binutils-gdb/opcodes/arc-dis.c
Graham Markall bdd582dbf1 Arc assembler: Convert nps400 from a machine type to an extension.
gas	* config/tc-arc.c (check_cpu_feature, md_parse_option):
	Add nps400 option and feature. Add check for nps400
	feature. Refactor existing checks to check subclass before
	feature enablement.
	(md_show_usage): Document flags for NPS-400 and add some other
	undocumented flags.
	(cpu_type): Remove nps400 CPU type entry
	(check_zol): Remove bfd_mach_arc_nps400 case.
	(md_show_usage): Add help on -mcpu=nps400.
	(cpu_types): Add entry for nps400 as arc700 plus nps400 extension
	set.
	* doc/c-arc.texi: Document the -mnps400, -mspfp, -mdpfp, and
	-fpuda flags.  Document -mcpu=nps400.
	* testsuite/gas/arc/nps-400-0.d: Use -mcpu=arc700 -mnps400. Change
	expected flags to match ARC700 instead of NPS400.
	* testsuite/gas/arc/nps-400-1.d: Use -mcpu=arc700 -mnps400.
	* testsuite/gas/arc/nps-400-2.d: Likewise.
	* testsuite/gas/arc/nps-400-3.d: Likewise.
	* testsuite/gas/arc/nps-400-4.d: Likewise.
	* testsuite/gas/arc/nps-400-5.d: Likewise.
	* testsuite/gas/arc/nps-400-6.d: Likewise.
	* testsuite/gas/arc/nps-400-7.d: Likewise.
	* testsuite/gas/arc/textinsn2op01.s: Change opcode of myinsn to
	avoid clash with cbba instruction.
	* testsuite/gas/arc/textinsn2op01.d: Likewise.
	* testsuite/gas/arc/textinsn3op.d: Likewise.
	* testsuite/gas/arc/textinsn3op.s: Likewise.
	* testsuite/gas/arc/nps-400-0.d: Test using NPS-400 using
	-mcpu=nps400 as an alternative to -mcpu=arc700 -mnps400 flags.

binutils* readelf.c (decode_ARC_machine_flags): Remove E_ARC_MACH_NPS400
	case.

ld	* testsuite/ld-arc/nps-1a.d: Use -mcpu=arc700 -mnps400.
	* testsuite/ld-arc/nps-1b.d: Likewise.

include	* opcode/arc.h: Add nps400 extension and instruction
	subclass.
	Remove ARC_OPCODE_NPS400
	* elf/arc.h: Remove E_ARC_MACH_NPS400

opcodes	* arc-dis.c (arc_insn_length): Add comment on instruction length.
	Use same method for determining	instruction length on ARC700 and
	NPS-400.
	(arc_insn_length, print_insn_arc): Remove bfd_mach_arc_nps400.
	* arc-nps400-tbl.h: Make all nps400 instructions ARC700 instructions
	with the NPS400 subclass.
	* arc-opc.c: Likewise.

bfd	* archures.c: Remove bfd_mach_arc_nps400.
	* bfd-in2.h: Likewise.
	* cpu-arc.c (arch_info_struct): Likewise.
	* elf32-arc.c (arc_elf_object_p, arc_elf_final_write_processing):
	Likewise.
2016-06-21 14:03:08 +01:00

1049 lines
28 KiB
C

/* Instruction printing code for the ARC.
Copyright (C) 1994-2016 Free Software Foundation, Inc.
Contributed by Claudiu Zissulescu (claziss@synopsys.com)
This file is part of libopcodes.
