binutils-gdb/gas/config/tc-i860.c

1492 lines
36 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* tc-i860.c -- Assembler for the Intel i860 architecture.
Copyright (C) 1989-2017 Free Software Foundation, Inc.
Brought back from the dead and completely reworked
by Jason Eckhardt <jle@cygnus.com>.
This file is part of GAS, the GNU Assembler.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with GAS; see the file COPYING. If not, write to the Free Software
Foundation, 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
#include "as.h"
#include "safe-ctype.h"
#include "subsegs.h"
#include "opcode/i860.h"
#include "elf/i860.h"
/* The opcode hash table. */
static struct hash_control *op_hash = NULL;
/* These characters always start a comment. */
const char comment_chars[] = "#!/";
/* These characters start a comment at the beginning of a line. */
const char line_comment_chars[] = "#/";
const char line_separator_chars[] = ";";
/* Characters that can be used to separate the mantissa from the exponent
in floating point numbers. */
const char EXP_CHARS[] = "eE";
/* Characters that indicate this number is a floating point constant.
As in 0f12.456 or 0d1.2345e12. */
const char FLT_CHARS[] = "rRsSfFdDxXpP";
/* Register prefix (depends on syntax). */
static char reg_prefix;
#define MAX_FIXUPS 2
struct i860_it
{
const char *error;
unsigned long opcode;
enum expand_type expand;
struct i860_fi
{
expressionS exp;
bfd_reloc_code_real_type reloc;
int pcrel;
valueT fup;
} fi[MAX_FIXUPS];
} the_insn;
/* The current fixup count. */
static int fc;
static char *expr_end;
/* Indicates error if a pseudo operation was expanded after a branch. */
static char last_expand;
/* If true, then warn if any pseudo operations were expanded. */
static int target_warn_expand = 0;
/* If true, then XP support is enabled. */
static int target_xp = 0;
/* If true, then Intel syntax is enabled (default to AT&T/SVR4 syntax). */
static int target_intel_syntax = 0;
/* Prototypes. */
static void i860_process_insn (char *);
static void s_dual (int);
static void s_enddual (int);
static void s_atmp (int);
static void s_align_wrapper (int);
static int i860_get_expression (char *);
static bfd_reloc_code_real_type obtain_reloc_for_imm16 (fixS *, long *);
#ifdef DEBUG_I860
static void print_insn (struct i860_it *);
#endif
const pseudo_typeS md_pseudo_table[] =
{
{"align", s_align_wrapper, 0},
{"dual", s_dual, 0},
{"enddual", s_enddual, 0},
{"atmp", s_atmp, 0},
{NULL, 0, 0},
};
/* Dual-instruction mode handling. */
enum dual
{
DUAL_OFF = 0, DUAL_ON, DUAL_DDOT, DUAL_ONDDOT,
};
static enum dual dual_mode = DUAL_OFF;
/* Handle ".dual" directive. */
static void
s_dual (int ignore ATTRIBUTE_UNUSED)
{
if (target_intel_syntax)
dual_mode = DUAL_ON;
else
as_bad (_("Directive .dual available only with -mintel-syntax option"));
}
/* Handle ".enddual" directive. */
static void
s_enddual (int ignore ATTRIBUTE_UNUSED)
{
if (target_intel_syntax)
dual_mode = DUAL_OFF;
else
as_bad (_("Directive .enddual available only with -mintel-syntax option"));
}
/* Temporary register used when expanding assembler pseudo operations. */
static int atmp = 31;
static void
s_atmp (int ignore ATTRIBUTE_UNUSED)
{
int temp;
if (! target_intel_syntax)
{
as_bad (_("Directive .atmp available only with -mintel-syntax option"));
demand_empty_rest_of_line ();
return;
}
if (strncmp (input_line_pointer, "sp", 2) == 0)
{
input_line_pointer += 2;
atmp = 2;
}
else if (strncmp (input_line_pointer, "fp", 2) == 0)
{
input_line_pointer += 2;
atmp = 3;
}
else if (strncmp (input_line_pointer, "r", 1) == 0)
{
input_line_pointer += 1;
temp = get_absolute_expression ();
if (temp >= 0 && temp <= 31)
atmp = temp;
else
as_bad (_("Unknown temporary pseudo register"));
}
else
{
as_bad (_("Unknown temporary pseudo register"));
}
demand_empty_rest_of_line ();
}
/* Handle ".align" directive depending on syntax mode.
