binutils-gdb/gdb/m-vax.h
2012-06-03 15:36:32 +01:00

446 lines
16 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Definitions to make GDB run on a vax under 4.2bsd.
Copyright (C) 1986, 1987, 1989 Free Software Foundation, Inc.
This file is part of GDB.
GDB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 1, or (at your option)
any later version.
GDB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GDB; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
/* There is one known bug with VAX support that I don't know how to
fix: if you do a backtrace from a signal handler, you get something
like:
#0 0xbc in kill (592, 3)
#1 0x7f in hand (...) (...)
#2 0x7fffec7e in ?? (2, 0, 2147478112, 94)
^^ GDB doesn't know about sigtramp
#3 0x7fffec70 in ?? (592, 2)
^^^^^^^^^^ wrong address
#4 0xae in main (...) (...)
when the correct backtrace (as given by adb) is:
_kill(250,3) from _hand+21
_hand(2,0,7fffea60,5e) from 7fffec7e
sigtramp(2,0,7fffea60,5e) from _kill+4
_kill(250,2) from _main+2e
_main(1,7fffeac4,7fffeacc) from start+3d
If anyone knows enough about VAX BSD to fix this, please send the
fix to bug-gdb@prep.ai.mit.edu. */
#ifndef vax
#define vax
#endif
/* Define the bit, byte, and word ordering of the machine. */
/* #define BITS_BIG_ENDIAN */
/* #define BYTES_BIG_ENDIAN */
/* #define WORDS_BIG_ENDIAN */
/* Get rid of any system-imposed stack limit if possible. */
#define SET_STACK_LIMIT_HUGE
/* Define this if the C compiler puts an underscore at the front
of external names before giving them to the linker. */
#define NAMES_HAVE_UNDERSCORE
/* Debugger information will be in DBX format. */
#define READ_DBX_FORMAT
/* Offset from address of function to start of its code.
Zero on most machines. */
#define FUNCTION_START_OFFSET 2
/* Advance PC across any function entry prologue instructions
to reach some "real" code. */
#define SKIP_PROLOGUE(pc) \
{ register int op = (unsigned char) read_memory_integer (pc, 1); \
if (op == 0x11) pc += 2; /* skip brb */ \
if (op == 0x31) pc += 3; /* skip brw */ \
if (op == 0xC2 && \
((unsigned char) read_memory_integer (pc+2, 1)) == 0x5E) \
pc += 3; /* skip subl2 */ \
if (op == 0x9E && \
((unsigned char) read_memory_integer (pc+1, 1)) == 0xAE && \
((unsigned char) read_memory_integer(pc+3, 1)) == 0x5E) \
pc += 4; /* skip movab */ \
if (op == 0x9E && \
((unsigned char) read_memory_integer (pc+1, 1)) == 0xCE && \
((unsigned char) read_memory_integer(pc+4, 1)) == 0x5E) \
pc += 5; /* skip movab */ \
if (op == 0x9E && \
((unsigned char) read_memory_integer (pc+1, 1)) == 0xEE && \
((unsigned char) read_memory_integer(pc+6, 1)) == 0x5E) \
pc += 7; /* skip movab */ \
}
/* Immediately after a function call, return the saved pc.
Can't always go through the frames for this because on some machines
the new frame is not set up until the new function executes
some instructions. */
#define SAVED_PC_AFTER_CALL(frame) FRAME_SAVED_PC(frame)
/* This is the amount to subtract from u.u_ar0
to get the offset in the core file of the register values. */
#define KERNEL_U_ADDR (0x80000000 - (UPAGES * NBPG))
/* Address of end of stack space. */
#define STACK_END_ADDR (0x80000000 - (UPAGES * NBPG))
/* Stack grows downward. */
#define INNER_THAN <
/* Sequence of bytes for breakpoint instruction. */
#define BREAKPOINT {3}
/* Amount PC must be decremented by after a breakpoint.
This is often the number of bytes in BREAKPOINT
but not always. */
#define DECR_PC_AFTER_BREAK 0
/* Nonzero if instruction at PC is a return instruction. */
#define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 1) == 04)
/* Return 1 if P points to an invalid floating point value.
