <large number>-1 does. */
|
||
else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
|
||
|| (n2bits != 0 && n3bits == 0
|
||
&& (n2bits == sizeof (long) * HOST_CHAR_BIT)
|
||
&& n3 == LONG_MAX))
|
||
{
|
||
got_signed = 1;
|
||
nbits = n2bits;
|
||
}
|
||
|
||
if (got_signed || got_unsigned)
|
||
{
|
||
return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
|
||
got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
|
||
objfile);
|
||
}
|
||
else
|
||
return error_type (pp);
|
||
}
|
||
|
||
/* A type defined as a subrange of itself, with bounds both 0, is void. */
|
||
if (self_subrange && n2 == 0 && n3 == 0)
|
||
return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
|
||
|
||
/* If n3 is zero and n2 is not, we want a floating type,
|
||
and n2 is the width in bytes.
|
||
|
||
Fortran programs appear to use this for complex types also,
|
||
and they give no way to distinguish between double and single-complex!
|
||
|
||
GDB does not have complex types.
|
||
|
||
Just return the complex as a float of that size. It won't work right
|
||
for the complex values, but at least it makes the file loadable. */
|
||
|
||
if (n3 == 0 && n2 > 0)
|
||
{
|
||
return init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
|
||
}
|
||
|
||
/* If the upper bound is -1, it must really be an unsigned int. */
|
||
|
||
else if (n2 == 0 && n3 == -1)
|
||
{
|
||
/* It is unsigned int or unsigned long. */
|
||
/* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
|
||
compatibility hack. */
|
||
return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
|
||
TYPE_FLAG_UNSIGNED, NULL, objfile);
|
||
}
|
||
|
||
/* Special case: char is defined (Who knows why) as a subrange of
|
||
itself with range 0-127. */
|
||
else if (self_subrange && n2 == 0 && n3 == 127)
|
||
return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
|
||
|
||
/* We used to do this only for subrange of self or subrange of int. */
|
||
else if (n2 == 0)
|
||
{
|
||
if (n3 < 0)
|
||
/* n3 actually gives the size. */
|
||
return init_type (TYPE_CODE_INT, - n3, TYPE_FLAG_UNSIGNED,
|
||
NULL, objfile);
|
||
if (n3 == 0xff)
|
||
return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED, NULL, objfile);
|
||
if (n3 == 0xffff)
|
||
return init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED, NULL, objfile);
|
||
|
||
/* -1 is used for the upper bound of (4 byte) "unsigned int" and
|
||
"unsigned long", and we already checked for that,
|
||
so don't need to test for it here. */
|
||
}
|
||
/* I think this is for Convex "long long". Since I don't know whether
|
||
Convex sets self_subrange, I also accept that particular size regardless
|
||
of self_subrange. */
|
||
else if (n3 == 0 && n2 < 0
|
||
&& (self_subrange
|
||
|| n2 == - TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
|
||
return init_type (TYPE_CODE_INT, - n2, 0, NULL, objfile);
|
||
else if (n2 == -n3 -1)
|
||
{
|
||
if (n3 == 0x7f)
|
||
return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
|
||
if (n3 == 0x7fff)
|
||
return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
|
||
if (n3 == 0x7fffffff)
|
||
return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
|
||
}
|
||
|
||
/* We have a real range type on our hands. Allocate space and
|
||
return a real pointer. */
|
||
|
||
/* At this point I don't have the faintest idea how to deal with
|
||
a self_subrange type; I'm going to assume that this is used
|
||
as an idiom, and that all of them are special cases. So . . . */
|
||
if (self_subrange)
|
||
return error_type (pp);
|
||
|
||
index_type = *dbx_lookup_type (rangenums);
|
||
if (index_type == NULL)
|
||
{
|
||
/* Does this actually ever happen? Is that why we are worrying
|
||
about dealing with it rather than just calling error_type? */
|
||
|
||
static struct type *range_type_index;
|
||
|
||
complain (&range_type_base_complaint, rangenums[1]);
|
||
if (range_type_index == NULL)
|
||
range_type_index =
|
||
init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
|
||
0, "range type index type", NULL);
|
||
index_type = range_type_index;
|
||
}
|
||
|
||
result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
|
||
return (result_type);