AT&T/SVR4 syntax uses the standard align directive. However,
the Intel syntax additionally allows keywords for the alignment
parameter: ".align type", where type is one of {.short, .long,
.quad, .single, .double} representing alignments of 2, 4,
16, 4, and 8, respectively. */
static void
s_align_wrapper (int arg)
{
char *parm = input_line_pointer;
if (target_intel_syntax)
{
/* Replace a keyword with the equivalent integer so the
standard align routine can parse the directive. */
if (strncmp (parm, ".short", 6) == 0)
strncpy (parm, " 2", 6);
else if (strncmp (parm, ".long", 5) == 0)
strncpy (parm, " 4", 5);
else if (strncmp (parm, ".quad", 5) == 0)
strncpy (parm, " 16", 5);
else if (strncmp (parm, ".single", 7) == 0)
strncpy (parm, " 4", 7);
else if (strncmp (parm, ".double", 7) == 0)
strncpy (parm, " 8", 7);
while (*input_line_pointer == ' ')
++input_line_pointer;
}
s_align_bytes (arg);
}
/* This function is called once, at assembler startup time. It should
set up all the tables and data structures that the MD part of the
assembler will need. */
void
md_begin (void)
{
const char *retval = NULL;
int lose = 0;
unsigned int i = 0;
op_hash = hash_new ();
while (i860_opcodes[i].name != NULL)
{
const char *name = i860_opcodes[i].name;
retval = hash_insert (op_hash, name, (void *) &i860_opcodes[i]);
if (retval != NULL)
{
fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
i860_opcodes[i].name, retval);
lose = 1;
}
do
{
if (i860_opcodes[i].match & i860_opcodes[i].lose)
{
fprintf (stderr,
_("internal error: losing opcode: `%s' \"%s\"\n"),
i860_opcodes[i].name, i860_opcodes[i].args);
lose = 1;
}
++i;
}
while (i860_opcodes[i].name != NULL
&& strcmp (i860_opcodes[i].name, name) == 0);
}
if (lose)
as_fatal (_("Defective assembler. No assembly attempted."));
/* Set the register prefix for either Intel or AT&T/SVR4 syntax. */
reg_prefix = target_intel_syntax ? 0 : '%';
}
/* This is the core of the machine-dependent assembler. STR points to a
machine dependent instruction. This function emits the frags/bytes
it assembles to. */
void
md_assemble (char *str)
{
char *destp;
int num_opcodes = 1;
int i;
struct i860_it pseudo[3];
gas_assert (str);
fc = 0;
/* Assemble the instruction. */
i860_process_insn (str);
/* Check for expandable flag to produce pseudo-instructions. This
is an undesirable feature that should be avoided. */
if (the_insn.expand != 0 && the_insn.expand != XP_ONLY
&& ! (the_insn.fi[0].fup & (OP_SEL_HA | OP_SEL_H | OP_SEL_L | OP_SEL_GOT
| OP_SEL_GOTOFF | OP_SEL_PLT)))
{
for (i = 0; i < 3; i++)
pseudo[i] = the_insn;
fc = 1;
switch (the_insn.expand)
{
case E_DELAY:
num_opcodes = 1;
break;
case E_MOV:
if (the_insn.fi[0].exp.X_add_symbol == NULL
&& the_insn.fi[0].exp.X_op_symbol == NULL
&& (the_insn.fi[0].exp.X_add_number < (1 << 15)
&& the_insn.fi[0].exp.X_add_number >= -(1 << 15)))
break;
/* Emit "or l%const,r0,ireg_dest". */
pseudo[0].opcode = (the_insn.opcode & 0x001f0000) | 0xe4000000;
pseudo[0].fi[0].fup = (OP_IMM_S16 | OP_SEL_L);
/* Emit "orh h%const,ireg_dest,ireg_dest". */
pseudo[1].opcode = (the_insn.opcode & 0x03ffffff) | 0xec000000
| ((the_insn.opcode & 0x001f0000) << 5);
pseudo[1].fi[0].fup = (OP_IMM_S16 | OP_SEL_H);
num_opcodes = 2;
break;
case E_ADDR:
if (the_insn.fi[0].exp.X_add_symbol == NULL
&& the_insn.fi[0].exp.X_op_symbol == NULL
&& (the_insn.fi[0].exp.X_add_number < (1 << 15)
&& the_insn.fi[0].exp.X_add_number >= -(1 << 15)))
break;
/* Emit "orh ha%addr_expr,ireg_src2,r31". */
pseudo[0].opcode = 0xec000000 | (the_insn.opcode & 0x03e00000)
| (atmp << 16);
pseudo[0].fi[0].fup = (OP_IMM_S16 | OP_SEL_HA);