This library is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
MA 02110-1301, USA. */
#include "sysdep.h"
#include <stdio.h>
#include <assert.h>
#include "dis-asm.h"
#include "opcode/arc.h"
#include "arc-dis.h"
#include "arc-ext.h"
/* Structure used to iterate over, and extract the values for, operands of
an opcode. */
struct arc_operand_iterator
{
enum
{
OPERAND_ITERATOR_STANDARD,
OPERAND_ITERATOR_LONG
} mode;
/* The array of 32-bit values that make up this instruction. All
required values have been pre-loaded into this array during the
find_format call. */
unsigned *insn;
union
{
struct
{
/* The opcode this iterator is operating on. */
const struct arc_opcode *opcode;
/* The index into the opcodes operand index list. */
const unsigned char *opidx;
} standard;
struct
{
/* The long instruction opcode this iterator is operating on. */
const struct arc_long_opcode *long_opcode;
/* Two indexes into the opcodes operand index lists. */
const unsigned char *opidx_base, *opidx_limm;
} long_insn;
} state;
};
/* Globals variables. */
static const char * const regnames[64] =
{
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
"r24", "r25", "gp", "fp", "sp", "ilink", "r30", "blink",
"r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
"r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
"r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
"r56", "r57", "ACCL", "ACCH", "lp_count", "rezerved", "LIMM", "pcl"
};
/* Macros section. */
#ifdef DEBUG
# define pr_debug(fmt, args...) fprintf (stderr, fmt, ##args)
#else
# define pr_debug(fmt, args...)
#endif
#define ARRANGE_ENDIAN(info, buf) \
(info->endian == BFD_ENDIAN_LITTLE ? bfd_getm32 (bfd_getl32 (buf)) \
: bfd_getb32 (buf))
#define BITS(word,s,e) (((word) << (sizeof (word) * 8 - 1 - e)) >> \
(s + (sizeof (word) * 8 - 1 - e)))
#define OPCODE(word) (BITS ((word), 27, 31))
#define OPCODE_AC(word) (BITS ((word), 11, 15))
/* Functions implementation. */
static bfd_vma
bfd_getm32 (unsigned int data)
{
bfd_vma value = 0;
value = ((data & 0xff00) | (data & 0xff)) << 16;
value |= ((data & 0xff0000) | (data & 0xff000000)) >> 16;
return value;
}
static int
special_flag_p (const char *opname,
const char *flgname)
{
const struct arc_flag_special *flg_spec;
unsigned i, j, flgidx;
for (i = 0; i < arc_num_flag_special; i++)
{
flg_spec = &arc_flag_special_cases[i];
if (strcmp (opname, flg_spec->name))
continue;
/* Found potential special case instruction. */
for (j=0;; ++j)
{
flgidx = flg_spec->flags[j];
if (flgidx == 0)
break; /* End of the array. */
if (strcmp (flgname, arc_flag_operands[flgidx].name) == 0)
return 1;
}
}
return 0;
}
/* Find opcode from ARC_TABLE given the instruction described by INSN and
INSNLEN. The ISA_MASK restricts the possible matches in ARC_TABLE. */
static const struct arc_opcode *
find_format_from_table (const struct arc_opcode *arc_table,
unsigned *insn, unsigned int insn_len,
unsigned isa_mask, bfd_boolean *has_limm)
{
unsigned int i = 0;
const struct arc_opcode *opcode = NULL;
const unsigned char *opidx;
const unsigned char *flgidx;
do {
bfd_boolean invalid = FALSE;
opcode = &arc_table[i++];
if (ARC_SHORT (opcode->mask) && (insn_len == 2))
{
if (OPCODE_AC (opcode->opcode) != OPCODE_AC (insn[0]))
continue;
}
else if (!ARC_SHORT (opcode->mask) && (insn_len == 4))
{
if (OPCODE (opcode->opcode) != OPCODE (insn[0]))
continue;
}
else
continue;
if ((insn[0] ^ opcode->opcode) & opcode->mask)
continue;