LEN is the length in bytes -- not relevant on the Vax. */
#define INVALID_FLOAT(p, len) ((*(short *) p & 0xff80) == 0x8000)
/* Largest integer type */
#define LONGEST long
/* Name of the builtin type for the LONGEST type above. */
#define BUILTIN_TYPE_LONGEST builtin_type_long
/* Say how long (ordinary) registers are. */
#define REGISTER_TYPE long
/* Number of machine registers */
#define NUM_REGS 17
/* Initializer for an array of names of registers.
There should be NUM_REGS strings in this initializer. */
#define REGISTER_NAMES {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "ap", "fp", "sp", "pc", "ps"}
/* Register numbers of various important registers.
Note that some of these values are "real" register numbers,
and correspond to the general registers of the machine,
and some are "phony" register numbers which are too large
to be actual register numbers as far as the user is concerned
but do serve to get the desired values when passed to read_register. */
#define AP_REGNUM 12
#define FP_REGNUM 13 /* Contains address of executing stack frame */
#define SP_REGNUM 14 /* Contains address of top of stack */
#define PC_REGNUM 15 /* Contains program counter */
#define PS_REGNUM 16 /* Contains processor status */
#define REGISTER_U_ADDR(addr, blockend, regno) \
{ addr = blockend - 0110 + regno * 4; \
if (regno == PC_REGNUM) addr = blockend - 8; \
if (regno == PS_REGNUM) addr = blockend - 4; \
if (regno == FP_REGNUM) addr = blockend - 0120; \
if (regno == AP_REGNUM) addr = blockend - 0124; \
if (regno == SP_REGNUM) addr = blockend - 20; }
/* Total amount of space needed to store our copies of the machine's
register state, the array `registers'. */
#define REGISTER_BYTES (17*4)
/* Index within `registers' of the first byte of the space for
register N. */
#define REGISTER_BYTE(N) ((N) * 4)
/* Number of bytes of storage in the actual machine representation
for register N. On the vax, all regs are 4 bytes. */
#define REGISTER_RAW_SIZE(N) 4
/* Number of bytes of storage in the program's representation
for register N. On the vax, all regs are 4 bytes. */
#define REGISTER_VIRTUAL_SIZE(N) 4
/* Largest value REGISTER_RAW_SIZE can have. */
#define MAX_REGISTER_RAW_SIZE 4
/* Largest value REGISTER_VIRTUAL_SIZE can have. */
#define MAX_REGISTER_VIRTUAL_SIZE 4
/* Nonzero if register N requires conversion
from raw format to virtual format. */
#define REGISTER_CONVERTIBLE(N) 0
/* Convert data from raw format for register REGNUM
to virtual format for register REGNUM. */
#define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \
bcopy ((FROM), (TO), 4);
/* Convert data from virtual format for register REGNUM
to raw format for register REGNUM. */
#define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \
bcopy ((FROM), (TO), 4);
/* Return the GDB type object for the "standard" data type
of data in register N. */
#define REGISTER_VIRTUAL_TYPE(N) builtin_type_int
/* Store the address of the place in which to copy the structure the
subroutine will return. This is called from call_function. */
#define STORE_STRUCT_RETURN(ADDR, SP) \
{ write_register (1, (ADDR)); }
/* Extract from an array REGBUF containing the (raw) register state
a function return value of type TYPE, and copy that, in virtual format,
into VALBUF. */
#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
bcopy (REGBUF, VALBUF, TYPE_LENGTH (TYPE))
/* Write into appropriate registers a function return value
of type TYPE, given in virtual format. */
#define STORE_RETURN_VALUE(TYPE,VALBUF) \
write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE))
/* Extract from an array REGBUF containing the (raw) register state
the address in which a function should return its structure value,
as a CORE_ADDR (or an expression that can be used as one). */
#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)(REGBUF))
/* Compensate for lack of `vprintf' function. */
#ifndef HAVE_VPRINTF
#define vprintf(format, ap) _doprnt (format, ap, stdout)
#endif /* not HAVE_VPRINTF */
/* Describe the pointer in each stack frame to the previous stack frame
(its caller). */
/* FRAME_CHAIN takes a frame's nominal address
and produces the frame's chain-pointer.