/* Emit "l%addr_expr(r31),ireg_dest". We pick up the fixup
information from the original instruction. */
pseudo[1].opcode = (the_insn.opcode & ~0x03e00000) | (atmp << 21);
pseudo[1].fi[0].fup = the_insn.fi[0].fup | OP_SEL_L;
num_opcodes = 2;
break;
case E_U32:
if (the_insn.fi[0].exp.X_add_symbol == NULL
&& the_insn.fi[0].exp.X_op_symbol == NULL
&& (the_insn.fi[0].exp.X_add_number < (1 << 16)
&& the_insn.fi[0].exp.X_add_number >= 0))
break;
/* Emit "$(opcode)h h%const,ireg_src2,r31". */
pseudo[0].opcode = (the_insn.opcode & 0xf3e0ffff) | 0x0c000000
| (atmp << 16);
pseudo[0].fi[0].fup = (OP_IMM_S16 | OP_SEL_H);
/* Emit "$(opcode) l%const,r31,ireg_dest". */
pseudo[1].opcode = (the_insn.opcode & 0xf01f0000) | 0x04000000
| (atmp << 21);
pseudo[1].fi[0].fup = (OP_IMM_S16 | OP_SEL_L);
num_opcodes = 2;
break;
case E_AND:
if (the_insn.fi[0].exp.X_add_symbol == NULL
&& the_insn.fi[0].exp.X_op_symbol == NULL
&& (the_insn.fi[0].exp.X_add_number < (1 << 16)
&& the_insn.fi[0].exp.X_add_number >= 0))
break;
/* Emit "andnot h%const,ireg_src2,r31". */
pseudo[0].opcode = (the_insn.opcode & 0x03e0ffff) | 0xd4000000
| (atmp << 16);
pseudo[0].fi[0].fup = (OP_IMM_S16 | OP_SEL_H);
pseudo[0].fi[0].exp.X_add_number =
-1 - the_insn.fi[0].exp.X_add_number;
/* Emit "andnot l%const,r31,ireg_dest". */
pseudo[1].opcode = (the_insn.opcode & 0x001f0000) | 0xd4000000
| (atmp << 21);
pseudo[1].fi[0].fup = (OP_IMM_S16 | OP_SEL_L);
pseudo[1].fi[0].exp.X_add_number =
-1 - the_insn.fi[0].exp.X_add_number;
num_opcodes = 2;
break;
case E_S32:
if (the_insn.fi[0].exp.X_add_symbol == NULL
&& the_insn.fi[0].exp.X_op_symbol == NULL
&& (the_insn.fi[0].exp.X_add_number < (1 << 15)
&& the_insn.fi[0].exp.X_add_number >= -(1 << 15)))
break;
/* Emit "orh h%const,r0,r31". */
pseudo[0].opcode = 0xec000000 | (atmp << 16);
pseudo[0].fi[0].fup = (OP_IMM_S16 | OP_SEL_H);
/* Emit "or l%const,r31,r31". */
pseudo[1].opcode = 0xe4000000 | (atmp << 21) | (atmp << 16);
pseudo[1].fi[0].fup = (OP_IMM_S16 | OP_SEL_L);
/* Emit "r31,ireg_src2,ireg_dest". */
pseudo[2].opcode = (the_insn.opcode & ~0x0400ffff) | (atmp << 11);
pseudo[2].fi[0].fup = OP_IMM_S16;
num_opcodes = 3;
break;
default:
as_fatal (_("failed sanity check."));
}
the_insn = pseudo[0];
/* Warn if an opcode is expanded after a delayed branch. */
if (num_opcodes > 1 && last_expand == 1)
as_warn (_("Expanded opcode after delayed branch: `%s'"), str);
/* Warn if an opcode is expanded in dual mode. */
if (num_opcodes > 1 && dual_mode != DUAL_OFF)
as_warn (_("Expanded opcode in dual mode: `%s'"), str);
/* Notify if any expansions happen. */
if (target_warn_expand && num_opcodes > 1)
as_warn (_("An instruction was expanded (%s)"), str);
}
dwarf2_emit_insn (0);
i = 0;
do
{
int tmp;
/* Output the opcode. Note that the i860 always reads instructions
as little-endian data. */
destp = frag_more (4);
number_to_chars_littleendian (destp, the_insn.opcode, 4);
/* Check for expanded opcode after branch or in dual mode. */
last_expand = the_insn.fi[0].pcrel;
/* Output the symbol-dependent stuff. Only btne and bte will ever
loop more than once here, since only they (possibly) have more
than one fixup. */
for (tmp = 0; tmp < fc; tmp++)
{
if (the_insn.fi[tmp].fup != OP_NONE)
{
fixS *fix;
fix = fix_new_exp (frag_now,
destp - frag_now->fr_literal,
4,
&the_insn.fi[tmp].exp,
the_insn.fi[tmp].pcrel,
the_insn.fi[tmp].reloc);
/* Despite the odd name, this is a scratch field. We use
it to encode operand type information. */
fix->fx_addnumber = the_insn.fi[tmp].fup;
}
}
the_insn = pseudo[++i];
}
while (--num_opcodes > 0);