if (!(opcode->cpu & isa_mask))
continue;
*has_limm = FALSE;
/* Possible candidate, check the operands. */
for (opidx = opcode->operands; *opidx; opidx++)
{
int value;
const struct arc_operand *operand = &arc_operands[*opidx];
if (operand->flags & ARC_OPERAND_FAKE)
continue;
if (operand->extract)
value = (*operand->extract) (insn[0], &invalid);
else
value = (insn[0] >> operand->shift) & ((1 << operand->bits) - 1);
/* Check for LIMM indicator. If it is there, then make sure
we pick the right format. */
if (operand->flags & ARC_OPERAND_IR
&& !(operand->flags & ARC_OPERAND_LIMM))
{
if ((value == 0x3E && insn_len == 4)
|| (value == 0x1E && insn_len == 2))
{
invalid = TRUE;
break;
}
}
if (operand->flags & ARC_OPERAND_LIMM
&& !(operand->flags & ARC_OPERAND_DUPLICATE))
*has_limm = TRUE;
}
/* Check the flags. */
for (flgidx = opcode->flags; *flgidx; flgidx++)
{
/* Get a valid flag class. */
const struct arc_flag_class *cl_flags = &arc_flag_classes[*flgidx];
const unsigned *flgopridx;
int foundA = 0, foundB = 0;
unsigned int value;
/* Check first the extensions. */
if (cl_flags->flag_class & F_CLASS_EXTEND)
{
value = (insn[0] & 0x1F);
if (arcExtMap_condCodeName (value))
continue;
}
for (flgopridx = cl_flags->flags; *flgopridx; ++flgopridx)
{
const struct arc_flag_operand *flg_operand =
&arc_flag_operands[*flgopridx];
value = (insn[0] >> flg_operand->shift)
& ((1 << flg_operand->bits) - 1);
if (value == flg_operand->code)
foundA = 1;
if (value)
foundB = 1;
}
if (!foundA && foundB)
{
invalid = TRUE;
break;
}
}
if (invalid)
continue;
/* The instruction is valid. */
return opcode;
} while (opcode->mask);
return NULL;
}
/* Find long instructions matching values in INSN array. */
static const struct arc_long_opcode *
find_format_long_instructions (unsigned *insn,
unsigned int *insn_len,
unsigned isa_mask,
bfd_vma memaddr,
struct disassemble_info *info)
{
unsigned int i;
unsigned limm = 0;
bfd_boolean limm_loaded = FALSE;
for (i = 0; i < arc_num_long_opcodes; ++i)
{
bfd_byte buffer[4];
int status;
const struct arc_opcode *opcode;
opcode = &arc_long_opcodes[i].base_opcode;
if (ARC_SHORT (opcode->mask) && (*insn_len == 2))
{
if (OPCODE_AC (opcode->opcode) != OPCODE_AC (insn[0]))
continue;
}
else if (!ARC_SHORT (opcode->mask) && (*insn_len == 4))
{
if (OPCODE (opcode->opcode) != OPCODE (insn[0]))
continue;
}
else
continue;
if ((insn[0] ^ opcode->opcode) & opcode->mask)
continue;
if (!(opcode->cpu & isa_mask))
continue;
if (!limm_loaded)
{
status = (*info->read_memory_func) (memaddr + *insn_len, buffer,
4, info);
if (status != 0)
return NULL;
limm = ARRANGE_ENDIAN (info, buffer);
limm_loaded = TRUE;
}
/* Check the second word using the mask and template. */
if ((limm & arc_long_opcodes[i].limm_mask)
!= arc_long_opcodes[i].limm_template)
continue;
(*insn_len) += 4;
insn[1] = limm;
return &arc_long_opcodes[i];
}
return NULL;
}
/* Find opcode for INSN, trying various different sources. The instruction
length in INSN_LEN will be updated if the instruction requires a LIMM
extension, and the additional values loaded into the INSN array (which
must be big enough).
A pointer to the opcode is placed into OPCODE_RESULT, and ITER is
initialised, ready to iterate over the operands of the found opcode.
This function returns TRUE in almost all cases, FALSE is reserved to
indicate an error (failing to find an opcode is not an error) a
returned result of FALSE would indicate that the disassembler can't
continue.