|
||
}
|
||
|
||
/* Read in an argument list. This is a list of types, separated by commas
|
||
and terminated with END. Return the list of types read in, or (struct type
|
||
**)-1 if there is an error. */
|
||
|
||
static struct type **
|
||
read_args (pp, end, objfile)
|
||
char **pp;
|
||
int end;
|
||
struct objfile *objfile;
|
||
{
|
||
/* FIXME! Remove this arbitrary limit! */
|
||
struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
|
||
int n = 0;
|
||
|
||
while (**pp != end)
|
||
{
|
||
if (**pp != ',')
|
||
/* Invalid argument list: no ','. */
|
||
return (struct type **)-1;
|
||
(*pp)++;
|
||
STABS_CONTINUE (pp);
|
||
types[n++] = read_type (pp, objfile);
|
||
}
|
||
(*pp)++; /* get past `end' (the ':' character) */
|
||
|
||
if (n == 1)
|
||
{
|
||
rval = (struct type **) xmalloc (2 * sizeof (struct type *));
|
||
}
|
||
else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
|
||
{
|
||
rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
|
||
memset (rval + n, 0, sizeof (struct type *));
|
||
}
|
||
else
|
||
{
|
||
rval = (struct type **) xmalloc (n * sizeof (struct type *));
|
||
}
|
||
memcpy (rval, types, n * sizeof (struct type *));
|
||
return rval;
|
||
}
|
||
|
||
/* Common block handling. */
|
||
|
||
/* List of symbols declared since the last BCOMM. This list is a tail
|
||
of local_symbols. When ECOMM is seen, the symbols on the list
|
||
are noted so their proper addresses can be filled in later,
|
||
using the common block base address gotten from the assembler
|
||
stabs. */
|
||
|
||
static struct pending *common_block;
|
||
static int common_block_i;
|
||
|
||
/* Name of the current common block. We get it from the BCOMM instead of the
|
||
ECOMM to match IBM documentation (even though IBM puts the name both places
|
||
like everyone else). */
|
||
static char *common_block_name;
|
||
|
||
/* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
|
||
to remain after this function returns. */
|
||
|
||
void
|
||
common_block_start (name, objfile)
|
||
char *name;
|
||
struct objfile *objfile;
|
||
{
|
||
if (common_block_name != NULL)
|
||
{
|
||
static struct complaint msg = {
|
||
"Invalid symbol data: common block within common block",
|
||
0, 0};
|
||
complain (&msg);
|
||
}
|
||
common_block = local_symbols;
|
||
common_block_i = local_symbols ? local_symbols->nsyms : 0;
|
||
common_block_name = obsavestring (name, strlen (name),
|
||
&objfile -> symbol_obstack);
|
||
}
|
||
|
||
/* Process a N_ECOMM symbol. */
|
||
|
||
void
|
||
common_block_end (objfile)
|
||
struct objfile *objfile;
|
||
{
|
||
/* Symbols declared since the BCOMM are to have the common block
|
||
start address added in when we know it. common_block and
|
||
common_block_i point to the first symbol after the BCOMM in
|
||
the local_symbols list; copy the list and hang it off the
|
||
symbol for the common block name for later fixup. */
|
||
int i;
|
||
struct symbol *sym;
|
||
struct pending *new = 0;
|
||
struct pending *next;
|
||
int j;
|
||
|
||
if (common_block_name == NULL)
|
||
{
|
||
static struct complaint msg = {"ECOMM symbol unmatched by BCOMM", 0, 0};
|
||
complain (&msg);
|
||
return;
|
||
}
|
||
|
||
sym = (struct symbol *)
|
||
obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
|
||
memset (sym, 0, sizeof (struct symbol));
|
||
SYMBOL_NAME (sym) = common_block_name;
|
||
SYMBOL_CLASS (sym) = LOC_BLOCK;
|
||
|
||
/* Now we copy all the symbols which have been defined since the BCOMM. */
|
||
|
||
/* Copy all the struct pendings before common_block. */
|
||
for (next = local_symbols;
|
||
next != NULL && next != common_block;
|
||
next = next->next)
|
||
{
|
||
for (j = 0; j < next->nsyms; j++)
|
||
add_symbol_to_list (next->symbol[j], &new);
|
||
}
|
||
|
||
/* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
|
||
NULL, it means copy all the local symbols (which we already did
|
||
above). */
|
||
|
||
if (common_block != NULL)
|
||
for (j = common_block_i; j < common_block->nsyms; j++)
|
||
add_symbol_to_list (common_block->symbol[j], &new);
|
||
|
||
SYMBOL_TYPE (sym) = (struct type *) new;
|
||
|
||
/* Should we be putting local_symbols back to what it was?