}
/* Assemble the instruction pointed to by STR. */
static void
i860_process_insn (char *str)
{
char *s;
const char *args;
char c;
struct i860_opcode *insn;
char *args_start;
unsigned long opcode;
unsigned int mask;
int match = 0;
int comma = 0;
#if 1 /* For compiler warnings. */
args = 0;
insn = 0;
args_start = 0;
opcode = 0;
#endif
for (s = str; ISLOWER (*s) || *s == '.' || *s == '3'
|| *s == '2' || *s == '1'; ++s)
;
switch (*s)
{
case '\0':
break;
case ',':
comma = 1;
/*FALLTHROUGH*/
case ' ':
*s++ = '\0';
break;
default:
as_fatal (_("Unknown opcode: `%s'"), str);
}
/* Check for dual mode ("d.") opcode prefix. */
if (strncmp (str, "d.", 2) == 0)
{
if (dual_mode == DUAL_ON)
dual_mode = DUAL_ONDDOT;
else
dual_mode = DUAL_DDOT;
str += 2;
}
if ((insn = (struct i860_opcode *) hash_find (op_hash, str)) == NULL)
{
if (dual_mode == DUAL_DDOT || dual_mode == DUAL_ONDDOT)
str -= 2;
as_bad (_("Unknown opcode: `%s'"), str);
return;
}
if (comma)
*--s = ',';
args_start = s;
for (;;)
{
int t;
opcode = insn->match;
memset (&the_insn, '\0', sizeof (the_insn));
fc = 0;
for (t = 0; t < MAX_FIXUPS; t++)
{
the_insn.fi[t].reloc = BFD_RELOC_NONE;
the_insn.fi[t].pcrel = 0;
the_insn.fi[t].fup = OP_NONE;
}
/* Build the opcode, checking as we go that the operands match. */
for (args = insn->args; ; ++args)
{
if (fc > MAX_FIXUPS)
abort ();
switch (*args)
{
/* End of args. */
case '\0':
if (*s == '\0')
match = 1;
break;
/* These must match exactly. */
case '+':
case '(':
case ')':
case ',':
case ' ':
if (*s++ == *args)
continue;
break;
/* Must be at least one digit. */
case '#':
if (ISDIGIT (*s++))
{
while (ISDIGIT (*s))
++s;
continue;
}
break;
/* Next operand must be a register. */
case '1':
case '2':
case 'd':
/* Check for register prefix if necessary. */
if (reg_prefix && *s != reg_prefix)
goto error;
else if (reg_prefix)
s++;
switch (*s)
{
/* Frame pointer. */
case 'f':
s++;
if (*s++ == 'p')
{
mask = 0x3;
break;
}
goto error;
/* Stack pointer. */
case 's':
s++;
if (*s++ == 'p')
{
mask = 0x2;
break;
}
goto error;
/* Any register r0..r31. */
case 'r':
s++;
if (!ISDIGIT (c = *s++))
{
goto error;
}
if (ISDIGIT (*s))
{
if ((c = 10 * (c - '0') + (*s++ - '0')) >= 32)
goto error;
}
else
c -= '0';
mask = c;
break;
/* Not this opcode. */
default:
goto error;
}
/* Obtained the register, now place it in the opcode. */
switch (*args)
{
case '1':
opcode |= mask << 11;
continue;
case '2':
opcode |= mask << 21;
continue;
case 'd':
opcode |= mask << 16;
continue;
}
break;
/* Next operand is a floating point register. */
case 'e':
case 'f':
case 'g':
/* Check for register prefix if necessary. */
if (reg_prefix && *s != reg_prefix)
goto error;
else if (reg_prefix)
s++;
if (*s++ == 'f' && ISDIGIT (*s))
{
mask = *s++;
if (ISDIGIT (*s))
{
mask = 10 * (mask - '0') + (*s++ - '0');
if (mask >= 32)
{
break;
}
}
else
mask -= '0';
switch (*args)
{
case 'e':
opcode |= mask << 11;
continue;
case 'f':
opcode |= mask << 21;
continue;
case 'g':
opcode |= mask << 16;
if ((opcode & (1 << 10)) && mask != 0
&& (mask == ((opcode >> 11) & 0x1f)))
as_warn (_("Pipelined instruction: fsrc1 = fdest"));
continue;
}
}
break;
/* Next operand must be a control register. */
case 'c':
/* Check for register prefix if necessary. */
if (reg_prefix && *s != reg_prefix)
goto error;
else if (reg_prefix)
s++;
if (strncmp (s, "fir", 3) == 0)
{
opcode |= 0x0 << 21;
s += 3;
continue;
}
if (strncmp (s, "psr", 3) == 0)
{
opcode |= 0x1 << 21;
s += 3;
continue;
}
if (strncmp (s, "dirbase", 7) == 0)
{
opcode |= 0x2 << 21;
s += 7;
continue;
}
if (strncmp (s, "db", 2) == 0)