If no matching opcode is found then the returned result will be TRUE,
the value placed into OPCODE_RESULT will be NULL, ITER will be
undefined, and INSN_LEN will be unchanged.
If a matching opcode is found, then the returned result will be TRUE,
the opcode pointer is placed into OPCODE_RESULT, INSN_LEN will be
increased by 4 if the instruction requires a LIMM, and the LIMM value
will have been loaded into the INSN[1]. Finally, ITER will have been
initialised so that calls to OPERAND_ITERATOR_NEXT will iterate over
the opcode's operands. */
static bfd_boolean
find_format (bfd_vma memaddr, unsigned *insn, unsigned int *insn_len,
unsigned isa_mask, struct disassemble_info *info,
const struct arc_opcode **opcode_result,
struct arc_operand_iterator *iter)
{
const struct arc_opcode *opcode;
bfd_boolean needs_limm;
/* Find the first match in the opcode table. */
opcode = find_format_from_table (arc_opcodes, insn, *insn_len,
isa_mask, &needs_limm);
if (opcode == NULL)
{
const extInstruction_t *einsn;
/* No instruction found. Try the extensions. */
einsn = arcExtMap_insn (OPCODE (insn[0]), insn[0]);
if (einsn != NULL)
{
const char *errmsg = NULL;
opcode = arcExtMap_genOpcode (einsn, isa_mask, &errmsg);
if (opcode == NULL)
{
(*info->fprintf_func) (info->stream,
"An error occured while "
"generating the extension instruction "
"operations");
*opcode_result = NULL;
return FALSE;
}
opcode = find_format_from_table (opcode, insn, *insn_len,
isa_mask, &needs_limm);
assert (opcode != NULL);
}
}
if (needs_limm && opcode != NULL)
{
bfd_byte buffer[4];
int status;
status = (*info->read_memory_func) (memaddr + *insn_len, buffer,
4, info);
if (status != 0)
{
opcode = NULL;
}
else
{
insn[1] = ARRANGE_ENDIAN (info, buffer);
*insn_len += 4;
}
}
if (opcode == NULL)
{
const struct arc_long_opcode *long_opcode;
/* No instruction found yet, try the long instructions. */
long_opcode =
find_format_long_instructions (insn, insn_len, isa_mask,
memaddr, info);
if (long_opcode != NULL)
{
iter->mode = OPERAND_ITERATOR_LONG;
iter->insn = insn;
iter->state.long_insn.long_opcode = long_opcode;
iter->state.long_insn.opidx_base =
long_opcode->base_opcode.operands;
iter->state.long_insn.opidx_limm =
long_opcode->operands;
opcode = &long_opcode->base_opcode;
}
}
else
{
iter->mode = OPERAND_ITERATOR_STANDARD;
iter->insn = insn;
iter->state.standard.opcode = opcode;
iter->state.standard.opidx = opcode->operands;
}
*opcode_result = opcode;
return TRUE;
}
static void
print_flags (const struct arc_opcode *opcode,
unsigned *insn,
struct disassemble_info *info)
{
const unsigned char *flgidx;
unsigned int value;
/* Now extract and print the flags. */
for (flgidx = opcode->flags; *flgidx; flgidx++)
{
/* Get a valid flag class. */
const struct arc_flag_class *cl_flags = &arc_flag_classes[*flgidx];
const unsigned *flgopridx;
/* Check first the extensions. */
if (cl_flags->flag_class & F_CLASS_EXTEND)
{
const char *name;
value = (insn[0] & 0x1F);
name = arcExtMap_condCodeName (value);
if (name)
{
(*info->fprintf_func) (info->stream, ".%s", name);
continue;
}
}
for (flgopridx = cl_flags->flags; *flgopridx; ++flgopridx)
{
const struct arc_flag_operand *flg_operand =
&arc_flag_operands[*flgopridx];
if (!flg_operand->favail)
continue;