|
||
Does it matter? */
|
||
|
||
i = hashname (SYMBOL_NAME (sym));
|
||
SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
|
||
global_sym_chain[i] = sym;
|
||
common_block_name = NULL;
|
||
}
|
||
|
||
/* Add a common block's start address to the offset of each symbol
|
||
declared to be in it (by being between a BCOMM/ECOMM pair that uses
|
||
the common block name). */
|
||
|
||
static void
|
||
fix_common_block (sym, valu)
|
||
struct symbol *sym;
|
||
int valu;
|
||
{
|
||
struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
|
||
for ( ; next; next = next->next)
|
||
{
|
||
register int j;
|
||
for (j = next->nsyms - 1; j >= 0; j--)
|
||
SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* What about types defined as forward references inside of a small lexical
|
||
scope? */
|
||
/* Add a type to the list of undefined types to be checked through
|
||
once this file has been read in. */
|
||
|
||
void
|
||
add_undefined_type (type)
|
||
struct type *type;
|
||
{
|
||
if (undef_types_length == undef_types_allocated)
|
||
{
|
||
undef_types_allocated *= 2;
|
||
undef_types = (struct type **)
|
||
xrealloc ((char *) undef_types,
|
||
undef_types_allocated * sizeof (struct type *));
|
||
}
|
||
undef_types[undef_types_length++] = type;
|
||
}
|
||
|
||
/* Go through each undefined type, see if it's still undefined, and fix it
|
||
up if possible. We have two kinds of undefined types:
|
||
|
||
TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
|
||
Fix: update array length using the element bounds
|
||
and the target type's length.
|
||
TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
|
||
yet defined at the time a pointer to it was made.
|
||
Fix: Do a full lookup on the struct/union tag. */
|
||
void
|
||
cleanup_undefined_types ()
|
||
{
|
||
struct type **type;
|
||
|
||
for (type = undef_types; type < undef_types + undef_types_length; type++)
|
||
{
|
||
switch (TYPE_CODE (*type))
|
||
{
|
||
|
||
case TYPE_CODE_STRUCT:
|
||
case TYPE_CODE_UNION:
|
||
case TYPE_CODE_ENUM:
|
||
{
|
||
/* Check if it has been defined since. Need to do this here
|
||
as well as in check_stub_type to deal with the (legitimate in
|
||
C though not C++) case of several types with the same name
|
||
in different source files. */
|
||
if (TYPE_FLAGS (*type) & TYPE_FLAG_STUB)
|
||
{
|
||
struct pending *ppt;
|
||
int i;
|
||
/* Name of the type, without "struct" or "union" */
|
||
char *typename = TYPE_TAG_NAME (*type);
|
||
|
||
if (typename == NULL)
|
||
{
|
||
static struct complaint msg = {"need a type name", 0, 0};
|
||
complain (&msg);
|
||
break;
|
||
}
|
||
for (ppt = file_symbols; ppt; ppt = ppt->next)
|
||
{
|
||
for (i = 0; i < ppt->nsyms; i++)
|
||
{
|
||
struct symbol *sym = ppt->symbol[i];
|
||
|
||
if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
|
||
&& SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
|
||
&& (TYPE_CODE (SYMBOL_TYPE (sym)) ==
|
||
TYPE_CODE (*type))
|
||
&& STREQ (SYMBOL_NAME (sym), typename))
|
||
{
|
||
memcpy (*type, SYMBOL_TYPE (sym),
|
||
sizeof (struct type));
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
|
||
case TYPE_CODE_ARRAY:
|
||
{
|
||
/* This is a kludge which is here for historical reasons
|
||
because I suspect that check_stub_type does not get
|
||
called everywhere it needs to be called for arrays. Even
|
||
with this kludge, those places are broken for the case
|
||
where the stub type is defined in another compilation
|
||
unit, but this kludge at least deals with it for the case
|
||
in which it is the same compilation unit.
|
||
|
||
Don't try to do this by calling check_stub_type; it might
|
||
cause symbols to be read in lookup_symbol, and the symbol
|
||
reader is not reentrant. */
|
||
|
||
struct type *range_type;
|
||
int lower, upper;
|
||
|
||
if (TYPE_LENGTH (*type) != 0) /* Better be unknown */
|
||
goto badtype;
|
||
if (TYPE_NFIELDS (*type) != 1)
|
||
goto badtype;
|
||
range_type = TYPE_FIELD_TYPE (*type, 0);
|
||
if (TYPE_CODE (range_type) != TYPE_CODE_RANGE)
|
||
goto badtype;
|
||
|
||
/* Now recompute the length of the array type, based on its
|
||
number of elements and the target type's length. */
|
||
lower = TYPE_FIELD_BITPOS (range_type, 0);
|
||
upper = TYPE_FIELD_BITPOS (range_type, 1);
|
||
TYPE_LENGTH (*type) = (upper - lower + 1)
|
||
* TYPE_LENGTH (TYPE_TARGET_TYPE (*type));
|