{
opcode |= 0x3 << 21;
s += 2;
continue;
}
if (strncmp (s, "fsr", 3) == 0)
{
opcode |= 0x4 << 21;
s += 3;
continue;
}
if (strncmp (s, "epsr", 4) == 0)
{
opcode |= 0x5 << 21;
s += 4;
continue;
}
/* The remaining control registers are XP only. */
if (target_xp && strncmp (s, "bear", 4) == 0)
{
opcode |= 0x6 << 21;
s += 4;
continue;
}
if (target_xp && strncmp (s, "ccr", 3) == 0)
{
opcode |= 0x7 << 21;
s += 3;
continue;
}
if (target_xp && strncmp (s, "p0", 2) == 0)
{
opcode |= 0x8 << 21;
s += 2;
continue;
}
if (target_xp && strncmp (s, "p1", 2) == 0)
{
opcode |= 0x9 << 21;
s += 2;
continue;
}
if (target_xp && strncmp (s, "p2", 2) == 0)
{
opcode |= 0xa << 21;
s += 2;
continue;
}
if (target_xp && strncmp (s, "p3", 2) == 0)
{
opcode |= 0xb << 21;
s += 2;
continue;
}
break;
/* 5-bit immediate in src1. */
case '5':
if (! i860_get_expression (s))
{
s = expr_end;
the_insn.fi[fc].fup |= OP_IMM_U5;
fc++;
continue;
}
break;
/* 26-bit immediate, relative branch (lbroff). */
case 'l':
the_insn.fi[fc].pcrel = 1;
the_insn.fi[fc].fup |= OP_IMM_BR26;
goto immediate;
/* 16-bit split immediate, relative branch (sbroff). */
case 'r':
the_insn.fi[fc].pcrel = 1;
the_insn.fi[fc].fup |= OP_IMM_BR16;
goto immediate;
/* 16-bit split immediate. */
case 's':
the_insn.fi[fc].fup |= OP_IMM_SPLIT16;
goto immediate;
/* 16-bit split immediate, byte aligned (st.b). */
case 'S':
the_insn.fi[fc].fup |= OP_IMM_SPLIT16;
goto immediate;
/* 16-bit split immediate, half-word aligned (st.s). */
case 'T':
the_insn.fi[fc].fup |= (OP_IMM_SPLIT16 | OP_ENCODE1 | OP_ALIGN2);
goto immediate;
/* 16-bit split immediate, word aligned (st.l). */
case 'U':
the_insn.fi[fc].fup |= (OP_IMM_SPLIT16 | OP_ENCODE1 | OP_ALIGN4);
goto immediate;
/* 16-bit immediate. */
case 'i':
the_insn.fi[fc].fup |= OP_IMM_S16;
goto immediate;
/* 16-bit immediate, byte aligned (ld.b). */
case 'I':
the_insn.fi[fc].fup |= OP_IMM_S16;
goto immediate;
/* 16-bit immediate, half-word aligned (ld.s). */
case 'J':
the_insn.fi[fc].fup |= (OP_IMM_S16 | OP_ENCODE1 | OP_ALIGN2);
goto immediate;
/* 16-bit immediate, word aligned (ld.l, {p}fld.l, fst.l). */
case 'K':
if (insn->name[0] == 'l')
the_insn.fi[fc].fup |= (OP_IMM_S16 | OP_ENCODE1 | OP_ALIGN4);
else
the_insn.fi[fc].fup |= (OP_IMM_S16 | OP_ENCODE2 | OP_ALIGN4);
goto immediate;
/* 16-bit immediate, double-word aligned ({p}fld.d, fst.d). */
case 'L':
the_insn.fi[fc].fup |= (OP_IMM_S16 | OP_ENCODE3 | OP_ALIGN8);
goto immediate;
/* 16-bit immediate, quad-word aligned (fld.q, fst.q). */
case 'M':
the_insn.fi[fc].fup |= (OP_IMM_S16 | OP_ENCODE3 | OP_ALIGN16);
/*FALLTHROUGH*/
/* Handle the immediate for either the Intel syntax or
SVR4 syntax. The Intel syntax is "ha%immediate"
whereas SVR4 syntax is "[immediate]@ha". */
immediate:
if (target_intel_syntax == 0)
{
/* AT&T/SVR4 syntax. */
if (*s == ' ')
s++;
/* Note that if i860_get_expression() fails, we will still
have created U entries in the symbol table for the
'symbols' in the input string. Try not to create U
symbols for registers, etc. */
if (! i860_get_expression (s))
s = expr_end;
else
goto error;
if (strncmp (s, "@ha", 3) == 0)
{
the_insn.fi[fc].fup |= OP_SEL_HA;
s += 3;
}
else if (strncmp (s, "@h", 2) == 0)
{
the_insn.fi[fc].fup |= OP_SEL_H;
s += 2;
}
else if (strncmp (s, "@l", 2) == 0)
{
the_insn.fi[fc].fup |= OP_SEL_L;
s += 2;
}
else if (strncmp (s, "@gotoff", 7) == 0
|| strncmp (s, "@GOTOFF", 7) == 0)
{
as_bad (_("Assembler does not yet support PIC"));
the_insn.fi[fc].fup |= OP_SEL_GOTOFF;
s += 7;
}
else if (strncmp (s, "@got", 4) == 0
|| strncmp (s, "@GOT", 4) == 0)
{