value = (insn[0] >> flg_operand->shift)
& ((1 << flg_operand->bits) - 1);
if (value == flg_operand->code)
{
/* FIXME!: print correctly nt/t flag. */
if (!special_flag_p (opcode->name, flg_operand->name))
(*info->fprintf_func) (info->stream, ".");
else if (info->insn_type == dis_dref)
{
switch (flg_operand->name[0])
{
case 'b':
info->data_size = 1;
break;
case 'h':
case 'w':
info->data_size = 2;
break;
default:
info->data_size = 4;
break;
}
}
if (flg_operand->name[0] == 'd'
&& flg_operand->name[1] == 0)
info->branch_delay_insns = 1;
/* Check if it is a conditional flag. */
if (cl_flags->flag_class & F_CLASS_COND)
{
if (info->insn_type == dis_jsr)
info->insn_type = dis_condjsr;
else if (info->insn_type == dis_branch)
info->insn_type = dis_condbranch;
}
(*info->fprintf_func) (info->stream, "%s", flg_operand->name);
}
}
}
}
static const char *
get_auxreg (const struct arc_opcode *opcode,
int value,
unsigned isa_mask)
{
const char *name;
unsigned int i;
const struct arc_aux_reg *auxr = &arc_aux_regs[0];
if (opcode->insn_class != AUXREG)
return NULL;
name = arcExtMap_auxRegName (value);
if (name)
return name;
for (i = 0; i < arc_num_aux_regs; i++, auxr++)
{
if (!(auxr->cpu & isa_mask))
continue;
if (auxr->subclass != NONE)
return NULL;
if (auxr->address == value)
return auxr->name;
}
return NULL;
}
/* Calculate the instruction length for an instruction starting with MSB
and LSB, the most and least significant byte. The ISA_MASK is used to
filter the instructions considered to only those that are part of the
current architecture.
The instruction lengths are calculated from the ARC_OPCODE table, and
cached for later use. */
static unsigned int
arc_insn_length (bfd_byte msb, bfd_byte lsb, struct disassemble_info *info)
{
bfd_byte major_opcode = msb >> 3;
switch (info->mach)
{
case bfd_mach_arc_arc700:
/* The nps400 extension set requires this special casing of the
instruction length calculation. Right now this is not causing any
problems as none of the known extensions overlap in opcode space,
but, if they ever do then we might need to start carrying
information around in the elf about which extensions are in use. */
if (major_opcode == 0xb)
{
bfd_byte minor_opcode = lsb & 0x1f;
if (minor_opcode < 4)
return 2;
}
case bfd_mach_arc_arc600:
return (major_opcode > 0xb) ? 2 : 4;
break;
case bfd_mach_arc_arcv2:
return (major_opcode > 0x7) ? 2 : 4;
break;
default:
abort ();
}
}
/* Extract and return the value of OPERAND from the instruction whose value
is held in the array INSN. */
static int
extract_operand_value (const struct arc_operand *operand, unsigned *insn)
{
int value;
/* Read the limm operand, if required. */
if (operand->flags & ARC_OPERAND_LIMM)
/* The second part of the instruction value will have been loaded as
part of the find_format call made earlier. */
value = insn[1];
else
{
if (operand->extract)
value = (*operand->extract) (insn[0], (int *) NULL);
else
{
if (operand->flags & ARC_OPERAND_ALIGNED32)
{
value = (insn[0] >> operand->shift)
& ((1 << (operand->bits - 2)) - 1);
value = value << 2;
}
else
{
value = (insn[0] >> operand->shift) & ((1 << operand->bits) - 1);
}
if (operand->flags & ARC_OPERAND_SIGNED)
{
int signbit = 1 << (operand->bits - 1);
value = (value ^ signbit) - signbit;
}
}
}
return value;