||
|
||
/* If the target type is not a stub, we could be clearing
|
||
TYPE_FLAG_TARGET_STUB for *type. */
|
||
}
|
||
break;
|
||
|
||
default:
|
||
badtype:
|
||
{
|
||
static struct complaint msg = {"\
|
||
GDB internal error. cleanup_undefined_types with bad type %d.", 0, 0};
|
||
complain (&msg, TYPE_CODE (*type));
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
undef_types_length = 0;
|
||
}
|
||
|
||
/* Scan through all of the global symbols defined in the object file,
|
||
assigning values to the debugging symbols that need to be assigned
|
||
to. Get these symbols from the minimal symbol table. */
|
||
|
||
void
|
||
scan_file_globals (objfile)
|
||
struct objfile *objfile;
|
||
{
|
||
int hash;
|
||
struct minimal_symbol *msymbol;
|
||
struct symbol *sym, *prev;
|
||
|
||
if (objfile->msymbols == 0) /* Beware the null file. */
|
||
return;
|
||
|
||
for (msymbol = objfile -> msymbols; SYMBOL_NAME (msymbol) != NULL; msymbol++)
|
||
{
|
||
QUIT;
|
||
|
||
/* Skip static symbols. */
|
||
switch (MSYMBOL_TYPE (msymbol))
|
||
{
|
||
case mst_file_text:
|
||
case mst_file_data:
|
||
case mst_file_bss:
|
||
continue;
|
||
}
|
||
|
||
prev = NULL;
|
||
|
||
/* Get the hash index and check all the symbols
|
||
under that hash index. */
|
||
|
||
hash = hashname (SYMBOL_NAME (msymbol));
|
||
|
||
for (sym = global_sym_chain[hash]; sym;)
|
||
{
|
||
if (SYMBOL_NAME (msymbol)[0] == SYMBOL_NAME (sym)[0] &&
|
||
STREQ(SYMBOL_NAME (msymbol) + 1, SYMBOL_NAME (sym) + 1))
|
||
{
|
||
/* Splice this symbol out of the hash chain and
|
||
assign the value we have to it. */
|
||
if (prev)
|
||
{
|
||
SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
|
||
}
|
||
else
|
||
{
|
||
global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
|
||
}
|
||
|
||
/* Check to see whether we need to fix up a common block. */
|
||
/* Note: this code might be executed several times for
|
||
the same symbol if there are multiple references. */
|
||
|
||
if (SYMBOL_CLASS (sym) == LOC_BLOCK)
|
||
{
|
||
fix_common_block (sym, SYMBOL_VALUE_ADDRESS (msymbol));
|
||
}
|
||
else
|
||
{
|
||
SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msymbol);
|
||
}
|
||
|
||
SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
|
||
|
||
if (prev)
|
||
{
|
||
sym = SYMBOL_VALUE_CHAIN (prev);
|
||
}
|
||
else
|
||
{
|
||
sym = global_sym_chain[hash];
|
||
}
|
||
}
|
||
else
|
||
{
|
||
prev = sym;
|
||
sym = SYMBOL_VALUE_CHAIN (sym);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Initialize anything that needs initializing when starting to read
|
||
a fresh piece of a symbol file, e.g. reading in the stuff corresponding
|
||
to a psymtab. */
|
||
|
||
void
|
||
stabsread_init ()
|
||
{
|
||
}
|
||
|
||
/* Initialize anything that needs initializing when a completely new
|
||
symbol file is specified (not just adding some symbols from another
|
||
file, e.g. a shared library). */
|
||
|
||
void
|
||
stabsread_new_init ()
|
||
{
|
||
/* Empty the hash table of global syms looking for values. */
|
||
memset (global_sym_chain, 0, sizeof (global_sym_chain));
|
||
}
|
||
|
||
/* Initialize anything that needs initializing at the same time as
|
||
start_symtab() is called. */
|
||
|
||
void start_stabs ()
|
||
{
|
||
global_stabs = NULL; /* AIX COFF */
|
||
/* Leave FILENUM of 0 free for builtin types and this file's types. */
|
||
n_this_object_header_files = 1;
|
||
type_vector_length = 0;
|
||
type_vector = (struct type **) 0;
|
||
|
||
/* FIXME: If common_block_name is not already NULL, we should complain(). */
|
||
common_block_name = NULL;
|
||
|
||
os9k_stabs = 0;
|
||
}
|
||
|
||
/* Call after end_symtab() */
|
||
|
||
void end_stabs ()
|
||
{
|
||
if (type_vector)
|
||
{
|
||
free ((char *) type_vector);
|
||
}
|
||
type_vector = 0;
|
||
type_vector_length = 0;
|
||
previous_stab_code = 0;
|
||
}
|
||
|
||
void
|
||
finish_global_stabs (objfile)
|
||
struct objfile *objfile;
|
||
{
|
||
if (global_stabs)
|
||
{
|
||
patch_block_stabs (global_symbols, global_stabs, objfile);
|
||
free ((PTR) global_stabs);
|
||
global_stabs = NULL;
|
||
}
|
||
}
|
||
|
||
/* Initializer for this module */
|
||
|
||
void
|
||
_initialize_stabsread ()
|
||
{
|
||
undef_types_allocated = 20;
|
||
undef_types_length = 0;
|
||
undef_types = (struct type **)
|
||
xmalloc (undef_types_allocated * sizeof (struct type *));
|
||
}
|