as_bad (_("Assembler does not yet support PIC"));
the_insn.fi[fc].fup |= OP_SEL_GOT;
s += 4;
}
else if (strncmp (s, "@plt", 4) == 0
|| strncmp (s, "@PLT", 4) == 0)
{
as_bad (_("Assembler does not yet support PIC"));
the_insn.fi[fc].fup |= OP_SEL_PLT;
s += 4;
}
the_insn.expand = insn->expand;
fc++;
continue;
}
else
{
/* Intel syntax. */
if (*s == ' ')
s++;
if (strncmp (s, "ha%", 3) == 0)
{
the_insn.fi[fc].fup |= OP_SEL_HA;
s += 3;
}
else if (strncmp (s, "h%", 2) == 0)
{
the_insn.fi[fc].fup |= OP_SEL_H;
s += 2;
}
else if (strncmp (s, "l%", 2) == 0)
{
the_insn.fi[fc].fup |= OP_SEL_L;
s += 2;
}
the_insn.expand = insn->expand;
/* Note that if i860_get_expression() fails, we will still
have created U entries in the symbol table for the
'symbols' in the input string. Try not to create U
symbols for registers, etc. */
if (! i860_get_expression (s))
s = expr_end;
else
goto error;
fc++;
continue;
}
break;
default:
as_fatal (_("failed sanity check."));
}
break;
}
error:
if (match == 0)
{
/* Args don't match. */
if (insn[1].name != NULL
&& ! strcmp (insn->name, insn[1].name))
{
++insn;
s = args_start;
continue;
}
else
{
as_bad (_("Illegal operands for %s"), insn->name);
return;
}
}
break;
}
/* Set the dual bit on this instruction if necessary. */
if (dual_mode != DUAL_OFF)
{
if ((opcode & 0xfc000000) == 0x48000000 || opcode == 0xb0000000)
{
/* The instruction is a flop or a fnop, so set its dual bit
(but check that it is 8-byte aligned). */
if (((frag_now->fr_address + frag_now_fix_octets ()) & 7) == 0)
opcode |= (1 << 9);
else
as_bad (_("'d.%s' must be 8-byte aligned"), insn->name);
if (dual_mode == DUAL_DDOT)
dual_mode = DUAL_OFF;
else if (dual_mode == DUAL_ONDDOT)
dual_mode = DUAL_ON;
}
else if (dual_mode == DUAL_DDOT || dual_mode == DUAL_ONDDOT)
as_bad (_("Prefix 'd.' invalid for instruction `%s'"), insn->name);
}
the_insn.opcode = opcode;
/* Only recognize XP instructions when the user has requested it. */
if (insn->expand == XP_ONLY && ! target_xp)
as_bad (_("Unknown opcode: `%s'"), insn->name);
}
static int
i860_get_expression (char *str)
{
char *save_in;
segT seg;
save_in = input_line_pointer;
input_line_pointer = str;
seg = expression (&the_insn.fi[fc].exp);
if (seg != absolute_section
&& seg != undefined_section
&& ! SEG_NORMAL (seg))
{
the_insn.error = _("bad segment");
expr_end = input_line_pointer;
input_line_pointer = save_in;
return 1;
}
expr_end = input_line_pointer;
input_line_pointer = save_in;
return 0;
}
const char *
md_atof (int type, char *litP, int *sizeP)
{
return ieee_md_atof (type, litP, sizeP, TRUE);
}
/* Write out in current endian mode. */
void
md_number_to_chars (char *buf, valueT val, int n)
{
if (target_big_endian)
number_to_chars_bigendian (buf, val, n);
else
number_to_chars_littleendian (buf, val, n);
}
/* This should never be called for i860. */
int
md_estimate_size_before_relax (fragS *fragP ATTRIBUTE_UNUSED,
segT segtype ATTRIBUTE_UNUSED)
{
as_fatal (_("relaxation not supported\n"));
}
#ifdef DEBUG_I860
static void
print_insn (struct i860_it *insn)
{
if (insn->error)
fprintf (stderr, "ERROR: %s\n", insn->error);
fprintf (stderr, "opcode = 0x%08lx\t", insn->opcode);
fprintf (stderr, "expand = 0x%x\t", insn->expand);
fprintf (stderr, "reloc = %s\t\n",
bfd_get_reloc_code_name (insn->reloc));
fprintf (stderr, "exp = {\n");
fprintf (stderr, "\t\tX_add_symbol = %s\n",
insn->exp.X_add_symbol ?
(S_GET_NAME (insn->exp.X_add_symbol) ?
S_GET_NAME (insn->exp.X_add_symbol) : "???") : "0");
fprintf (stderr, "\t\tX_op_symbol = %s\n",
insn->exp.X_op_symbol ?
(S_GET_NAME (insn->exp.X_op_symbol) ?