}
/* Find the next operand, and the operands value from ITER. Return TRUE if
there is another operand, otherwise return FALSE. If there is an
operand returned then the operand is placed into OPERAND, and the value
into VALUE. If there is no operand returned then OPERAND and VALUE are
unchanged. */
static bfd_boolean
operand_iterator_next (struct arc_operand_iterator *iter,
const struct arc_operand **operand,
int *value)
{
if (iter->mode == OPERAND_ITERATOR_STANDARD)
{
if (*iter->state.standard.opidx == 0)
{
*operand = NULL;
return FALSE;
}
*operand = &arc_operands[*iter->state.standard.opidx];
*value = extract_operand_value (*operand, iter->insn);
iter->state.standard.opidx++;
}
else
{
const struct arc_operand *operand_base, *operand_limm;
int value_base, value_limm;
if (*iter->state.long_insn.opidx_limm == 0)
{
*operand = NULL;
return FALSE;
}
operand_base = &arc_operands[*iter->state.long_insn.opidx_base];
operand_limm = &arc_operands[*iter->state.long_insn.opidx_limm];
if (operand_base->flags & ARC_OPERAND_LIMM)
{
/* We've reached the end of the operand list. */
*operand = NULL;
return FALSE;
}
value_base = value_limm = 0;
if (!(operand_limm->flags & ARC_OPERAND_IGNORE))
{
/* This should never happen. If it does then the use of
extract_operand_value below will access memory beyond
the insn array. */
assert ((operand_limm->flags & ARC_OPERAND_LIMM) == 0);
*operand = operand_limm;
value_limm = extract_operand_value (*operand, &iter->insn[1]);
}
if (!(operand_base->flags & ARC_OPERAND_IGNORE))
{
*operand = operand_base;
value_base = extract_operand_value (*operand, iter->insn);
}
/* This is a bit of a fudge. There's no reason why simply ORing
together the two values is the right thing to do, however, for all
the cases we currently have, it is the right thing, so, for now,
I've put off solving the more complex problem. */
*value = value_base | value_limm;
iter->state.long_insn.opidx_base++;
iter->state.long_insn.opidx_limm++;
}
return TRUE;
}
/* Disassemble ARC instructions. */
static int
print_insn_arc (bfd_vma memaddr,
struct disassemble_info *info)
{
bfd_byte buffer[4];
unsigned int lowbyte, highbyte;
int status;
unsigned int insn_len;
unsigned insn[2] = { 0, 0 };
unsigned isa_mask;
const struct arc_opcode *opcode;
bfd_boolean need_comma;
bfd_boolean open_braket;
int size;
const struct arc_operand *operand;
int value;
struct arc_operand_iterator iter;
memset (&iter, 0, sizeof (iter));
lowbyte = ((info->endian == BFD_ENDIAN_LITTLE) ? 1 : 0);
highbyte = ((info->endian == BFD_ENDIAN_LITTLE) ? 0 : 1);
switch (info->mach)
{
case bfd_mach_arc_arc700:
isa_mask = ARC_OPCODE_ARC700;
break;
case bfd_mach_arc_arc600:
isa_mask = ARC_OPCODE_ARC600;
break;
case bfd_mach_arc_arcv2:
default:
isa_mask = ARC_OPCODE_ARCv2HS | ARC_OPCODE_ARCv2EM;
break;
}
/* This variable may be set by the instruction decoder. It suggests
the number of bytes objdump should display on a single line. If
the instruction decoder sets this, it should always set it to
the same value in order to get reasonable looking output. */
info->bytes_per_line = 8;
/* In the next lines, we set two info variables control the way
objdump displays the raw data. For example, if bytes_per_line is
8 and bytes_per_chunk is 4, the output will look like this:
00: 00000000 00000000
with the chunks displayed according to "display_endian". */
if (info->section
&& !(info->section->flags & SEC_CODE))
{
/* This is not a CODE section. */
switch (info->section->size)
{
case 1:
case 2:
case 4:
size = info->section->size;
break;
default:
size = (info->section->size & 0x01) ? 1 : 4;
break;
}
info->bytes_per_chunk = 1;
info->display_endian = info->endian;
}
else
{
size = 2;
info->bytes_per_chunk = 2;
info->display_endian = info->endian;
}
/* Read the insn into a host word. */
status = (*info->read_memory_func) (memaddr, buffer, size, info);
if (status != 0)
{
(*info->memory_error_func) (status, memaddr, info);
return -1;
}
if (info->section
&& !(info->section->flags & SEC_CODE))
{
/* Data section. */
unsigned long data;
data = bfd_get_bits (buffer, size * 8,
info->display_endian == BFD_ENDIAN_BIG);
switch (size)
{
case 1:
(*info->fprintf_func) (info->stream, ".byte\t0x%02lx", data);
break;
case 2:
(*info->fprintf_func) (info->stream, ".short\t0x%04lx", data);
break;
case 4:
(*info->fprintf_func) (info->stream, ".word\t0x%08lx", data);
break;
default:
abort ();
}
return size;
}
insn_len = arc_insn_length (buffer[lowbyte], buffer[highbyte], info);
pr_debug ("instruction length = %d bytes\n", insn_len);
switch (insn_len)
{
case 2:
insn[0] = (buffer[lowbyte] << 8) | buffer[highbyte];
break;
default:
/* An unknown instruction is treated as being length 4. This is
possibly not the best solution, but matches the behaviour that was
in place before the table based instruction length look-up was
introduced. */
case 4:
/* This is a long instruction: Read the remaning 2 bytes. */
status = (*info->read_memory_func) (memaddr + 2, &buffer[2], 2, info);
if (status != 0)
{
(*info->memory_error_func) (status, memaddr + 2, info);
return -1;
}
insn[0] = ARRANGE_ENDIAN (info, buffer);
break;
}
/* Set some defaults for the insn info. */
info->insn_info_valid = 1;
info->branch_delay_insns = 0;
info->data_size = 0;
info->insn_type = dis_nonbranch;
info->target = 0;
info->target2 = 0;
/* FIXME to be moved in dissasemble_init_for_target. */
info->disassembler_needs_relocs = TRUE;
/* Find the first match in the opcode table. */
if (!find_format (memaddr, insn, &insn_len, isa_mask, info, &opcode, &iter))
return -1;
if (!opcode)
{
if (insn_len == 2)
(*info->fprintf_func) (info->stream, ".long %#04x", insn[0]);
else
(*info->fprintf_func) (info->stream, ".long %#08x", insn[0]);
info->insn_type = dis_noninsn;
return insn_len;
}
/* Print the mnemonic. */
(*info->fprintf_func) (info->stream, "%s", opcode->name);
/* Preselect the insn class. */
switch (opcode->insn_class)
{
case BRANCH:
case JUMP:
if (!strncmp (opcode->name, "bl", 2)
|| !strncmp (opcode->name, "jl", 2))
{
if (opcode->subclass == COND)
info->insn_type = dis_condjsr;
else
info->insn_type = dis_jsr;
}
else
{
if (opcode->subclass == COND)
info->insn_type = dis_condbranch;
else
info->insn_type = dis_branch;
}
break;
case MEMORY:
info->insn_type = dis_dref; /* FIXME! DB indicates mov as memory! */
break;
default:
info->insn_type = dis_nonbranch;
break;
}
pr_debug ("%s: 0x%08x\n", opcode->name, opcode->opcode);
print_flags (opcode, insn, info);
if (opcode->operands[0] != 0)
(*info->fprintf_func) (info->stream, "\t");