FRAME_CHAIN_COMBINE takes the chain pointer and the frame's nominal address
and produces the nominal address of the caller frame.
However, if FRAME_CHAIN_VALID returns zero,
it means the given frame is the outermost one and has no caller.
In that case, FRAME_CHAIN_COMBINE is not used. */
/* In the case of the Vax, the frame's nominal address is the FP value,
and 12 bytes later comes the saved previous FP value as a 4-byte word. */
#define FRAME_CHAIN(thisframe) \
(outside_startup_file ((thisframe)->pc) ? \
read_memory_integer ((thisframe)->frame + 12, 4) :\
0)
#define FRAME_CHAIN_VALID(chain, thisframe) \
(chain != 0 && (outside_startup_file (FRAME_SAVED_PC (thisframe))))
#define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
/* Define other aspects of the stack frame. */
/* A macro that tells us whether the function invocation represented
by FI does not have a frame on the stack associated with it. If it
does not, FRAMELESS is set to 1, else 0. */
/* On the vax, all functions have frames. */
#define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) {(FRAMELESS) = 0;}
/* Saved Pc. */
#define FRAME_SAVED_PC(FRAME) (read_memory_integer ((FRAME)->frame + 16, 4))
/* Cannot find the AP register value directly from the FP value.
Must find it saved in the frame called by this one, or in the AP register
for the innermost frame. */
#define FRAME_ARGS_ADDRESS(fi) \
(((fi)->next_frame \
? read_memory_integer ((fi)->next_frame + 8, 4) \
: read_register (AP_REGNUM)))
#define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
/* Return number of args passed to a frame.
Can return -1, meaning no way to tell. */
#define FRAME_NUM_ARGS(numargs, fi) \
{ numargs = (0xff & read_memory_integer (FRAME_ARGS_ADDRESS (fi), 1)); }
/* Return number of bytes at start of arglist that are not really args. */
#define FRAME_ARGS_SKIP 4
/* Put here the code to store, into a struct frame_saved_regs,
the addresses of the saved registers of frame described by FRAME_INFO.
This includes special registers such as pc and fp saved in special
ways in the stack frame. sp is even more special:
the address we return for it IS the sp for the next frame. */
#define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
{ register int regnum; \
register int regmask = read_memory_integer ((frame_info)->frame+4, 4) >> 16; \
register CORE_ADDR next_addr; \
bzero (&frame_saved_regs, sizeof frame_saved_regs); \
next_addr = (frame_info)->frame + 16; \
/* Regmask's low bit is for register 0, \
which is the first one that would be pushed. */ \
for (regnum = 0; regnum < 12; regnum++, regmask >>= 1) \
(frame_saved_regs).regs[regnum] = (regmask & 1) ? (next_addr += 4) : 0; \
(frame_saved_regs).regs[SP_REGNUM] = next_addr + 4; \
if (read_memory_integer ((frame_info)->frame + 4, 4) & 0x20000000) \
(frame_saved_regs).regs[SP_REGNUM] += 4 + 4 * read_memory_integer (next_addr + 4, 4); \
(frame_saved_regs).regs[PC_REGNUM] = (frame_info)->frame + 16; \
(frame_saved_regs).regs[FP_REGNUM] = (frame_info)->frame + 12; \
(frame_saved_regs).regs[AP_REGNUM] = (frame_info)->frame + 8; \
(frame_saved_regs).regs[PS_REGNUM] = (frame_info)->frame + 4; \
}
/* Things needed for making the inferior call functions. */
/* Push an empty stack frame, to record the current PC, etc. */
#define PUSH_DUMMY_FRAME \
{ register CORE_ADDR sp = read_register (SP_REGNUM);\
register int regnum; \
sp = push_word (sp, 0); /* arglist */ \
for (regnum = 11; regnum >= 0; regnum--) \