S_GET_NAME (insn->exp.X_op_symbol) : "???") : "0");
fprintf (stderr, "\t\tX_add_number = %lx\n",
insn->exp.X_add_number);
fprintf (stderr, "}\n");
}
#endif /* DEBUG_I860 */
#ifdef OBJ_ELF
const char *md_shortopts = "VQ:";
#else
const char *md_shortopts = "";
#endif
#define OPTION_EB (OPTION_MD_BASE + 0)
#define OPTION_EL (OPTION_MD_BASE + 1)
#define OPTION_WARN_EXPAND (OPTION_MD_BASE + 2)
#define OPTION_XP (OPTION_MD_BASE + 3)
#define OPTION_INTEL_SYNTAX (OPTION_MD_BASE + 4)
struct option md_longopts[] = {
{ "EB", no_argument, NULL, OPTION_EB },
{ "EL", no_argument, NULL, OPTION_EL },
{ "mwarn-expand", no_argument, NULL, OPTION_WARN_EXPAND },
{ "mxp", no_argument, NULL, OPTION_XP },
{ "mintel-syntax",no_argument, NULL, OPTION_INTEL_SYNTAX },
{ NULL, no_argument, NULL, 0 }
};
size_t md_longopts_size = sizeof (md_longopts);
int
md_parse_option (int c, const char *arg ATTRIBUTE_UNUSED)
{
switch (c)
{
case OPTION_EB:
target_big_endian = 1;
break;
case OPTION_EL:
target_big_endian = 0;
break;
case OPTION_WARN_EXPAND:
target_warn_expand = 1;
break;
case OPTION_XP:
target_xp = 1;
break;
case OPTION_INTEL_SYNTAX:
target_intel_syntax = 1;
break;
#ifdef OBJ_ELF
/* SVR4 argument compatibility (-V): print version ID. */
case 'V':
print_version_id ();
break;
/* SVR4 argument compatibility (-Qy, -Qn): controls whether
a .comment section should be emitted or not (ignored). */
case 'Q':
break;
#endif
default:
return 0;
}
return 1;
}
void
md_show_usage (FILE *stream)
{
fprintf (stream, _("\
-EL generate code for little endian mode (default)\n\
-EB generate code for big endian mode\n\
-mwarn-expand warn if pseudo operations are expanded\n\
-mxp enable i860XP support (disabled by default)\n\
-mintel-syntax enable Intel syntax (default to AT&T/SVR4)\n"));
#ifdef OBJ_ELF
/* SVR4 compatibility flags. */
fprintf (stream, _("\
-V print assembler version number\n\
-Qy, -Qn ignored\n"));
#endif
}
/* We have no need to default values of symbols. */
symbolS *
md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
{
return 0;
}
/* The i860 denotes auto-increment with '++'. */
void
md_operand (expressionS *exp)
{
char *s;
for (s = input_line_pointer; *s; s++)
{
if (s[0] == '+' && s[1] == '+')
{
input_line_pointer += 2;
exp->X_op = O_register;
break;
}
}
}
/* Round up a section size to the appropriate boundary. */
valueT
md_section_align (segT segment ATTRIBUTE_UNUSED,
valueT size ATTRIBUTE_UNUSED)
{
/* Byte alignment is fine. */
return size;
}
/* On the i860, a PC-relative offset is relative to the address of the
offset plus its size. */
long
md_pcrel_from (fixS *fixP)
{
return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
}
/* Determine the relocation needed for non PC-relative 16-bit immediates.
Also adjust the given immediate as necessary. Finally, check that
all constraints (such as alignment) are satisfied. */
static bfd_reloc_code_real_type
obtain_reloc_for_imm16 (fixS *fix, long *val)
{
valueT fup = fix->fx_addnumber;
bfd_reloc_code_real_type reloc;
if (fix->fx_pcrel)
abort ();
/* Check alignment restrictions. */
if ((fup & OP_ALIGN2) && (*val & 0x1))
as_bad_where (fix->fx_file, fix->fx_line,
_("This immediate requires 0 MOD 2 alignment"));
else if ((fup & OP_ALIGN4) && (*val & 0x3))
as_bad_where (fix->fx_file, fix->fx_line,
_("This immediate requires 0 MOD 4 alignment"));
else if ((fup & OP_ALIGN8) && (*val & 0x7))
as_bad_where (fix->fx_file, fix->fx_line,
_("This immediate requires 0 MOD 8 alignment"));
else if ((fup & OP_ALIGN16) && (*val & 0xf))
as_bad_where (fix->fx_file, fix->fx_line,
_("This immediate requires 0 MOD 16 alignment"));
if (fup & OP_SEL_HA)
{
*val = (*val >> 16) + (*val & 0x8000 ? 1 : 0);
reloc = BFD_RELOC_860_HIGHADJ;
}
else if (fup & OP_SEL_H)
{
*val >>= 16;
reloc = BFD_RELOC_860_HIGH;
}
else if (fup & OP_SEL_L)
{
int num_encode;
if (fup & OP_IMM_SPLIT16)
{
if (fup & OP_ENCODE1)
{
num_encode = 1;
reloc = BFD_RELOC_860_SPLIT1;
}
else if (fup & OP_ENCODE2)
{
num_encode = 2;
reloc = BFD_RELOC_860_SPLIT2;
}
else
{
num_encode = 0;
reloc = BFD_RELOC_860_SPLIT0;
}
}
else
{
if (fup & OP_ENCODE1)
{
num_encode = 1;
reloc = BFD_RELOC_860_LOW1;
}
else if (fup & OP_ENCODE2)
{
num_encode = 2;
reloc = BFD_RELOC_860_LOW2;
}
else if (fup & OP_ENCODE3)
{
num_encode = 3;
reloc = BFD_RELOC_860_LOW3;
}
else
{
num_encode = 0;
reloc = BFD_RELOC_860_LOW0;
}
}
/* Preserve size encode bits. */
*val &= ~((1 << num_encode) - 1);
}
else
{