need_comma = FALSE;
open_braket = FALSE;
/* Now extract and print the operands. */
operand = NULL;
while (operand_iterator_next (&iter, &operand, &value))
{
if (open_braket && (operand->flags & ARC_OPERAND_BRAKET))
{
(*info->fprintf_func) (info->stream, "]");
open_braket = FALSE;
continue;
}
/* Only take input from real operands. */
if ((operand->flags & ARC_OPERAND_FAKE)
&& !(operand->flags & ARC_OPERAND_BRAKET))
continue;
if ((operand->flags & ARC_OPERAND_IGNORE)
&& (operand->flags & ARC_OPERAND_IR)
&& value == -1)
continue;
if (need_comma)
(*info->fprintf_func) (info->stream, ",");
if (!open_braket && (operand->flags & ARC_OPERAND_BRAKET))
{
(*info->fprintf_func) (info->stream, "[");
open_braket = TRUE;
need_comma = FALSE;
continue;
}
/* Print the operand as directed by the flags. */
if (operand->flags & ARC_OPERAND_IR)
{
const char *rname;
assert (value >=0 && value < 64);
rname = arcExtMap_coreRegName (value);
if (!rname)
rname = regnames[value];
(*info->fprintf_func) (info->stream, "%s", rname);
if (operand->flags & ARC_OPERAND_TRUNCATE)
{
rname = arcExtMap_coreRegName (value + 1);
if (!rname)
rname = regnames[value + 1];
(*info->fprintf_func) (info->stream, "%s", rname);
}
}
else if (operand->flags & ARC_OPERAND_LIMM)
{
const char *rname = get_auxreg (opcode, value, isa_mask);
if (rname && open_braket)
(*info->fprintf_func) (info->stream, "%s", rname);
else
{
(*info->fprintf_func) (info->stream, "%#x", value);
if (info->insn_type == dis_branch
|| info->insn_type == dis_jsr)
info->target = (bfd_vma) value;
}
}
else if (operand->flags & ARC_OPERAND_PCREL)
{
/* PCL relative. */
if (info->flags & INSN_HAS_RELOC)
memaddr = 0;
(*info->print_address_func) ((memaddr & ~3) + value, info);
info->target = (bfd_vma) (memaddr & ~3) + value;
}
else if (operand->flags & ARC_OPERAND_SIGNED)
{
const char *rname = get_auxreg (opcode, value, isa_mask);
if (rname && open_braket)
(*info->fprintf_func) (info->stream, "%s", rname);
else
(*info->fprintf_func) (info->stream, "%d", value);
}
else
{
if (operand->flags & ARC_OPERAND_TRUNCATE
&& !(operand->flags & ARC_OPERAND_ALIGNED32)
&& !(operand->flags & ARC_OPERAND_ALIGNED16)
&& value > 0 && value <= 14)
(*info->fprintf_func) (info->stream, "r13-%s",
regnames[13 + value - 1]);
else
{
const char *rname = get_auxreg (opcode, value, isa_mask);
if (rname && open_braket)
(*info->fprintf_func) (info->stream, "%s", rname);
else
(*info->fprintf_func) (info->stream, "%#x", value);
}
}
need_comma = TRUE;
}
return insn_len;
}
disassembler_ftype
arc_get_disassembler (bfd *abfd)
{
/* Read the extenssion insns and registers, if any. */
build_ARC_extmap (abfd);
#ifdef DEBUG
dump_ARC_extmap ();
#endif
return print_insn_arc;
}
/* Disassemble ARC instructions. Used by debugger. */
struct arcDisState
arcAnalyzeInstr (bfd_vma memaddr,
struct disassemble_info *info)
{
struct arcDisState ret;
memset (&ret, 0, sizeof (struct arcDisState));
ret.instructionLen = print_insn_arc (memaddr, info);
#if 0
ret.words[0] = insn[0];
ret.words[1] = insn[1];
ret._this = &ret;
ret.coreRegName = _coreRegName;
ret.auxRegName = _auxRegName;
ret.condCodeName = _condCodeName;
ret.instName = _instName;
#endif
return ret;
}
/* Local variables:
eval: (c-set-style "gnu")
indent-tabs-mode: t
End: */