sp = push_word (sp, read_register (regnum)); \
sp = push_word (sp, read_register (PC_REGNUM)); \
sp = push_word (sp, read_register (FP_REGNUM)); \
sp = push_word (sp, read_register (AP_REGNUM)); \
sp = push_word (sp, (read_register (PS_REGNUM) & 0xffef) \
+ 0x2fff0000); \
sp = push_word (sp, 0); \
write_register (SP_REGNUM, sp); \
write_register (FP_REGNUM, sp); \
write_register (AP_REGNUM, sp + 17 * sizeof (int)); }
/* Discard from the stack the innermost frame, restoring all registers. */
#define POP_FRAME \
{ register CORE_ADDR fp = read_register (FP_REGNUM); \
register int regnum; \
register int regmask = read_memory_integer (fp + 4, 4); \
write_register (PS_REGNUM, \
(regmask & 0xffff) \
| (read_register (PS_REGNUM) & 0xffff0000)); \
write_register (PC_REGNUM, read_memory_integer (fp + 16, 4)); \
write_register (FP_REGNUM, read_memory_integer (fp + 12, 4)); \
write_register (AP_REGNUM, read_memory_integer (fp + 8, 4)); \
fp += 16; \
for (regnum = 0; regnum < 12; regnum++) \
if (regmask & (0x10000 << regnum)) \
write_register (regnum, read_memory_integer (fp += 4, 4)); \
fp = fp + 4 + ((regmask >> 30) & 3); \
if (regmask & 0x20000000) \
{ regnum = read_memory_integer (fp, 4); \
fp += (regnum + 1) * 4; } \
write_register (SP_REGNUM, fp); \
flush_cached_frames (); \
set_current_frame (create_new_frame (read_register (FP_REGNUM),\
read_pc ())); }
/* This sequence of words is the instructions
calls #69, @#32323232
bpt
Note this is 8 bytes. */
#define CALL_DUMMY {0x329f69fb, 0x03323232}
#define CALL_DUMMY_START_OFFSET 0 /* Start execution at beginning of dummy */
/* Insert the specified number of args and function address
into a call sequence of the above form stored at DUMMYNAME. */
#define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, type) \
{ *((char *) dummyname + 1) = nargs; \
*(int *)((char *) dummyname + 3) = fun; }
/* Interface definitions for kernel debugger KDB. */
/* Map machine fault codes into signal numbers.
First subtract 0, divide by 4, then index in a table.
Faults for which the entry in this table is 0
are not handled by KDB; the program's own trap handler
gets to handle then. */
#define FAULT_CODE_ORIGIN 0
#define FAULT_CODE_UNITS 4
#define FAULT_TABLE \
{ 0, SIGKILL, SIGSEGV, 0, 0, 0, 0, 0, \
0, 0, SIGTRAP, SIGTRAP, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0}
/* Start running with a stack stretching from BEG to END.
BEG and END should be symbols meaningful to the assembler.
This is used only for kdb. */
#define INIT_STACK(beg, end) \
{ asm (".globl end"); \
asm ("movl $ end, sp"); \
asm ("clrl fp"); }
/* Push the frame pointer register on the stack. */
#define PUSH_FRAME_PTR \
asm ("pushl fp");
/* Copy the top-of-stack to the frame pointer register. */
#define POP_FRAME_PTR \
asm ("movl (sp), fp");
/* After KDB is entered by a fault, push all registers
that GDB thinks about (all NUM_REGS of them),
so that they appear in order of ascending GDB register number.
The fault code will be on the stack beyond the last register. */
#define PUSH_REGISTERS \
{ asm ("pushl 8(sp)"); \
asm ("pushl 8(sp)"); \
asm ("pushal 0x14(sp)"); \
asm ("pushr $037777"); }
/* Assuming the registers (including processor status) have been
pushed on the stack in order of ascending GDB register number,
restore them and return to the address in the saved PC register. */
#define POP_REGISTERS \
{ asm ("popr $037777"); \
asm ("subl2 $8,(sp)"); \
asm ("movl (sp),sp"); \
asm ("rei"); }