/* No selector. What reloc do we generate (???)? */
reloc = BFD_RELOC_32;
}
return reloc;
}
/* Attempt to simplify or eliminate a fixup. To indicate that a fixup
has been eliminated, set fix->fx_done. If fix->fx_addsy is non-NULL,
we will have to generate a reloc entry. */
void
md_apply_fix (fixS *fix, valueT *valP, segT seg ATTRIBUTE_UNUSED)
{
char *buf;
long val = *valP;
unsigned long insn;
valueT fup;
buf = fix->fx_frag->fr_literal + fix->fx_where;
/* Recall that earlier we stored the opcode little-endian. */
insn = bfd_getl32 (buf);
/* We stored a fix-up in this oddly-named scratch field. */
fup = fix->fx_addnumber;
/* Determine the necessary relocations as well as inserting an
immediate into the instruction. */
if (fup & OP_IMM_U5)
{
if (val & ~0x1f)
as_bad_where (fix->fx_file, fix->fx_line,
_("5-bit immediate too large"));
if (fix->fx_addsy)
as_bad_where (fix->fx_file, fix->fx_line,
_("5-bit field must be absolute"));
insn |= (val & 0x1f) << 11;
bfd_putl32 (insn, buf);
fix->fx_r_type = BFD_RELOC_NONE;
fix->fx_done = 1;
}
else if (fup & OP_IMM_S16)
{
fix->fx_r_type = obtain_reloc_for_imm16 (fix, &val);
/* Insert the immediate. */
if (fix->fx_addsy)
fix->fx_done = 0;
else
{
insn |= val & 0xffff;
bfd_putl32 (insn, buf);
fix->fx_r_type = BFD_RELOC_NONE;
fix->fx_done = 1;
}
}
else if (fup & OP_IMM_U16)
abort ();
else if (fup & OP_IMM_SPLIT16)
{
fix->fx_r_type = obtain_reloc_for_imm16 (fix, &val);
/* Insert the immediate. */
if (fix->fx_addsy)
fix->fx_done = 0;
else
{
insn |= val & 0x7ff;
insn |= (val & 0xf800) << 5;
bfd_putl32 (insn, buf);
fix->fx_r_type = BFD_RELOC_NONE;
fix->fx_done = 1;
}
}
else if (fup & OP_IMM_BR16)
{
if (val & 0x3)
as_bad_where (fix->fx_file, fix->fx_line,
_("A branch offset requires 0 MOD 4 alignment"));
val = val >> 2;
/* Insert the immediate. */
if (fix->fx_addsy)
{
fix->fx_done = 0;
fix->fx_r_type = BFD_RELOC_860_PC16;
}
else
{
insn |= (val & 0x7ff);
insn |= ((val & 0xf800) << 5);
bfd_putl32 (insn, buf);
fix->fx_r_type = BFD_RELOC_NONE;
fix->fx_done = 1;
}
}
else if (fup & OP_IMM_BR26)
{
if (val & 0x3)
as_bad_where (fix->fx_file, fix->fx_line,
_("A branch offset requires 0 MOD 4 alignment"));
val >>= 2;
/* Insert the immediate. */
if (fix->fx_addsy)
{
fix->fx_r_type = BFD_RELOC_860_PC26;
fix->fx_done = 0;
}
else
{
insn |= (val & 0x3ffffff);
bfd_putl32 (insn, buf);
fix->fx_r_type = BFD_RELOC_NONE;
fix->fx_done = 1;
}
}
else if (fup != OP_NONE)
{
as_bad_where (fix->fx_file, fix->fx_line,
_("Unrecognized fix-up (0x%08lx)"), (unsigned long) fup);
abort ();
}
else
{
/* I believe only fix-ups such as ".long .ep.main-main+0xc8000000"
reach here (???). */
if (fix->fx_addsy)
{
fix->fx_r_type = BFD_RELOC_32;
fix->fx_done = 0;
}
else
{
insn |= (val & 0xffffffff);
bfd_putl32 (insn, buf);
fix->fx_r_type = BFD_RELOC_NONE;
fix->fx_done = 1;
}
}
}
/* Generate a machine dependent reloc from a fixup. */
arelent*
tc_gen_reloc (asection *section ATTRIBUTE_UNUSED,
fixS *fixp)
{
arelent *reloc;
reloc = XNEW (arelent);
reloc->sym_ptr_ptr = XNEW (asymbol *);
*reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
reloc->addend = fixp->fx_offset;
reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
if (! reloc->howto)
{
as_bad_where (fixp->fx_file, fixp->fx_line,
"Cannot represent %s relocation in object file",
bfd_get_reloc_code_name (fixp->fx_r_type));
}
return reloc;
}
/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
of an rs_align_code fragment. */
void
i860_handle_align (fragS *fragp)
{
/* Instructions are always stored little-endian on the i860. */
static const unsigned char le_nop[] = { 0x00, 0x00, 0x00, 0xA0 };
int bytes;
char *p;
if (fragp->fr_type != rs_align_code)
return;
bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
p = fragp->fr_literal + fragp->fr_fix;
/* Make sure we are on a 4-byte boundary, in case someone has been
putting data into a text section. */
if (bytes & 3)
{
int fix = bytes & 3;
memset (p, 0, fix);
p += fix;
fragp->fr_fix += fix;
}
memcpy (p, le_nop, 4);
fragp->fr_var = 4;
}
/* This is called after a user-defined label is seen. We check
if the label has a double colon (valid in Intel syntax mode only),
in which case it should be externalized. */
void
i860_check_label (symbolS *labelsym)
{
/* At this point, the current line pointer is sitting on the character
just after the first colon on the label. */
if (target_intel_syntax && *input_line_pointer == ':')
{
S_SET_EXTERNAL (labelsym);
input_line_pointer++;
}
}